mirror of
https://github.com/snakers4/silero-vad.git
synced 2026-02-04 17:39:22 +08:00
Compare commits
183 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
dfdc9a484e | ||
|
|
f2e3a23d96 | ||
|
|
2b97f61160 | ||
|
|
e8850d2b9b | ||
|
|
657dac8736 | ||
|
|
412a478e29 | ||
|
|
9adf6d2192 | ||
|
|
8a2a73c14f | ||
|
|
3e0305559d | ||
|
|
f0d880d79c | ||
|
|
3888946c0c | ||
|
|
24f51645d0 | ||
|
|
fdbb0a3a81 | ||
|
|
60ae7abfb7 | ||
|
|
0b3d43d432 | ||
|
|
a395853982 | ||
|
|
78958b6fb6 | ||
|
|
902cfc9248 | ||
|
|
89e66a3474 | ||
|
|
a3bdebed16 | ||
|
|
4bdcf31d17 | ||
|
|
136cdcdf5b | ||
|
|
5cd2ba54db | ||
|
|
06b9e17c1e | ||
|
|
aace7e25b1 | ||
|
|
74c3f7f3fb | ||
|
|
d77d0fd42c | ||
|
|
49b421a9cd | ||
|
|
fd1f1a62b7 | ||
|
|
8145ed9a91 | ||
|
|
4392725328 | ||
|
|
8b0566682b | ||
|
|
82342b8a4c | ||
|
|
4b8ce743a8 | ||
|
|
b4b6f2ab3e | ||
|
|
5b02d84a4a | ||
|
|
60465a7e61 | ||
|
|
fcef5b3955 | ||
|
|
156436762f | ||
|
|
a27b176e45 | ||
|
|
8125483ef7 | ||
|
|
6969dcc2dc | ||
|
|
6c816a05f0 | ||
|
|
9dc344df7f | ||
|
|
41c5172dd9 | ||
|
|
894ea259f9 | ||
|
|
f56f56ffaa | ||
|
|
6c8d844710 | ||
|
|
d8cc947c73 | ||
|
|
797a88a386 | ||
|
|
48b7c742dd | ||
|
|
c5ec6bae3d | ||
|
|
af152c18f6 | ||
|
|
d391f4c302 | ||
|
|
bf18ea6b56 | ||
|
|
a65732a393 | ||
|
|
aae1e4f40d | ||
|
|
94504ece54 | ||
|
|
0b7da6e74b | ||
|
|
efb5effc8f | ||
|
|
03dc3fae5c | ||
|
|
4a6d1701a4 | ||
|
|
5e7ee10ee0 | ||
|
|
03fb810fab | ||
|
|
e30a7e32a9 | ||
|
|
bbbc657dad | ||
|
|
cb92cdd1e3 | ||
|
|
3780baf49f | ||
|
|
563106ef8c | ||
|
|
f795bc479b | ||
|
|
7e9680bc83 | ||
|
|
3b4c02dfe3 | ||
|
|
bc5a0a2dbf | ||
|
|
b03fcb2ebe | ||
|
|
026bc3d292 | ||
|
|
e755baa3c2 | ||
|
|
b88084c7ed | ||
|
|
a9d2b591de | ||
|
|
c3c67cdcb8 | ||
|
|
874c66ccbc | ||
|
|
51fbbcb32e | ||
|
|
14a0715955 | ||
|
|
a0d26769e0 | ||
|
|
e0c2015193 | ||
|
|
5872cffd78 | ||
|
|
86400b9a12 | ||
|
|
6ef43d1c5d | ||
|
|
540e092276 | ||
|
|
55c41abf46 | ||
|
|
17903cb41d | ||
|
|
c39dccc1fd | ||
|
|
a6a067de44 | ||
|
|
9865b3cb93 | ||
|
|
3d10c2d950 | ||
|
|
4f57fae3fa | ||
|
|
085d76f08e | ||
|
|
262bcb4b40 | ||
|
|
e84eca68d7 | ||
|
|
e7c4539106 | ||
|
|
a480e85aec | ||
|
|
c69cb6c9c0 | ||
|
|
11da69d88b | ||
|
|
df1d52042d | ||
|
|
d5a944b9f1 | ||
|
|
d90416e63e | ||
|
|
91f0aaecef | ||
|
|
015bfc8b21 | ||
|
|
5d56b1ea40 | ||
|
|
ff3c596cab | ||
|
|
63e1be5a22 | ||
|
|
1d8f8f38db | ||
|
|
7198087152 | ||
|
|
ad57d17f5f | ||
|
|
04e87c208a | ||
|
|
c583fd1e52 | ||
|
|
5814e548db | ||
|
|
42565d5baa | ||
|
|
ab7af9745b | ||
|
|
83e68c56ea | ||
|
|
d3882c9ebf | ||
|
|
25f04dda35 | ||
|
|
94b4c21874 | ||
|
|
324bc74a58 | ||
|
|
82d199ff22 | ||
|
|
5ba388d894 | ||
|
|
790844ba0f | ||
|
|
51b5245410 | ||
|
|
888970e77d | ||
|
|
cb6d308335 | ||
|
|
1b212c6e95 | ||
|
|
452060ad65 | ||
|
|
c7eab751b5 | ||
|
|
d1714a9ff7 | ||
|
|
94c79d899d | ||
|
|
1baf307b35 | ||
|
|
e324285cdc | ||
|
|
13dce2d067 | ||
|
|
081e6b9886 | ||
|
|
572134fdf1 | ||
|
|
a799dea837 | ||
|
|
17209e6c4f | ||
|
|
6661cc9691 | ||
|
|
7c671a75c2 | ||
|
|
622016e672 | ||
|
|
8eba346bc9 | ||
|
|
900c71a109 | ||
|
|
bf0127e016 | ||
|
|
ea7af70fe9 | ||
|
|
8cdc8d36c9 | ||
|
|
6e9fd77500 | ||
|
|
6cc08b1077 | ||
|
|
0e8e080894 | ||
|
|
af6931d1de | ||
|
|
76687cbe25 | ||
|
|
b2329fa5f2 | ||
|
|
005886e7eb | ||
|
|
f6b1294cb2 | ||
|
|
2392ea33f4 | ||
|
|
45d72863b6 | ||
|
|
f40cc128a4 | ||
|
|
0d61e4cee1 | ||
|
|
011268e492 | ||
|
|
8ebaf139c6 | ||
|
|
0a90316625 | ||
|
|
35d8969322 | ||
|
|
7c3eb8bfb5 | ||
|
|
74f759c8f8 | ||
|
|
5816eb08c4 | ||
|
|
0feae6cbbe | ||
|
|
fc0a70f42e | ||
|
|
13fd927b84 | ||
|
|
124d6564a0 | ||
|
|
56fa93a1c9 | ||
|
|
1a93276208 | ||
|
|
9fbd0c4c2d | ||
|
|
7b05a183a3 | ||
|
|
f67e68efc3 | ||
|
|
51b1365bb0 | ||
|
|
79fdb55f1c | ||
|
|
b17da75dac | ||
|
|
184e384697 | ||
|
|
adf5d6d020 | ||
|
|
41ee0f6b9f |
40
.github/workflows/python-publish.yml
vendored
Normal file
40
.github/workflows/python-publish.yml
vendored
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
# This workflow will upload a Python Package using Twine when a release is created
|
||||||
|
# For more information see: https://docs.github.com/en/actions/automating-builds-and-tests/building-and-testing-python#publishing-to-package-registries
|
||||||
|
|
||||||
|
# This workflow uses actions that are not certified by GitHub.
|
||||||
|
# They are provided by a third-party and are governed by
|
||||||
|
# separate terms of service, privacy policy, and support
|
||||||
|
# documentation.
|
||||||
|
|
||||||
|
name: Upload Python Package
|
||||||
|
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
tags:
|
||||||
|
- '*'
|
||||||
|
|
||||||
|
permissions:
|
||||||
|
contents: read
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
deploy:
|
||||||
|
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
- name: Set up Python
|
||||||
|
uses: actions/setup-python@v3
|
||||||
|
with:
|
||||||
|
python-version: '3.x'
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
python -m pip install --upgrade pip
|
||||||
|
pip install build
|
||||||
|
- name: Build package
|
||||||
|
run: python -m build
|
||||||
|
- name: Publish package
|
||||||
|
uses: pypa/gh-action-pypi-publish@27b31702a0e7fc50959f5ad993c78deac1bdfc29
|
||||||
|
with:
|
||||||
|
user: __token__
|
||||||
|
password: ${{ secrets.PYPI_API_TOKEN }}
|
||||||
71
README.md
71
README.md
@@ -10,50 +10,82 @@
|
|||||||
|
|
||||||
**Silero VAD** - pre-trained enterprise-grade [Voice Activity Detector](https://en.wikipedia.org/wiki/Voice_activity_detection) (also see our [STT models](https://github.com/snakers4/silero-models)).
|
**Silero VAD** - pre-trained enterprise-grade [Voice Activity Detector](https://en.wikipedia.org/wiki/Voice_activity_detection) (also see our [STT models](https://github.com/snakers4/silero-models)).
|
||||||
|
|
||||||
This repository also includes Number Detector and Language classifier [models](https://github.com/snakers4/silero-vad/wiki/Other-Models)
|
|
||||||
|
|
||||||
<br/>
|
<br/>
|
||||||
|
|
||||||
<p align="center">
|
<p align="center">
|
||||||
<img src="https://user-images.githubusercontent.com/36505480/145007002-8473f909-5985-4942-bbcf-9ac86d156c2f.png" />
|
<img src="https://github.com/snakers4/silero-vad/assets/36505480/300bd062-4da5-4f19-9736-9c144a45d7a7" />
|
||||||
</p>
|
</p>
|
||||||
|
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
<summary>Real Time Example</summary>
|
<summary>Real Time Example</summary>
|
||||||
|
|
||||||
https://user-images.githubusercontent.com/36505480/144874384-95f80f6d-a4f1-42cc-9be7-004c891dd481.mp4
|
https://user-images.githubusercontent.com/36505480/144874384-95f80f6d-a4f1-42cc-9be7-004c891dd481.mp4
|
||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
<br/>
|
<br/>
|
||||||
|
|
||||||
|
<h2 align="center">Fast start</h2>
|
||||||
|
<br/>
|
||||||
|
|
||||||
|
**Using pip**:
|
||||||
|
`pip install silero-vad`
|
||||||
|
|
||||||
|
```python3
|
||||||
|
from silero_vad import load_silero_vad, read_audio, get_speech_timestamps
|
||||||
|
model = load_silero_vad()
|
||||||
|
wav = read_audio('path_to_audio_file') # backend (sox, soundfile, or ffmpeg) required!
|
||||||
|
speech_timestamps = get_speech_timestamps(wav, model)
|
||||||
|
```
|
||||||
|
|
||||||
|
**Using torch.hub**:
|
||||||
|
```python3
|
||||||
|
import torch
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
|
||||||
|
model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad', model='silero_vad')
|
||||||
|
(get_speech_timestamps, _, read_audio, _, _) = utils
|
||||||
|
|
||||||
|
wav = read_audio('path_to_audio_file') # backend (sox, soundfile, or ffmpeg) required!
|
||||||
|
speech_timestamps = get_speech_timestamps(wav, model)
|
||||||
|
```
|
||||||
|
|
||||||
|
<br/>
|
||||||
|
|
||||||
<h2 align="center">Key Features</h2>
|
<h2 align="center">Key Features</h2>
|
||||||
<br/>
|
<br/>
|
||||||
|
|
||||||
- **High accuracy**
|
- **Stellar accuracy**
|
||||||
|
|
||||||
Silero VAD has [excellent results](https://github.com/snakers4/silero-vad/wiki/Quality-Metrics#vs-other-available-solutions) on speech detection tasks.
|
Silero VAD has [excellent results](https://github.com/snakers4/silero-vad/wiki/Quality-Metrics#vs-other-available-solutions) on speech detection tasks.
|
||||||
|
|
||||||
- **Fast**
|
- **Fast**
|
||||||
|
|
||||||
One audio chunk (30+ ms) [takes](https://github.com/snakers4/silero-vad/wiki/Performance-Metrics#silero-vad-performance-metrics) around **1ms** to be processed on a single CPU thread. Using batching or GPU can also improve performance considerably.
|
One audio chunk (30+ ms) [takes](https://github.com/snakers4/silero-vad/wiki/Performance-Metrics#silero-vad-performance-metrics) less than **1ms** to be processed on a single CPU thread. Using batching or GPU can also improve performance considerably. Under certain conditions ONNX may even run up to 4-5x faster.
|
||||||
|
|
||||||
- **Lightweight**
|
- **Lightweight**
|
||||||
|
|
||||||
JIT model is less than one megabyte in size.
|
JIT model is around two megabytes in size.
|
||||||
|
|
||||||
- **General**
|
- **General**
|
||||||
|
|
||||||
Silero VAD was trained on huge corpora that include over **100** languages and it performs well on audios from different domains with various background noise and quality levels.
|
Silero VAD was trained on huge corpora that include over **6000** languages and it performs well on audios from different domains with various background noise and quality levels.
|
||||||
|
|
||||||
- **Flexible sampling rate**
|
- **Flexible sampling rate**
|
||||||
|
|
||||||
Silero VAD [supports](https://github.com/snakers4/silero-vad/wiki/Quality-Metrics#sample-rate-comparison) **8000 Hz** and **16000 Hz** [sampling rates](https://en.wikipedia.org/wiki/Sampling_(signal_processing)#Sampling_rate).
|
Silero VAD [supports](https://github.com/snakers4/silero-vad/wiki/Quality-Metrics#sample-rate-comparison) **8000 Hz** and **16000 Hz** [sampling rates](https://en.wikipedia.org/wiki/Sampling_(signal_processing)#Sampling_rate).
|
||||||
|
|
||||||
- **Flexible chunk size**
|
- **Highly Portable**
|
||||||
|
|
||||||
Model was trained on audio chunks of different lengths. **30 ms**, **60 ms** and **100 ms** long chunks are supported directly, others may work as well.
|
Silero VAD reaps benefits from the rich ecosystems built around **PyTorch** and **ONNX** running everywhere where these runtimes are available.
|
||||||
|
|
||||||
|
- **No Strings Attached**
|
||||||
|
|
||||||
|
Published under permissive license (MIT) Silero VAD has zero strings attached - no telemetry, no keys, no registration, no built-in expiration, no keys or vendor lock.
|
||||||
|
|
||||||
<br/>
|
<br/>
|
||||||
|
|
||||||
<h2 align="center">Typical Use Cases</h2>
|
<h2 align="center">Typical Use Cases</h2>
|
||||||
<br/>
|
<br/>
|
||||||
|
|
||||||
@@ -70,8 +102,9 @@ https://user-images.githubusercontent.com/36505480/144874384-95f80f6d-a4f1-42cc-
|
|||||||
- [Examples and Dependencies](https://github.com/snakers4/silero-vad/wiki/Examples-and-Dependencies#dependencies)
|
- [Examples and Dependencies](https://github.com/snakers4/silero-vad/wiki/Examples-and-Dependencies#dependencies)
|
||||||
- [Quality Metrics](https://github.com/snakers4/silero-vad/wiki/Quality-Metrics)
|
- [Quality Metrics](https://github.com/snakers4/silero-vad/wiki/Quality-Metrics)
|
||||||
- [Performance Metrics](https://github.com/snakers4/silero-vad/wiki/Performance-Metrics)
|
- [Performance Metrics](https://github.com/snakers4/silero-vad/wiki/Performance-Metrics)
|
||||||
- Number Detector and Language classifier [models](https://github.com/snakers4/silero-vad/wiki/Other-Models)
|
|
||||||
- [Versions and Available Models](https://github.com/snakers4/silero-vad/wiki/Version-history-and-Available-Models)
|
- [Versions and Available Models](https://github.com/snakers4/silero-vad/wiki/Version-history-and-Available-Models)
|
||||||
|
- [Further reading](https://github.com/snakers4/silero-models#further-reading)
|
||||||
|
- [FAQ](https://github.com/snakers4/silero-vad/wiki/FAQ)
|
||||||
|
|
||||||
<br/>
|
<br/>
|
||||||
<h2 align="center">Get In Touch</h2>
|
<h2 align="center">Get In Touch</h2>
|
||||||
@@ -79,7 +112,7 @@ https://user-images.githubusercontent.com/36505480/144874384-95f80f6d-a4f1-42cc-
|
|||||||
|
|
||||||
Try our models, create an [issue](https://github.com/snakers4/silero-vad/issues/new), start a [discussion](https://github.com/snakers4/silero-vad/discussions/new), join our telegram [chat](https://t.me/silero_speech), [email](mailto:hello@silero.ai) us, read our [news](https://t.me/silero_news).
|
Try our models, create an [issue](https://github.com/snakers4/silero-vad/issues/new), start a [discussion](https://github.com/snakers4/silero-vad/discussions/new), join our telegram [chat](https://t.me/silero_speech), [email](mailto:hello@silero.ai) us, read our [news](https://t.me/silero_news).
|
||||||
|
|
||||||
Please see our [wiki](https://github.com/snakers4/silero-models/wiki) and [tiers](https://github.com/snakers4/silero-models/wiki/Licensing-and-Tiers) for relevant information and [email](mailto:hello@silero.ai) us directly.
|
Please see our [wiki](https://github.com/snakers4/silero-models/wiki) for relevant information and [email](mailto:hello@silero.ai) us directly.
|
||||||
|
|
||||||
**Citations**
|
**Citations**
|
||||||
|
|
||||||
@@ -94,4 +127,14 @@ Please see our [wiki](https://github.com/snakers4/silero-models/wiki) and [tiers
|
|||||||
commit = {insert_some_commit_here},
|
commit = {insert_some_commit_here},
|
||||||
email = {hello@silero.ai}
|
email = {hello@silero.ai}
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
<br/>
|
||||||
|
<h2 align="center">Examples and VAD-based Community Apps</h2>
|
||||||
|
<br/>
|
||||||
|
|
||||||
|
- Example of VAD ONNX Runtime model usage in [C++](https://github.com/snakers4/silero-vad/tree/master/examples/cpp)
|
||||||
|
|
||||||
|
- Voice activity detection for the [browser](https://github.com/ricky0123/vad) using ONNX Runtime Web
|
||||||
|
|
||||||
|
- [Rust](https://github.com/snakers4/silero-vad/tree/master/examples/rust-example), [Go](https://github.com/snakers4/silero-vad/tree/master/examples/go), [Java](https://github.com/snakers4/silero-vad/tree/master/examples/java-example) and [other](https://github.com/snakers4/silero-vad/tree/master/examples) examples
|
||||||
|
|||||||
84
datasets/README.md
Normal file
84
datasets/README.md
Normal file
@@ -0,0 +1,84 @@
|
|||||||
|
# Датасет Silero-VAD
|
||||||
|
|
||||||
|
> Датасет создан при поддержке Фонда содействия инновациям в рамках федерального проекта «Искусственный
|
||||||
|
интеллект» национальной программы «Цифровая экономика Российской Федерации».
|
||||||
|
|
||||||
|
По ссылкам ниже представлены `.feather` файлы, содержащие размеченные с помощью Silero VAD открытые наборы аудиоданных, а также короткое описание каждого набора данных с примерами загрузки. `.feather` файлы можно открыть с помощью библиотеки `pandas`:
|
||||||
|
```python3
|
||||||
|
import pandas as pd
|
||||||
|
dataframe = pd.read_feather(PATH_TO_FEATHER_FILE)
|
||||||
|
```
|
||||||
|
|
||||||
|
Каждый `.feather` файл с разметкой содержит следующие колонки:
|
||||||
|
- `speech_timings` - разметка данного аудио. Это список, содержащий словари вида `{'start': START_SECOND, 'end': END_SECOND}`, где `START_SECOND` и `END_SECOND` - время начала и конца речи в секундах. Количество данных словарей равно количеству речевых аудио отрывков, найденных в данном аудио;
|
||||||
|
- `language` - ISO код языка данного аудио.
|
||||||
|
|
||||||
|
Колонки, содержащие информацию о загрузке аудио файла различаются и описаны для каждого набора данных ниже.
|
||||||
|
|
||||||
|
**Все данные размечены при временной дискретизации в ~30 миллисекунд (`num_samples` - 512)**
|
||||||
|
|
||||||
|
| Название | Число часов | Число языков | Ссылка | Лицензия | md5sum |
|
||||||
|
|----------------------|-------------|-------------|--------|----------|----------|
|
||||||
|
| **Bible.is** | 53,138 | 1,596 | [URL](https://live.bible.is/) | [Уникальная](https://live.bible.is/terms) | ea404eeaf2cd283b8223f63002be11f9 |
|
||||||
|
| **globalrecordings.net** | 9,743 | 6,171[^1] | [URL](https://globalrecordings.net/en) | CC BY-NC-SA 4.0 | 3c5c0f31b0abd9fe94ddbe8b1e2eb326 |
|
||||||
|
| **VoxLingua107** | 6,628 | 107 | [URL](https://bark.phon.ioc.ee/voxlingua107/) | CC BY 4.0 | 5dfef33b4d091b6d399cfaf3d05f2140 |
|
||||||
|
| **Common Voice** | 30,329 | 120 | [URL](https://commonvoice.mozilla.org/en/datasets) | CC0 | 5e30a85126adf74a5fd1496e6ac8695d |
|
||||||
|
| **MLS** | 50,709 | 8 | [URL](https://www.openslr.org/94/) | CC BY 4.0 | a339d0e94bdf41bba3c003756254ac4e |
|
||||||
|
| **Итого** | **150,547** | **6,171+** | | | |
|
||||||
|
|
||||||
|
## Bible.is
|
||||||
|
|
||||||
|
[Ссылка на `.feather` файл с разметкой](https://models.silero.ai/vad_datasets/BibleIs.feather)
|
||||||
|
|
||||||
|
- Колонка `audio_link` содержит ссылки на конкретные аудио файлы.
|
||||||
|
|
||||||
|
## globalrecordings.net
|
||||||
|
|
||||||
|
[Ссылка на `.feather` файл с разметкой](https://models.silero.ai/vad_datasets/globalrecordings.feather)
|
||||||
|
|
||||||
|
- Колонка `folder_link` содержит ссылки на скачивание `.zip` архива для конкретного языка. Внимание! Ссылки на архивы дублируются, т.к каждый архив может содержать множество аудио.
|
||||||
|
- Колонка `audio_path` содержит пути до конкретного аудио после распаковки соответствующего архива из колонки `folder_link`
|
||||||
|
|
||||||
|
``Количество уникальных ISO кодов данного датасета не совпадает с фактическим количеством представленных языков, т.к некоторые близкие языки могут кодироваться одним и тем же ISO кодом.``
|
||||||
|
|
||||||
|
## VoxLingua107
|
||||||
|
|
||||||
|
[Ссылка на `.feather` файл с разметкой](https://models.silero.ai/vad_datasets/VoxLingua107.feather)
|
||||||
|
|
||||||
|
- Колонка `folder_link` содержит ссылки на скачивание `.zip` архива для конкретного языка. Внимание! Ссылки на архивы дублируются, т.к каждый архив может содержать множество аудио.
|
||||||
|
- Колонка `audio_path` содержит пути до конкретного аудио после распаковки соответствующего архива из колонки `folder_link`
|
||||||
|
|
||||||
|
## Common Voice
|
||||||
|
|
||||||
|
[Ссылка на `.feather` файл с разметкой](https://models.silero.ai/vad_datasets/common_voice.feather)
|
||||||
|
|
||||||
|
Этот датасет невозможно скачать по статичным ссылкам. Для загрузки необходимо перейти по [ссылке](https://commonvoice.mozilla.org/en/datasets) и, получив доступ в соответствующей форме, скачать архивы для каждого доступного языка. Внимание! Представленная разметка актуальна для версии исходного датасета `Common Voice Corpus 16.1`.
|
||||||
|
|
||||||
|
- Колонка `audio_path` содержит уникальные названия `.mp3` файлов, полученных после скачивания соответствующего датасета.
|
||||||
|
|
||||||
|
## MLS
|
||||||
|
|
||||||
|
[Ссылка на `.feather` файл с разметкой](https://models.silero.ai/vad_datasets/MLS.feather)
|
||||||
|
|
||||||
|
- Колонка `folder_link` содержит ссылки на скачивание `.zip` архива для конкретного языка. Внимание! Ссылки на архивы дублируются, т.к каждый архив может содержать множество аудио.
|
||||||
|
- Колонка `audio_path` содержит пути до конкретного аудио после распаковки соответствующего архива из колонки `folder_link`
|
||||||
|
|
||||||
|
## Лицензия
|
||||||
|
|
||||||
|
Данный датасет распространяется под [лицензией](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en) `CC BY-NC-SA 4.0`.
|
||||||
|
|
||||||
|
## Цитирование
|
||||||
|
|
||||||
|
```
|
||||||
|
@misc{Silero VAD Dataset,
|
||||||
|
author = {Silero Team},
|
||||||
|
title = {Silero-VAD Dataset: a large public Internet-scale dataset for voice activity detection for 6000+ languages},
|
||||||
|
year = {2024},
|
||||||
|
publisher = {GitHub},
|
||||||
|
journal = {GitHub repository},
|
||||||
|
howpublished = {\url{https://github.com/snakers4/silero-vad/datasets/README.md}},
|
||||||
|
email = {hello@silero.ai}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
[^1]: ``Количество уникальных ISO кодов данного датасета не совпадает с фактическим количеством представленных языков, т.к некоторые близкие языки могут кодироваться одним и тем же ISO кодом.``
|
||||||
241
examples/colab_record_example.ipynb
Normal file
241
examples/colab_record_example.ipynb
Normal file
@@ -0,0 +1,241 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"id": "bccAucKjnPHm"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"### Dependencies and inputs"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"id": "cSih95WFmwgi"
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"!pip -q install pydub\n",
|
||||||
|
"from google.colab import output\n",
|
||||||
|
"from base64 import b64decode, b64encode\n",
|
||||||
|
"from io import BytesIO\n",
|
||||||
|
"import numpy as np\n",
|
||||||
|
"from pydub import AudioSegment\n",
|
||||||
|
"from IPython.display import HTML, display\n",
|
||||||
|
"import torch\n",
|
||||||
|
"import matplotlib.pyplot as plt\n",
|
||||||
|
"import moviepy.editor as mpe\n",
|
||||||
|
"from matplotlib.animation import FuncAnimation, FFMpegWriter\n",
|
||||||
|
"import matplotlib\n",
|
||||||
|
"matplotlib.use('Agg')\n",
|
||||||
|
"\n",
|
||||||
|
"torch.set_num_threads(1)\n",
|
||||||
|
"\n",
|
||||||
|
"model, _ = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
|
||||||
|
" model='silero_vad',\n",
|
||||||
|
" force_reload=True)\n",
|
||||||
|
"\n",
|
||||||
|
"def int2float(sound):\n",
|
||||||
|
" abs_max = np.abs(sound).max()\n",
|
||||||
|
" sound = sound.astype('float32')\n",
|
||||||
|
" if abs_max > 0:\n",
|
||||||
|
" sound *= 1/32768\n",
|
||||||
|
" sound = sound.squeeze()\n",
|
||||||
|
" return sound\n",
|
||||||
|
"\n",
|
||||||
|
"AUDIO_HTML = \"\"\"\n",
|
||||||
|
"<script>\n",
|
||||||
|
"var my_div = document.createElement(\"DIV\");\n",
|
||||||
|
"var my_p = document.createElement(\"P\");\n",
|
||||||
|
"var my_btn = document.createElement(\"BUTTON\");\n",
|
||||||
|
"var t = document.createTextNode(\"Press to start recording\");\n",
|
||||||
|
"\n",
|
||||||
|
"my_btn.appendChild(t);\n",
|
||||||
|
"//my_p.appendChild(my_btn);\n",
|
||||||
|
"my_div.appendChild(my_btn);\n",
|
||||||
|
"document.body.appendChild(my_div);\n",
|
||||||
|
"\n",
|
||||||
|
"var base64data = 0;\n",
|
||||||
|
"var reader;\n",
|
||||||
|
"var recorder, gumStream;\n",
|
||||||
|
"var recordButton = my_btn;\n",
|
||||||
|
"\n",
|
||||||
|
"var handleSuccess = function(stream) {\n",
|
||||||
|
" gumStream = stream;\n",
|
||||||
|
" var options = {\n",
|
||||||
|
" //bitsPerSecond: 8000, //chrome seems to ignore, always 48k\n",
|
||||||
|
" mimeType : 'audio/webm;codecs=opus'\n",
|
||||||
|
" //mimeType : 'audio/webm;codecs=pcm'\n",
|
||||||
|
" }; \n",
|
||||||
|
" //recorder = new MediaRecorder(stream, options);\n",
|
||||||
|
" recorder = new MediaRecorder(stream);\n",
|
||||||
|
" recorder.ondataavailable = function(e) { \n",
|
||||||
|
" var url = URL.createObjectURL(e.data);\n",
|
||||||
|
" // var preview = document.createElement('audio');\n",
|
||||||
|
" // preview.controls = true;\n",
|
||||||
|
" // preview.src = url;\n",
|
||||||
|
" // document.body.appendChild(preview);\n",
|
||||||
|
"\n",
|
||||||
|
" reader = new FileReader();\n",
|
||||||
|
" reader.readAsDataURL(e.data); \n",
|
||||||
|
" reader.onloadend = function() {\n",
|
||||||
|
" base64data = reader.result;\n",
|
||||||
|
" //console.log(\"Inside FileReader:\" + base64data);\n",
|
||||||
|
" }\n",
|
||||||
|
" };\n",
|
||||||
|
" recorder.start();\n",
|
||||||
|
" };\n",
|
||||||
|
"\n",
|
||||||
|
"recordButton.innerText = \"Recording... press to stop\";\n",
|
||||||
|
"\n",
|
||||||
|
"navigator.mediaDevices.getUserMedia({audio: true}).then(handleSuccess);\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"function toggleRecording() {\n",
|
||||||
|
" if (recorder && recorder.state == \"recording\") {\n",
|
||||||
|
" recorder.stop();\n",
|
||||||
|
" gumStream.getAudioTracks()[0].stop();\n",
|
||||||
|
" recordButton.innerText = \"Saving recording...\"\n",
|
||||||
|
" }\n",
|
||||||
|
"}\n",
|
||||||
|
"\n",
|
||||||
|
"// https://stackoverflow.com/a/951057\n",
|
||||||
|
"function sleep(ms) {\n",
|
||||||
|
" return new Promise(resolve => setTimeout(resolve, ms));\n",
|
||||||
|
"}\n",
|
||||||
|
"\n",
|
||||||
|
"var data = new Promise(resolve=>{\n",
|
||||||
|
"//recordButton.addEventListener(\"click\", toggleRecording);\n",
|
||||||
|
"recordButton.onclick = ()=>{\n",
|
||||||
|
"toggleRecording()\n",
|
||||||
|
"\n",
|
||||||
|
"sleep(2000).then(() => {\n",
|
||||||
|
" // wait 2000ms for the data to be available...\n",
|
||||||
|
" // ideally this should use something like await...\n",
|
||||||
|
" //console.log(\"Inside data:\" + base64data)\n",
|
||||||
|
" resolve(base64data.toString())\n",
|
||||||
|
"\n",
|
||||||
|
"});\n",
|
||||||
|
"\n",
|
||||||
|
"}\n",
|
||||||
|
"});\n",
|
||||||
|
" \n",
|
||||||
|
"</script>\n",
|
||||||
|
"\"\"\"\n",
|
||||||
|
"\n",
|
||||||
|
"def record(sec=10):\n",
|
||||||
|
" display(HTML(AUDIO_HTML))\n",
|
||||||
|
" s = output.eval_js(\"data\")\n",
|
||||||
|
" b = b64decode(s.split(',')[1])\n",
|
||||||
|
" audio = AudioSegment.from_file(BytesIO(b))\n",
|
||||||
|
" audio.export('test.mp3', format='mp3')\n",
|
||||||
|
" audio = audio.set_channels(1)\n",
|
||||||
|
" audio = audio.set_frame_rate(16000)\n",
|
||||||
|
" audio_float = int2float(np.array(audio.get_array_of_samples()))\n",
|
||||||
|
" audio_tens = torch.tensor(audio_float )\n",
|
||||||
|
" return audio_tens\n",
|
||||||
|
"\n",
|
||||||
|
"def make_animation(probs, audio_duration, interval=40):\n",
|
||||||
|
" fig = plt.figure(figsize=(16, 9))\n",
|
||||||
|
" ax = plt.axes(xlim=(0, audio_duration), ylim=(0, 1.02))\n",
|
||||||
|
" line, = ax.plot([], [], lw=2)\n",
|
||||||
|
" x = [i / 16000 * 512 for i in range(len(probs))]\n",
|
||||||
|
" plt.xlabel('Time, seconds', fontsize=16)\n",
|
||||||
|
" plt.ylabel('Speech Probability', fontsize=16)\n",
|
||||||
|
"\n",
|
||||||
|
" def init():\n",
|
||||||
|
" plt.fill_between(x, probs, color='#064273')\n",
|
||||||
|
" line.set_data([], [])\n",
|
||||||
|
" line.set_color('#990000')\n",
|
||||||
|
" return line,\n",
|
||||||
|
"\n",
|
||||||
|
" def animate(i):\n",
|
||||||
|
" x = i * interval / 1000 - 0.04\n",
|
||||||
|
" y = np.linspace(0, 1.02, 2)\n",
|
||||||
|
" \n",
|
||||||
|
" line.set_data(x, y)\n",
|
||||||
|
" line.set_color('#990000')\n",
|
||||||
|
" return line,\n",
|
||||||
|
"\n",
|
||||||
|
" anim = FuncAnimation(fig, animate, init_func=init, interval=interval, save_count=audio_duration / (interval / 1000))\n",
|
||||||
|
"\n",
|
||||||
|
" f = r\"animation.mp4\" \n",
|
||||||
|
" writervideo = FFMpegWriter(fps=1000/interval) \n",
|
||||||
|
" anim.save(f, writer=writervideo)\n",
|
||||||
|
" plt.close('all')\n",
|
||||||
|
"\n",
|
||||||
|
"def combine_audio(vidname, audname, outname, fps=25): \n",
|
||||||
|
" my_clip = mpe.VideoFileClip(vidname, verbose=False)\n",
|
||||||
|
" audio_background = mpe.AudioFileClip(audname)\n",
|
||||||
|
" final_clip = my_clip.set_audio(audio_background)\n",
|
||||||
|
" final_clip.write_videofile(outname,fps=fps,verbose=False)\n",
|
||||||
|
"\n",
|
||||||
|
"def record_make_animation():\n",
|
||||||
|
" tensor = record()\n",
|
||||||
|
"\n",
|
||||||
|
" print('Calculating probabilities...')\n",
|
||||||
|
" speech_probs = []\n",
|
||||||
|
" window_size_samples = 512\n",
|
||||||
|
" for i in range(0, len(tensor), window_size_samples):\n",
|
||||||
|
" if len(tensor[i: i+ window_size_samples]) < window_size_samples:\n",
|
||||||
|
" break\n",
|
||||||
|
" speech_prob = model(tensor[i: i+ window_size_samples], 16000).item()\n",
|
||||||
|
" speech_probs.append(speech_prob)\n",
|
||||||
|
" model.reset_states()\n",
|
||||||
|
" print('Making animation...')\n",
|
||||||
|
" make_animation(speech_probs, len(tensor) / 16000)\n",
|
||||||
|
"\n",
|
||||||
|
" print('Merging your voice with animation...')\n",
|
||||||
|
" combine_audio('animation.mp4', 'test.mp3', 'merged.mp4')\n",
|
||||||
|
" print('Done!')\n",
|
||||||
|
" mp4 = open('merged.mp4','rb').read()\n",
|
||||||
|
" data_url = \"data:video/mp4;base64,\" + b64encode(mp4).decode()\n",
|
||||||
|
" display(HTML(\"\"\"\n",
|
||||||
|
" <video width=800 controls>\n",
|
||||||
|
" <source src=\"%s\" type=\"video/mp4\">\n",
|
||||||
|
" </video>\n",
|
||||||
|
" \"\"\" % data_url))"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"id": "IFVs3GvTnpB1"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## Record example"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"id": "5EBjrTwiqAaQ"
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"record_make_animation()"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"colab": {
|
||||||
|
"collapsed_sections": [
|
||||||
|
"bccAucKjnPHm"
|
||||||
|
],
|
||||||
|
"name": "Untitled2.ipynb",
|
||||||
|
"provenance": []
|
||||||
|
},
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"name": "python"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 0
|
||||||
|
}
|
||||||
43
examples/cpp/README.md
Normal file
43
examples/cpp/README.md
Normal file
@@ -0,0 +1,43 @@
|
|||||||
|
# Stream example in C++
|
||||||
|
|
||||||
|
Here's a simple example of the vad model in c++ onnxruntime.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## Requirements
|
||||||
|
|
||||||
|
Code are tested in the environments bellow, feel free to try others.
|
||||||
|
|
||||||
|
- WSL2 + Debian-bullseye (docker)
|
||||||
|
- gcc 12.2.0
|
||||||
|
- onnxruntime-linux-x64-1.12.1
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
1. Install gcc 12.2.0, or just pull the docker image with `docker pull gcc:12.2.0-bullseye`
|
||||||
|
|
||||||
|
2. Install onnxruntime-linux-x64-1.12.1
|
||||||
|
|
||||||
|
- Download lib onnxruntime:
|
||||||
|
|
||||||
|
`wget https://github.com/microsoft/onnxruntime/releases/download/v1.12.1/onnxruntime-linux-x64-1.12.1.tgz`
|
||||||
|
|
||||||
|
- Unzip. Assume the path is `/root/onnxruntime-linux-x64-1.12.1`
|
||||||
|
|
||||||
|
3. Modify wav path & Test configs in main function
|
||||||
|
|
||||||
|
`wav::WavReader wav_reader("${path_to_your_wav_file}");`
|
||||||
|
|
||||||
|
test sample rate, frame per ms, threshold...
|
||||||
|
|
||||||
|
4. Build with gcc and run
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Build
|
||||||
|
g++ silero-vad-onnx.cpp -I /root/onnxruntime-linux-x64-1.12.1/include/ -L /root/onnxruntime-linux-x64-1.12.1/lib/ -lonnxruntime -Wl,-rpath,/root/onnxruntime-linux-x64-1.12.1/lib/ -o test
|
||||||
|
|
||||||
|
# Run
|
||||||
|
./test
|
||||||
|
```
|
||||||
478
examples/cpp/silero-vad-onnx.cpp
Normal file
478
examples/cpp/silero-vad-onnx.cpp
Normal file
@@ -0,0 +1,478 @@
|
|||||||
|
#include <iostream>
|
||||||
|
#include <vector>
|
||||||
|
#include <sstream>
|
||||||
|
#include <cstring>
|
||||||
|
#include <limits>
|
||||||
|
#include <chrono>
|
||||||
|
#include <memory>
|
||||||
|
#include <string>
|
||||||
|
#include <stdexcept>
|
||||||
|
#include <iostream>
|
||||||
|
#include <string>
|
||||||
|
#include "onnxruntime_cxx_api.h"
|
||||||
|
#include "wav.h"
|
||||||
|
#include <cstdio>
|
||||||
|
#include <cstdarg>
|
||||||
|
#if __cplusplus < 201703L
|
||||||
|
#include <memory>
|
||||||
|
#endif
|
||||||
|
|
||||||
|
//#define __DEBUG_SPEECH_PROB___
|
||||||
|
|
||||||
|
class timestamp_t
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
int start;
|
||||||
|
int end;
|
||||||
|
|
||||||
|
// default + parameterized constructor
|
||||||
|
timestamp_t(int start = -1, int end = -1)
|
||||||
|
: start(start), end(end)
|
||||||
|
{
|
||||||
|
};
|
||||||
|
|
||||||
|
// assignment operator modifies object, therefore non-const
|
||||||
|
timestamp_t& operator=(const timestamp_t& a)
|
||||||
|
{
|
||||||
|
start = a.start;
|
||||||
|
end = a.end;
|
||||||
|
return *this;
|
||||||
|
};
|
||||||
|
|
||||||
|
// equality comparison. doesn't modify object. therefore const.
|
||||||
|
bool operator==(const timestamp_t& a) const
|
||||||
|
{
|
||||||
|
return (start == a.start && end == a.end);
|
||||||
|
};
|
||||||
|
std::string c_str()
|
||||||
|
{
|
||||||
|
//return std::format("timestamp {:08d}, {:08d}", start, end);
|
||||||
|
return format("{start:%08d,end:%08d}", start, end);
|
||||||
|
};
|
||||||
|
private:
|
||||||
|
|
||||||
|
std::string format(const char* fmt, ...)
|
||||||
|
{
|
||||||
|
char buf[256];
|
||||||
|
|
||||||
|
va_list args;
|
||||||
|
va_start(args, fmt);
|
||||||
|
const auto r = std::vsnprintf(buf, sizeof buf, fmt, args);
|
||||||
|
va_end(args);
|
||||||
|
|
||||||
|
if (r < 0)
|
||||||
|
// conversion failed
|
||||||
|
return {};
|
||||||
|
|
||||||
|
const size_t len = r;
|
||||||
|
if (len < sizeof buf)
|
||||||
|
// we fit in the buffer
|
||||||
|
return { buf, len };
|
||||||
|
|
||||||
|
#if __cplusplus >= 201703L
|
||||||
|
// C++17: Create a string and write to its underlying array
|
||||||
|
std::string s(len, '\0');
|
||||||
|
va_start(args, fmt);
|
||||||
|
std::vsnprintf(s.data(), len + 1, fmt, args);
|
||||||
|
va_end(args);
|
||||||
|
|
||||||
|
return s;
|
||||||
|
#else
|
||||||
|
// C++11 or C++14: We need to allocate scratch memory
|
||||||
|
auto vbuf = std::unique_ptr<char[]>(new char[len + 1]);
|
||||||
|
va_start(args, fmt);
|
||||||
|
std::vsnprintf(vbuf.get(), len + 1, fmt, args);
|
||||||
|
va_end(args);
|
||||||
|
|
||||||
|
return { vbuf.get(), len };
|
||||||
|
#endif
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
class VadIterator
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
// OnnxRuntime resources
|
||||||
|
Ort::Env env;
|
||||||
|
Ort::SessionOptions session_options;
|
||||||
|
std::shared_ptr<Ort::Session> session = nullptr;
|
||||||
|
Ort::AllocatorWithDefaultOptions allocator;
|
||||||
|
Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeCPU);
|
||||||
|
|
||||||
|
private:
|
||||||
|
void init_engine_threads(int inter_threads, int intra_threads)
|
||||||
|
{
|
||||||
|
// The method should be called in each thread/proc in multi-thread/proc work
|
||||||
|
session_options.SetIntraOpNumThreads(intra_threads);
|
||||||
|
session_options.SetInterOpNumThreads(inter_threads);
|
||||||
|
session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
|
||||||
|
};
|
||||||
|
|
||||||
|
void init_onnx_model(const std::wstring& model_path)
|
||||||
|
{
|
||||||
|
// Init threads = 1 for
|
||||||
|
init_engine_threads(1, 1);
|
||||||
|
// Load model
|
||||||
|
session = std::make_shared<Ort::Session>(env, model_path.c_str(), session_options);
|
||||||
|
};
|
||||||
|
|
||||||
|
void reset_states()
|
||||||
|
{
|
||||||
|
// Call reset before each audio start
|
||||||
|
std::memset(_state.data(), 0.0f, _state.size() * sizeof(float));
|
||||||
|
triggered = false;
|
||||||
|
temp_end = 0;
|
||||||
|
current_sample = 0;
|
||||||
|
|
||||||
|
prev_end = next_start = 0;
|
||||||
|
|
||||||
|
speeches.clear();
|
||||||
|
current_speech = timestamp_t();
|
||||||
|
};
|
||||||
|
|
||||||
|
void predict(const std::vector<float> &data)
|
||||||
|
{
|
||||||
|
// Infer
|
||||||
|
// Create ort tensors
|
||||||
|
input.assign(data.begin(), data.end());
|
||||||
|
Ort::Value input_ort = Ort::Value::CreateTensor<float>(
|
||||||
|
memory_info, input.data(), input.size(), input_node_dims, 2);
|
||||||
|
Ort::Value state_ort = Ort::Value::CreateTensor<float>(
|
||||||
|
memory_info, _state.data(), _state.size(), state_node_dims, 3);
|
||||||
|
Ort::Value sr_ort = Ort::Value::CreateTensor<int64_t>(
|
||||||
|
memory_info, sr.data(), sr.size(), sr_node_dims, 1);
|
||||||
|
|
||||||
|
// Clear and add inputs
|
||||||
|
ort_inputs.clear();
|
||||||
|
ort_inputs.emplace_back(std::move(input_ort));
|
||||||
|
ort_inputs.emplace_back(std::move(state_ort));
|
||||||
|
ort_inputs.emplace_back(std::move(sr_ort));
|
||||||
|
|
||||||
|
// Infer
|
||||||
|
ort_outputs = session->Run(
|
||||||
|
Ort::RunOptions{nullptr},
|
||||||
|
input_node_names.data(), ort_inputs.data(), ort_inputs.size(),
|
||||||
|
output_node_names.data(), output_node_names.size());
|
||||||
|
|
||||||
|
// Output probability & update h,c recursively
|
||||||
|
float speech_prob = ort_outputs[0].GetTensorMutableData<float>()[0];
|
||||||
|
float *stateN = ort_outputs[1].GetTensorMutableData<float>();
|
||||||
|
std::memcpy(_state.data(), stateN, size_state * sizeof(float));
|
||||||
|
|
||||||
|
// Push forward sample index
|
||||||
|
current_sample += window_size_samples;
|
||||||
|
|
||||||
|
// Reset temp_end when > threshold
|
||||||
|
if ((speech_prob >= threshold))
|
||||||
|
{
|
||||||
|
#ifdef __DEBUG_SPEECH_PROB___
|
||||||
|
float speech = current_sample - window_size_samples; // minus window_size_samples to get precise start time point.
|
||||||
|
printf("{ start: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample- window_size_samples);
|
||||||
|
#endif //__DEBUG_SPEECH_PROB___
|
||||||
|
if (temp_end != 0)
|
||||||
|
{
|
||||||
|
temp_end = 0;
|
||||||
|
if (next_start < prev_end)
|
||||||
|
next_start = current_sample - window_size_samples;
|
||||||
|
}
|
||||||
|
if (triggered == false)
|
||||||
|
{
|
||||||
|
triggered = true;
|
||||||
|
|
||||||
|
current_speech.start = current_sample - window_size_samples;
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (
|
||||||
|
(triggered == true)
|
||||||
|
&& ((current_sample - current_speech.start) > max_speech_samples)
|
||||||
|
) {
|
||||||
|
if (prev_end > 0) {
|
||||||
|
current_speech.end = prev_end;
|
||||||
|
speeches.push_back(current_speech);
|
||||||
|
current_speech = timestamp_t();
|
||||||
|
|
||||||
|
// previously reached silence(< neg_thres) and is still not speech(< thres)
|
||||||
|
if (next_start < prev_end)
|
||||||
|
triggered = false;
|
||||||
|
else{
|
||||||
|
current_speech.start = next_start;
|
||||||
|
}
|
||||||
|
prev_end = 0;
|
||||||
|
next_start = 0;
|
||||||
|
temp_end = 0;
|
||||||
|
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
current_speech.end = current_sample;
|
||||||
|
speeches.push_back(current_speech);
|
||||||
|
current_speech = timestamp_t();
|
||||||
|
prev_end = 0;
|
||||||
|
next_start = 0;
|
||||||
|
temp_end = 0;
|
||||||
|
triggered = false;
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
|
||||||
|
}
|
||||||
|
if ((speech_prob >= (threshold - 0.15)) && (speech_prob < threshold))
|
||||||
|
{
|
||||||
|
if (triggered) {
|
||||||
|
#ifdef __DEBUG_SPEECH_PROB___
|
||||||
|
float speech = current_sample - window_size_samples; // minus window_size_samples to get precise start time point.
|
||||||
|
printf("{ speeking: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample - window_size_samples);
|
||||||
|
#endif //__DEBUG_SPEECH_PROB___
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
#ifdef __DEBUG_SPEECH_PROB___
|
||||||
|
float speech = current_sample - window_size_samples; // minus window_size_samples to get precise start time point.
|
||||||
|
printf("{ silence: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample - window_size_samples);
|
||||||
|
#endif //__DEBUG_SPEECH_PROB___
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
// 4) End
|
||||||
|
if ((speech_prob < (threshold - 0.15)))
|
||||||
|
{
|
||||||
|
#ifdef __DEBUG_SPEECH_PROB___
|
||||||
|
float speech = current_sample - window_size_samples - speech_pad_samples; // minus window_size_samples to get precise start time point.
|
||||||
|
printf("{ end: %.3f s (%.3f) %08d}\n", 1.0 * speech / sample_rate, speech_prob, current_sample - window_size_samples);
|
||||||
|
#endif //__DEBUG_SPEECH_PROB___
|
||||||
|
if (triggered == true)
|
||||||
|
{
|
||||||
|
if (temp_end == 0)
|
||||||
|
{
|
||||||
|
temp_end = current_sample;
|
||||||
|
}
|
||||||
|
if (current_sample - temp_end > min_silence_samples_at_max_speech)
|
||||||
|
prev_end = temp_end;
|
||||||
|
// a. silence < min_slience_samples, continue speaking
|
||||||
|
if ((current_sample - temp_end) < min_silence_samples)
|
||||||
|
{
|
||||||
|
|
||||||
|
}
|
||||||
|
// b. silence >= min_slience_samples, end speaking
|
||||||
|
else
|
||||||
|
{
|
||||||
|
current_speech.end = temp_end;
|
||||||
|
if (current_speech.end - current_speech.start > min_speech_samples)
|
||||||
|
{
|
||||||
|
speeches.push_back(current_speech);
|
||||||
|
current_speech = timestamp_t();
|
||||||
|
prev_end = 0;
|
||||||
|
next_start = 0;
|
||||||
|
temp_end = 0;
|
||||||
|
triggered = false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
// may first windows see end state.
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
public:
|
||||||
|
void process(const std::vector<float>& input_wav)
|
||||||
|
{
|
||||||
|
reset_states();
|
||||||
|
|
||||||
|
audio_length_samples = input_wav.size();
|
||||||
|
|
||||||
|
for (int j = 0; j < audio_length_samples; j += window_size_samples)
|
||||||
|
{
|
||||||
|
if (j + window_size_samples > audio_length_samples)
|
||||||
|
break;
|
||||||
|
std::vector<float> r{ &input_wav[0] + j, &input_wav[0] + j + window_size_samples };
|
||||||
|
predict(r);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (current_speech.start >= 0) {
|
||||||
|
current_speech.end = audio_length_samples;
|
||||||
|
speeches.push_back(current_speech);
|
||||||
|
current_speech = timestamp_t();
|
||||||
|
prev_end = 0;
|
||||||
|
next_start = 0;
|
||||||
|
temp_end = 0;
|
||||||
|
triggered = false;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
void process(const std::vector<float>& input_wav, std::vector<float>& output_wav)
|
||||||
|
{
|
||||||
|
process(input_wav);
|
||||||
|
collect_chunks(input_wav, output_wav);
|
||||||
|
}
|
||||||
|
|
||||||
|
void collect_chunks(const std::vector<float>& input_wav, std::vector<float>& output_wav)
|
||||||
|
{
|
||||||
|
output_wav.clear();
|
||||||
|
for (int i = 0; i < speeches.size(); i++) {
|
||||||
|
#ifdef __DEBUG_SPEECH_PROB___
|
||||||
|
std::cout << speeches[i].c_str() << std::endl;
|
||||||
|
#endif //#ifdef __DEBUG_SPEECH_PROB___
|
||||||
|
std::vector<float> slice(&input_wav[speeches[i].start], &input_wav[speeches[i].end]);
|
||||||
|
output_wav.insert(output_wav.end(),slice.begin(),slice.end());
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
const std::vector<timestamp_t> get_speech_timestamps() const
|
||||||
|
{
|
||||||
|
return speeches;
|
||||||
|
}
|
||||||
|
|
||||||
|
void drop_chunks(const std::vector<float>& input_wav, std::vector<float>& output_wav)
|
||||||
|
{
|
||||||
|
output_wav.clear();
|
||||||
|
int current_start = 0;
|
||||||
|
for (int i = 0; i < speeches.size(); i++) {
|
||||||
|
|
||||||
|
std::vector<float> slice(&input_wav[current_start],&input_wav[speeches[i].start]);
|
||||||
|
output_wav.insert(output_wav.end(), slice.begin(), slice.end());
|
||||||
|
current_start = speeches[i].end;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<float> slice(&input_wav[current_start], &input_wav[input_wav.size()]);
|
||||||
|
output_wav.insert(output_wav.end(), slice.begin(), slice.end());
|
||||||
|
};
|
||||||
|
|
||||||
|
private:
|
||||||
|
// model config
|
||||||
|
int64_t window_size_samples; // Assign when init, support 256 512 768 for 8k; 512 1024 1536 for 16k.
|
||||||
|
int sample_rate; //Assign when init support 16000 or 8000
|
||||||
|
int sr_per_ms; // Assign when init, support 8 or 16
|
||||||
|
float threshold;
|
||||||
|
int min_silence_samples; // sr_per_ms * #ms
|
||||||
|
int min_silence_samples_at_max_speech; // sr_per_ms * #98
|
||||||
|
int min_speech_samples; // sr_per_ms * #ms
|
||||||
|
float max_speech_samples;
|
||||||
|
int speech_pad_samples; // usually a
|
||||||
|
int audio_length_samples;
|
||||||
|
|
||||||
|
// model states
|
||||||
|
bool triggered = false;
|
||||||
|
unsigned int temp_end = 0;
|
||||||
|
unsigned int current_sample = 0;
|
||||||
|
// MAX 4294967295 samples / 8sample per ms / 1000 / 60 = 8947 minutes
|
||||||
|
int prev_end;
|
||||||
|
int next_start = 0;
|
||||||
|
|
||||||
|
//Output timestamp
|
||||||
|
std::vector<timestamp_t> speeches;
|
||||||
|
timestamp_t current_speech;
|
||||||
|
|
||||||
|
|
||||||
|
// Onnx model
|
||||||
|
// Inputs
|
||||||
|
std::vector<Ort::Value> ort_inputs;
|
||||||
|
|
||||||
|
std::vector<const char *> input_node_names = {"input", "state", "sr"};
|
||||||
|
std::vector<float> input;
|
||||||
|
unsigned int size_state = 2 * 1 * 128; // It's FIXED.
|
||||||
|
std::vector<float> _state;
|
||||||
|
std::vector<int64_t> sr;
|
||||||
|
|
||||||
|
int64_t input_node_dims[2] = {};
|
||||||
|
const int64_t state_node_dims[3] = {2, 1, 128};
|
||||||
|
const int64_t sr_node_dims[1] = {1};
|
||||||
|
|
||||||
|
// Outputs
|
||||||
|
std::vector<Ort::Value> ort_outputs;
|
||||||
|
std::vector<const char *> output_node_names = {"output", "stateN"};
|
||||||
|
|
||||||
|
public:
|
||||||
|
// Construction
|
||||||
|
VadIterator(const std::wstring ModelPath,
|
||||||
|
int Sample_rate = 16000, int windows_frame_size = 32,
|
||||||
|
float Threshold = 0.5, int min_silence_duration_ms = 0,
|
||||||
|
int speech_pad_ms = 32, int min_speech_duration_ms = 32,
|
||||||
|
float max_speech_duration_s = std::numeric_limits<float>::infinity())
|
||||||
|
{
|
||||||
|
init_onnx_model(ModelPath);
|
||||||
|
threshold = Threshold;
|
||||||
|
sample_rate = Sample_rate;
|
||||||
|
sr_per_ms = sample_rate / 1000;
|
||||||
|
|
||||||
|
window_size_samples = windows_frame_size * sr_per_ms;
|
||||||
|
|
||||||
|
min_speech_samples = sr_per_ms * min_speech_duration_ms;
|
||||||
|
speech_pad_samples = sr_per_ms * speech_pad_ms;
|
||||||
|
|
||||||
|
max_speech_samples = (
|
||||||
|
sample_rate * max_speech_duration_s
|
||||||
|
- window_size_samples
|
||||||
|
- 2 * speech_pad_samples
|
||||||
|
);
|
||||||
|
|
||||||
|
min_silence_samples = sr_per_ms * min_silence_duration_ms;
|
||||||
|
min_silence_samples_at_max_speech = sr_per_ms * 98;
|
||||||
|
|
||||||
|
input.resize(window_size_samples);
|
||||||
|
input_node_dims[0] = 1;
|
||||||
|
input_node_dims[1] = window_size_samples;
|
||||||
|
|
||||||
|
_state.resize(size_state);
|
||||||
|
sr.resize(1);
|
||||||
|
sr[0] = sample_rate;
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
int main()
|
||||||
|
{
|
||||||
|
std::vector<timestamp_t> stamps;
|
||||||
|
|
||||||
|
// Read wav
|
||||||
|
wav::WavReader wav_reader("recorder.wav"); //16000,1,32float
|
||||||
|
std::vector<float> input_wav(wav_reader.num_samples());
|
||||||
|
std::vector<float> output_wav;
|
||||||
|
|
||||||
|
for (int i = 0; i < wav_reader.num_samples(); i++)
|
||||||
|
{
|
||||||
|
input_wav[i] = static_cast<float>(*(wav_reader.data() + i));
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// ===== Test configs =====
|
||||||
|
std::wstring path = L"silero_vad.onnx";
|
||||||
|
VadIterator vad(path);
|
||||||
|
|
||||||
|
// ==============================================
|
||||||
|
// ==== = Example 1 of full function =====
|
||||||
|
// ==============================================
|
||||||
|
vad.process(input_wav);
|
||||||
|
|
||||||
|
// 1.a get_speech_timestamps
|
||||||
|
stamps = vad.get_speech_timestamps();
|
||||||
|
for (int i = 0; i < stamps.size(); i++) {
|
||||||
|
|
||||||
|
std::cout << stamps[i].c_str() << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
// 1.b collect_chunks output wav
|
||||||
|
vad.collect_chunks(input_wav, output_wav);
|
||||||
|
|
||||||
|
// 1.c drop_chunks output wav
|
||||||
|
vad.drop_chunks(input_wav, output_wav);
|
||||||
|
|
||||||
|
// ==============================================
|
||||||
|
// ===== Example 2 of simple full function =====
|
||||||
|
// ==============================================
|
||||||
|
vad.process(input_wav, output_wav);
|
||||||
|
|
||||||
|
stamps = vad.get_speech_timestamps();
|
||||||
|
for (int i = 0; i < stamps.size(); i++) {
|
||||||
|
|
||||||
|
std::cout << stamps[i].c_str() << std::endl;
|
||||||
|
}
|
||||||
|
|
||||||
|
// ==============================================
|
||||||
|
// ===== Example 3 of full function =====
|
||||||
|
// ==============================================
|
||||||
|
for(int i = 0; i<2; i++)
|
||||||
|
vad.process(input_wav, output_wav);
|
||||||
|
}
|
||||||
235
examples/cpp/wav.h
Normal file
235
examples/cpp/wav.h
Normal file
@@ -0,0 +1,235 @@
|
|||||||
|
// Copyright (c) 2016 Personal (Binbin Zhang)
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
|
||||||
|
#ifndef FRONTEND_WAV_H_
|
||||||
|
#define FRONTEND_WAV_H_
|
||||||
|
|
||||||
|
#include <assert.h>
|
||||||
|
#include <stdint.h>
|
||||||
|
#include <stdio.h>
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <string.h>
|
||||||
|
|
||||||
|
#include <string>
|
||||||
|
|
||||||
|
// #include "utils/log.h"
|
||||||
|
|
||||||
|
namespace wav {
|
||||||
|
|
||||||
|
struct WavHeader {
|
||||||
|
char riff[4]; // "riff"
|
||||||
|
unsigned int size;
|
||||||
|
char wav[4]; // "WAVE"
|
||||||
|
char fmt[4]; // "fmt "
|
||||||
|
unsigned int fmt_size;
|
||||||
|
uint16_t format;
|
||||||
|
uint16_t channels;
|
||||||
|
unsigned int sample_rate;
|
||||||
|
unsigned int bytes_per_second;
|
||||||
|
uint16_t block_size;
|
||||||
|
uint16_t bit;
|
||||||
|
char data[4]; // "data"
|
||||||
|
unsigned int data_size;
|
||||||
|
};
|
||||||
|
|
||||||
|
class WavReader {
|
||||||
|
public:
|
||||||
|
WavReader() : data_(nullptr) {}
|
||||||
|
explicit WavReader(const std::string& filename) { Open(filename); }
|
||||||
|
|
||||||
|
bool Open(const std::string& filename) {
|
||||||
|
FILE* fp = fopen(filename.c_str(), "rb"); //文件读取
|
||||||
|
if (NULL == fp) {
|
||||||
|
std::cout << "Error in read " << filename;
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
WavHeader header;
|
||||||
|
fread(&header, 1, sizeof(header), fp);
|
||||||
|
if (header.fmt_size < 16) {
|
||||||
|
printf("WaveData: expect PCM format data "
|
||||||
|
"to have fmt chunk of at least size 16.\n");
|
||||||
|
return false;
|
||||||
|
} else if (header.fmt_size > 16) {
|
||||||
|
int offset = 44 - 8 + header.fmt_size - 16;
|
||||||
|
fseek(fp, offset, SEEK_SET);
|
||||||
|
fread(header.data, 8, sizeof(char), fp);
|
||||||
|
}
|
||||||
|
// check "riff" "WAVE" "fmt " "data"
|
||||||
|
|
||||||
|
// Skip any sub-chunks between "fmt" and "data". Usually there will
|
||||||
|
// be a single "fact" sub chunk, but on Windows there can also be a
|
||||||
|
// "list" sub chunk.
|
||||||
|
while (0 != strncmp(header.data, "data", 4)) {
|
||||||
|
// We will just ignore the data in these chunks.
|
||||||
|
fseek(fp, header.data_size, SEEK_CUR);
|
||||||
|
// read next sub chunk
|
||||||
|
fread(header.data, 8, sizeof(char), fp);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (header.data_size == 0) {
|
||||||
|
int offset = ftell(fp);
|
||||||
|
fseek(fp, 0, SEEK_END);
|
||||||
|
header.data_size = ftell(fp) - offset;
|
||||||
|
fseek(fp, offset, SEEK_SET);
|
||||||
|
}
|
||||||
|
|
||||||
|
num_channel_ = header.channels;
|
||||||
|
sample_rate_ = header.sample_rate;
|
||||||
|
bits_per_sample_ = header.bit;
|
||||||
|
int num_data = header.data_size / (bits_per_sample_ / 8);
|
||||||
|
data_ = new float[num_data]; // Create 1-dim array
|
||||||
|
num_samples_ = num_data / num_channel_;
|
||||||
|
|
||||||
|
std::cout << "num_channel_ :" << num_channel_ << std::endl;
|
||||||
|
std::cout << "sample_rate_ :" << sample_rate_ << std::endl;
|
||||||
|
std::cout << "bits_per_sample_:" << bits_per_sample_ << std::endl;
|
||||||
|
std::cout << "num_samples :" << num_data << std::endl;
|
||||||
|
std::cout << "num_data_size :" << header.data_size << std::endl;
|
||||||
|
|
||||||
|
switch (bits_per_sample_) {
|
||||||
|
case 8: {
|
||||||
|
char sample;
|
||||||
|
for (int i = 0; i < num_data; ++i) {
|
||||||
|
fread(&sample, 1, sizeof(char), fp);
|
||||||
|
data_[i] = static_cast<float>(sample) / 32768;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
case 16: {
|
||||||
|
int16_t sample;
|
||||||
|
for (int i = 0; i < num_data; ++i) {
|
||||||
|
fread(&sample, 1, sizeof(int16_t), fp);
|
||||||
|
data_[i] = static_cast<float>(sample) / 32768;
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
case 32:
|
||||||
|
{
|
||||||
|
if (header.format == 1) //S32
|
||||||
|
{
|
||||||
|
int sample;
|
||||||
|
for (int i = 0; i < num_data; ++i) {
|
||||||
|
fread(&sample, 1, sizeof(int), fp);
|
||||||
|
data_[i] = static_cast<float>(sample) / 32768;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else if (header.format == 3) // IEEE-float
|
||||||
|
{
|
||||||
|
float sample;
|
||||||
|
for (int i = 0; i < num_data; ++i) {
|
||||||
|
fread(&sample, 1, sizeof(float), fp);
|
||||||
|
data_[i] = static_cast<float>(sample);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
printf("unsupported quantization bits\n");
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
default:
|
||||||
|
printf("unsupported quantization bits\n");
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
fclose(fp);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
int num_channel() const { return num_channel_; }
|
||||||
|
int sample_rate() const { return sample_rate_; }
|
||||||
|
int bits_per_sample() const { return bits_per_sample_; }
|
||||||
|
int num_samples() const { return num_samples_; }
|
||||||
|
|
||||||
|
~WavReader() {
|
||||||
|
delete[] data_;
|
||||||
|
}
|
||||||
|
|
||||||
|
const float* data() const { return data_; }
|
||||||
|
|
||||||
|
private:
|
||||||
|
int num_channel_;
|
||||||
|
int sample_rate_;
|
||||||
|
int bits_per_sample_;
|
||||||
|
int num_samples_; // sample points per channel
|
||||||
|
float* data_;
|
||||||
|
};
|
||||||
|
|
||||||
|
class WavWriter {
|
||||||
|
public:
|
||||||
|
WavWriter(const float* data, int num_samples, int num_channel,
|
||||||
|
int sample_rate, int bits_per_sample)
|
||||||
|
: data_(data),
|
||||||
|
num_samples_(num_samples),
|
||||||
|
num_channel_(num_channel),
|
||||||
|
sample_rate_(sample_rate),
|
||||||
|
bits_per_sample_(bits_per_sample) {}
|
||||||
|
|
||||||
|
void Write(const std::string& filename) {
|
||||||
|
FILE* fp = fopen(filename.c_str(), "w");
|
||||||
|
// init char 'riff' 'WAVE' 'fmt ' 'data'
|
||||||
|
WavHeader header;
|
||||||
|
char wav_header[44] = {0x52, 0x49, 0x46, 0x46, 0x00, 0x00, 0x00, 0x00, 0x57,
|
||||||
|
0x41, 0x56, 0x45, 0x66, 0x6d, 0x74, 0x20, 0x10, 0x00,
|
||||||
|
0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||||
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||||
|
0x64, 0x61, 0x74, 0x61, 0x00, 0x00, 0x00, 0x00};
|
||||||
|
memcpy(&header, wav_header, sizeof(header));
|
||||||
|
header.channels = num_channel_;
|
||||||
|
header.bit = bits_per_sample_;
|
||||||
|
header.sample_rate = sample_rate_;
|
||||||
|
header.data_size = num_samples_ * num_channel_ * (bits_per_sample_ / 8);
|
||||||
|
header.size = sizeof(header) - 8 + header.data_size;
|
||||||
|
header.bytes_per_second =
|
||||||
|
sample_rate_ * num_channel_ * (bits_per_sample_ / 8);
|
||||||
|
header.block_size = num_channel_ * (bits_per_sample_ / 8);
|
||||||
|
|
||||||
|
fwrite(&header, 1, sizeof(header), fp);
|
||||||
|
|
||||||
|
for (int i = 0; i < num_samples_; ++i) {
|
||||||
|
for (int j = 0; j < num_channel_; ++j) {
|
||||||
|
switch (bits_per_sample_) {
|
||||||
|
case 8: {
|
||||||
|
char sample = static_cast<char>(data_[i * num_channel_ + j]);
|
||||||
|
fwrite(&sample, 1, sizeof(sample), fp);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
case 16: {
|
||||||
|
int16_t sample = static_cast<int16_t>(data_[i * num_channel_ + j]);
|
||||||
|
fwrite(&sample, 1, sizeof(sample), fp);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
case 32: {
|
||||||
|
int sample = static_cast<int>(data_[i * num_channel_ + j]);
|
||||||
|
fwrite(&sample, 1, sizeof(sample), fp);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
fclose(fp);
|
||||||
|
}
|
||||||
|
|
||||||
|
private:
|
||||||
|
const float* data_;
|
||||||
|
int num_samples_; // total float points in data_
|
||||||
|
int num_channel_;
|
||||||
|
int sample_rate_;
|
||||||
|
int bits_per_sample_;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace wenet
|
||||||
|
|
||||||
|
#endif // FRONTEND_WAV_H_
|
||||||
19
examples/go/README.md
Normal file
19
examples/go/README.md
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
## Golang Example
|
||||||
|
|
||||||
|
This is a sample program of how to run speech detection using `silero-vad` from Golang (CGO + ONNX Runtime).
|
||||||
|
|
||||||
|
### Requirements
|
||||||
|
|
||||||
|
- Golang >= v1.21
|
||||||
|
- ONNX Runtime
|
||||||
|
|
||||||
|
### Usage
|
||||||
|
|
||||||
|
```sh
|
||||||
|
go run ./cmd/main.go test.wav
|
||||||
|
```
|
||||||
|
|
||||||
|
> **_Note_**
|
||||||
|
>
|
||||||
|
> Make sure you have the ONNX Runtime library and C headers installed in your path.
|
||||||
|
|
||||||
63
examples/go/cmd/main.go
Normal file
63
examples/go/cmd/main.go
Normal file
@@ -0,0 +1,63 @@
|
|||||||
|
package main
|
||||||
|
|
||||||
|
import (
|
||||||
|
"log"
|
||||||
|
"os"
|
||||||
|
|
||||||
|
"github.com/streamer45/silero-vad-go/speech"
|
||||||
|
|
||||||
|
"github.com/go-audio/wav"
|
||||||
|
)
|
||||||
|
|
||||||
|
func main() {
|
||||||
|
sd, err := speech.NewDetector(speech.DetectorConfig{
|
||||||
|
ModelPath: "../../files/silero_vad.onnx",
|
||||||
|
SampleRate: 16000,
|
||||||
|
Threshold: 0.5,
|
||||||
|
MinSilenceDurationMs: 0,
|
||||||
|
SpeechPadMs: 0,
|
||||||
|
})
|
||||||
|
if err != nil {
|
||||||
|
log.Fatalf("failed to create speech detector: %s", err)
|
||||||
|
}
|
||||||
|
|
||||||
|
if len(os.Args) != 2 {
|
||||||
|
log.Fatalf("invalid arguments provided: expecting one file path")
|
||||||
|
}
|
||||||
|
|
||||||
|
f, err := os.Open(os.Args[1])
|
||||||
|
if err != nil {
|
||||||
|
log.Fatalf("failed to open sample audio file: %s", err)
|
||||||
|
}
|
||||||
|
defer f.Close()
|
||||||
|
|
||||||
|
dec := wav.NewDecoder(f)
|
||||||
|
|
||||||
|
if ok := dec.IsValidFile(); !ok {
|
||||||
|
log.Fatalf("invalid WAV file")
|
||||||
|
}
|
||||||
|
|
||||||
|
buf, err := dec.FullPCMBuffer()
|
||||||
|
if err != nil {
|
||||||
|
log.Fatalf("failed to get PCM buffer")
|
||||||
|
}
|
||||||
|
|
||||||
|
pcmBuf := buf.AsFloat32Buffer()
|
||||||
|
|
||||||
|
segments, err := sd.Detect(pcmBuf.Data)
|
||||||
|
if err != nil {
|
||||||
|
log.Fatalf("Detect failed: %s", err)
|
||||||
|
}
|
||||||
|
|
||||||
|
for _, s := range segments {
|
||||||
|
log.Printf("speech starts at %0.2fs", s.SpeechStartAt)
|
||||||
|
if s.SpeechEndAt > 0 {
|
||||||
|
log.Printf("speech ends at %0.2fs", s.SpeechEndAt)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
err = sd.Destroy()
|
||||||
|
if err != nil {
|
||||||
|
log.Fatalf("failed to destroy detector: %s", err)
|
||||||
|
}
|
||||||
|
}
|
||||||
13
examples/go/go.mod
Normal file
13
examples/go/go.mod
Normal file
@@ -0,0 +1,13 @@
|
|||||||
|
module silero
|
||||||
|
|
||||||
|
go 1.21.4
|
||||||
|
|
||||||
|
require (
|
||||||
|
github.com/go-audio/wav v1.1.0
|
||||||
|
github.com/streamer45/silero-vad-go v0.2.0
|
||||||
|
)
|
||||||
|
|
||||||
|
require (
|
||||||
|
github.com/go-audio/audio v1.0.0 // indirect
|
||||||
|
github.com/go-audio/riff v1.0.0 // indirect
|
||||||
|
)
|
||||||
16
examples/go/go.sum
Normal file
16
examples/go/go.sum
Normal file
@@ -0,0 +1,16 @@
|
|||||||
|
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
|
||||||
|
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
|
||||||
|
github.com/go-audio/audio v1.0.0 h1:zS9vebldgbQqktK4H0lUqWrG8P0NxCJVqcj7ZpNnwd4=
|
||||||
|
github.com/go-audio/audio v1.0.0/go.mod h1:6uAu0+H2lHkwdGsAY+j2wHPNPpPoeg5AaEFh9FlA+Zs=
|
||||||
|
github.com/go-audio/riff v1.0.0 h1:d8iCGbDvox9BfLagY94fBynxSPHO80LmZCaOsmKxokA=
|
||||||
|
github.com/go-audio/riff v1.0.0/go.mod h1:l3cQwc85y79NQFCRB7TiPoNiaijp6q8Z0Uv38rVG498=
|
||||||
|
github.com/go-audio/wav v1.1.0 h1:jQgLtbqBzY7G+BM8fXF7AHUk1uHUviWS4X39d5rsL2g=
|
||||||
|
github.com/go-audio/wav v1.1.0/go.mod h1:mpe9qfwbScEbkd8uybLuIpTgHyrISw/OTuvjUW2iGtE=
|
||||||
|
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
|
||||||
|
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
|
||||||
|
github.com/streamer45/silero-vad-go v0.2.0 h1:bbRTa6cQuc7VI88y0qicx375UyWoxE6wlVOF+mUg0+g=
|
||||||
|
github.com/streamer45/silero-vad-go v0.2.0/go.mod h1:B+2FXs/5fZ6pzl6unUZYhZqkYdOB+3saBVzjOzdZnUs=
|
||||||
|
github.com/stretchr/testify v1.8.4 h1:CcVxjf3Q8PM0mHUKJCdn+eZZtm5yQwehR5yeSVQQcUk=
|
||||||
|
github.com/stretchr/testify v1.8.4/go.mod h1:sz/lmYIOXD/1dqDmKjjqLyZ2RngseejIcXlSw2iwfAo=
|
||||||
|
gopkg.in/yaml.v3 v3.0.1 h1:fxVm/GzAzEWqLHuvctI91KS9hhNmmWOoWu0XTYJS7CA=
|
||||||
|
gopkg.in/yaml.v3 v3.0.1/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=
|
||||||
30
examples/java-example/pom.xml
Normal file
30
examples/java-example/pom.xml
Normal file
@@ -0,0 +1,30 @@
|
|||||||
|
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
|
||||||
|
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
|
||||||
|
<modelVersion>4.0.0</modelVersion>
|
||||||
|
|
||||||
|
<groupId>org.example</groupId>
|
||||||
|
<artifactId>java-example</artifactId>
|
||||||
|
<version>1.0-SNAPSHOT</version>
|
||||||
|
<packaging>jar</packaging>
|
||||||
|
|
||||||
|
<name>sliero-vad-example</name>
|
||||||
|
<url>http://maven.apache.org</url>
|
||||||
|
|
||||||
|
<properties>
|
||||||
|
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
|
||||||
|
</properties>
|
||||||
|
|
||||||
|
<dependencies>
|
||||||
|
<dependency>
|
||||||
|
<groupId>junit</groupId>
|
||||||
|
<artifactId>junit</artifactId>
|
||||||
|
<version>3.8.1</version>
|
||||||
|
<scope>test</scope>
|
||||||
|
</dependency>
|
||||||
|
<dependency>
|
||||||
|
<groupId>com.microsoft.onnxruntime</groupId>
|
||||||
|
<artifactId>onnxruntime</artifactId>
|
||||||
|
<version>1.16.0-rc1</version>
|
||||||
|
</dependency>
|
||||||
|
</dependencies>
|
||||||
|
</project>
|
||||||
69
examples/java-example/src/main/java/org/example/App.java
Normal file
69
examples/java-example/src/main/java/org/example/App.java
Normal file
@@ -0,0 +1,69 @@
|
|||||||
|
package org.example;
|
||||||
|
|
||||||
|
import ai.onnxruntime.OrtException;
|
||||||
|
import javax.sound.sampled.*;
|
||||||
|
import java.util.Map;
|
||||||
|
|
||||||
|
public class App {
|
||||||
|
|
||||||
|
private static final String MODEL_PATH = "src/main/resources/silero_vad.onnx";
|
||||||
|
private static final int SAMPLE_RATE = 16000;
|
||||||
|
private static final float START_THRESHOLD = 0.6f;
|
||||||
|
private static final float END_THRESHOLD = 0.45f;
|
||||||
|
private static final int MIN_SILENCE_DURATION_MS = 600;
|
||||||
|
private static final int SPEECH_PAD_MS = 500;
|
||||||
|
private static final int WINDOW_SIZE_SAMPLES = 2048;
|
||||||
|
|
||||||
|
public static void main(String[] args) {
|
||||||
|
// Initialize the Voice Activity Detector
|
||||||
|
SlieroVadDetector vadDetector;
|
||||||
|
try {
|
||||||
|
vadDetector = new SlieroVadDetector(MODEL_PATH, START_THRESHOLD, END_THRESHOLD, SAMPLE_RATE, MIN_SILENCE_DURATION_MS, SPEECH_PAD_MS);
|
||||||
|
} catch (OrtException e) {
|
||||||
|
System.err.println("Error initializing the VAD detector: " + e.getMessage());
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Set audio format
|
||||||
|
AudioFormat format = new AudioFormat(SAMPLE_RATE, 16, 1, true, false);
|
||||||
|
DataLine.Info info = new DataLine.Info(TargetDataLine.class, format);
|
||||||
|
|
||||||
|
// Get the target data line and open it with the specified format
|
||||||
|
TargetDataLine targetDataLine;
|
||||||
|
try {
|
||||||
|
targetDataLine = (TargetDataLine) AudioSystem.getLine(info);
|
||||||
|
targetDataLine.open(format);
|
||||||
|
targetDataLine.start();
|
||||||
|
} catch (LineUnavailableException e) {
|
||||||
|
System.err.println("Error opening target data line: " + e.getMessage());
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Main loop to continuously read data and apply Voice Activity Detection
|
||||||
|
while (targetDataLine.isOpen()) {
|
||||||
|
byte[] data = new byte[WINDOW_SIZE_SAMPLES];
|
||||||
|
|
||||||
|
int numBytesRead = targetDataLine.read(data, 0, data.length);
|
||||||
|
if (numBytesRead <= 0) {
|
||||||
|
System.err.println("Error reading data from target data line.");
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Apply the Voice Activity Detector to the data and get the result
|
||||||
|
Map<String, Double> detectResult;
|
||||||
|
try {
|
||||||
|
detectResult = vadDetector.apply(data, true);
|
||||||
|
} catch (Exception e) {
|
||||||
|
System.err.println("Error applying VAD detector: " + e.getMessage());
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!detectResult.isEmpty()) {
|
||||||
|
System.out.println(detectResult);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Close the target data line to release audio resources
|
||||||
|
targetDataLine.close();
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -0,0 +1,145 @@
|
|||||||
|
package org.example;
|
||||||
|
|
||||||
|
import ai.onnxruntime.OrtException;
|
||||||
|
|
||||||
|
import java.math.BigDecimal;
|
||||||
|
import java.math.RoundingMode;
|
||||||
|
import java.util.Collections;
|
||||||
|
import java.util.HashMap;
|
||||||
|
import java.util.Map;
|
||||||
|
|
||||||
|
|
||||||
|
public class SlieroVadDetector {
|
||||||
|
// OnnxModel model used for speech processing
|
||||||
|
private final SlieroVadOnnxModel model;
|
||||||
|
// Threshold for speech start
|
||||||
|
private final float startThreshold;
|
||||||
|
// Threshold for speech end
|
||||||
|
private final float endThreshold;
|
||||||
|
// Sampling rate
|
||||||
|
private final int samplingRate;
|
||||||
|
// Minimum number of silence samples to determine the end threshold of speech
|
||||||
|
private final float minSilenceSamples;
|
||||||
|
// Additional number of samples for speech start or end to calculate speech start or end time
|
||||||
|
private final float speechPadSamples;
|
||||||
|
// Whether in the triggered state (i.e. whether speech is being detected)
|
||||||
|
private boolean triggered;
|
||||||
|
// Temporarily stored number of speech end samples
|
||||||
|
private int tempEnd;
|
||||||
|
// Number of samples currently being processed
|
||||||
|
private int currentSample;
|
||||||
|
|
||||||
|
|
||||||
|
public SlieroVadDetector(String modelPath,
|
||||||
|
float startThreshold,
|
||||||
|
float endThreshold,
|
||||||
|
int samplingRate,
|
||||||
|
int minSilenceDurationMs,
|
||||||
|
int speechPadMs) throws OrtException {
|
||||||
|
// Check if the sampling rate is 8000 or 16000, if not, throw an exception
|
||||||
|
if (samplingRate != 8000 && samplingRate != 16000) {
|
||||||
|
throw new IllegalArgumentException("does not support sampling rates other than [8000, 16000]");
|
||||||
|
}
|
||||||
|
|
||||||
|
// Initialize the parameters
|
||||||
|
this.model = new SlieroVadOnnxModel(modelPath);
|
||||||
|
this.startThreshold = startThreshold;
|
||||||
|
this.endThreshold = endThreshold;
|
||||||
|
this.samplingRate = samplingRate;
|
||||||
|
this.minSilenceSamples = samplingRate * minSilenceDurationMs / 1000f;
|
||||||
|
this.speechPadSamples = samplingRate * speechPadMs / 1000f;
|
||||||
|
// Reset the state
|
||||||
|
reset();
|
||||||
|
}
|
||||||
|
|
||||||
|
// Method to reset the state, including the model state, trigger state, temporary end time, and current sample count
|
||||||
|
public void reset() {
|
||||||
|
model.resetStates();
|
||||||
|
triggered = false;
|
||||||
|
tempEnd = 0;
|
||||||
|
currentSample = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// apply method for processing the audio array, returning possible speech start or end times
|
||||||
|
public Map<String, Double> apply(byte[] data, boolean returnSeconds) {
|
||||||
|
|
||||||
|
// Convert the byte array to a float array
|
||||||
|
float[] audioData = new float[data.length / 2];
|
||||||
|
for (int i = 0; i < audioData.length; i++) {
|
||||||
|
audioData[i] = ((data[i * 2] & 0xff) | (data[i * 2 + 1] << 8)) / 32767.0f;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Get the length of the audio array as the window size
|
||||||
|
int windowSizeSamples = audioData.length;
|
||||||
|
// Update the current sample count
|
||||||
|
currentSample += windowSizeSamples;
|
||||||
|
|
||||||
|
// Call the model to get the prediction probability of speech
|
||||||
|
float speechProb = 0;
|
||||||
|
try {
|
||||||
|
speechProb = model.call(new float[][]{audioData}, samplingRate)[0];
|
||||||
|
} catch (OrtException e) {
|
||||||
|
throw new RuntimeException(e);
|
||||||
|
}
|
||||||
|
|
||||||
|
// If the speech probability is greater than the threshold and the temporary end time is not 0, reset the temporary end time
|
||||||
|
// This indicates that the speech duration has exceeded expectations and needs to recalculate the end time
|
||||||
|
if (speechProb >= startThreshold && tempEnd != 0) {
|
||||||
|
tempEnd = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// If the speech probability is greater than the threshold and not in the triggered state, set to triggered state and calculate the speech start time
|
||||||
|
if (speechProb >= startThreshold && !triggered) {
|
||||||
|
triggered = true;
|
||||||
|
int speechStart = (int) (currentSample - speechPadSamples);
|
||||||
|
speechStart = Math.max(speechStart, 0);
|
||||||
|
Map<String, Double> result = new HashMap<>();
|
||||||
|
// Decide whether to return the result in seconds or sample count based on the returnSeconds parameter
|
||||||
|
if (returnSeconds) {
|
||||||
|
double speechStartSeconds = speechStart / (double) samplingRate;
|
||||||
|
double roundedSpeechStart = BigDecimal.valueOf(speechStartSeconds).setScale(1, RoundingMode.HALF_UP).doubleValue();
|
||||||
|
result.put("start", roundedSpeechStart);
|
||||||
|
} else {
|
||||||
|
result.put("start", (double) speechStart);
|
||||||
|
}
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
// If the speech probability is less than a certain threshold and in the triggered state, calculate the speech end time
|
||||||
|
if (speechProb < endThreshold && triggered) {
|
||||||
|
// Initialize or update the temporary end time
|
||||||
|
if (tempEnd == 0) {
|
||||||
|
tempEnd = currentSample;
|
||||||
|
}
|
||||||
|
// If the number of silence samples between the current sample and the temporary end time is less than the minimum silence samples, return null
|
||||||
|
// This indicates that it is not yet possible to determine whether the speech has ended
|
||||||
|
if (currentSample - tempEnd < minSilenceSamples) {
|
||||||
|
return Collections.emptyMap();
|
||||||
|
} else {
|
||||||
|
// Calculate the speech end time, reset the trigger state and temporary end time
|
||||||
|
int speechEnd = (int) (tempEnd + speechPadSamples);
|
||||||
|
tempEnd = 0;
|
||||||
|
triggered = false;
|
||||||
|
Map<String, Double> result = new HashMap<>();
|
||||||
|
|
||||||
|
if (returnSeconds) {
|
||||||
|
double speechEndSeconds = speechEnd / (double) samplingRate;
|
||||||
|
double roundedSpeechEnd = BigDecimal.valueOf(speechEndSeconds).setScale(1, RoundingMode.HALF_UP).doubleValue();
|
||||||
|
result.put("end", roundedSpeechEnd);
|
||||||
|
} else {
|
||||||
|
result.put("end", (double) speechEnd);
|
||||||
|
}
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// If the above conditions are not met, return null by default
|
||||||
|
return Collections.emptyMap();
|
||||||
|
}
|
||||||
|
|
||||||
|
public void close() throws OrtException {
|
||||||
|
reset();
|
||||||
|
model.close();
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -0,0 +1,180 @@
|
|||||||
|
package org.example;
|
||||||
|
|
||||||
|
import ai.onnxruntime.OnnxTensor;
|
||||||
|
import ai.onnxruntime.OrtEnvironment;
|
||||||
|
import ai.onnxruntime.OrtException;
|
||||||
|
import ai.onnxruntime.OrtSession;
|
||||||
|
import java.util.Arrays;
|
||||||
|
import java.util.HashMap;
|
||||||
|
import java.util.List;
|
||||||
|
import java.util.Map;
|
||||||
|
|
||||||
|
public class SlieroVadOnnxModel {
|
||||||
|
// Define private variable OrtSession
|
||||||
|
private final OrtSession session;
|
||||||
|
private float[][][] h;
|
||||||
|
private float[][][] c;
|
||||||
|
// Define the last sample rate
|
||||||
|
private int lastSr = 0;
|
||||||
|
// Define the last batch size
|
||||||
|
private int lastBatchSize = 0;
|
||||||
|
// Define a list of supported sample rates
|
||||||
|
private static final List<Integer> SAMPLE_RATES = Arrays.asList(8000, 16000);
|
||||||
|
|
||||||
|
// Constructor
|
||||||
|
public SlieroVadOnnxModel(String modelPath) throws OrtException {
|
||||||
|
// Get the ONNX runtime environment
|
||||||
|
OrtEnvironment env = OrtEnvironment.getEnvironment();
|
||||||
|
// Create an ONNX session options object
|
||||||
|
OrtSession.SessionOptions opts = new OrtSession.SessionOptions();
|
||||||
|
// Set the InterOp thread count to 1, InterOp threads are used for parallel processing of different computation graph operations
|
||||||
|
opts.setInterOpNumThreads(1);
|
||||||
|
// Set the IntraOp thread count to 1, IntraOp threads are used for parallel processing within a single operation
|
||||||
|
opts.setIntraOpNumThreads(1);
|
||||||
|
// Add a CPU device, setting to false disables CPU execution optimization
|
||||||
|
opts.addCPU(true);
|
||||||
|
// Create an ONNX session using the environment, model path, and options
|
||||||
|
session = env.createSession(modelPath, opts);
|
||||||
|
// Reset states
|
||||||
|
resetStates();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Reset states
|
||||||
|
*/
|
||||||
|
void resetStates() {
|
||||||
|
h = new float[2][1][64];
|
||||||
|
c = new float[2][1][64];
|
||||||
|
lastSr = 0;
|
||||||
|
lastBatchSize = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
public void close() throws OrtException {
|
||||||
|
session.close();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Define inner class ValidationResult
|
||||||
|
*/
|
||||||
|
public static class ValidationResult {
|
||||||
|
public final float[][] x;
|
||||||
|
public final int sr;
|
||||||
|
|
||||||
|
// Constructor
|
||||||
|
public ValidationResult(float[][] x, int sr) {
|
||||||
|
this.x = x;
|
||||||
|
this.sr = sr;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Function to validate input data
|
||||||
|
*/
|
||||||
|
private ValidationResult validateInput(float[][] x, int sr) {
|
||||||
|
// Process the input data with dimension 1
|
||||||
|
if (x.length == 1) {
|
||||||
|
x = new float[][]{x[0]};
|
||||||
|
}
|
||||||
|
// Throw an exception when the input data dimension is greater than 2
|
||||||
|
if (x.length > 2) {
|
||||||
|
throw new IllegalArgumentException("Incorrect audio data dimension: " + x[0].length);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Process the input data when the sample rate is not equal to 16000 and is a multiple of 16000
|
||||||
|
if (sr != 16000 && (sr % 16000 == 0)) {
|
||||||
|
int step = sr / 16000;
|
||||||
|
float[][] reducedX = new float[x.length][];
|
||||||
|
|
||||||
|
for (int i = 0; i < x.length; i++) {
|
||||||
|
float[] current = x[i];
|
||||||
|
float[] newArr = new float[(current.length + step - 1) / step];
|
||||||
|
|
||||||
|
for (int j = 0, index = 0; j < current.length; j += step, index++) {
|
||||||
|
newArr[index] = current[j];
|
||||||
|
}
|
||||||
|
|
||||||
|
reducedX[i] = newArr;
|
||||||
|
}
|
||||||
|
|
||||||
|
x = reducedX;
|
||||||
|
sr = 16000;
|
||||||
|
}
|
||||||
|
|
||||||
|
// If the sample rate is not in the list of supported sample rates, throw an exception
|
||||||
|
if (!SAMPLE_RATES.contains(sr)) {
|
||||||
|
throw new IllegalArgumentException("Only supports sample rates " + SAMPLE_RATES + " (or multiples of 16000)");
|
||||||
|
}
|
||||||
|
|
||||||
|
// If the input audio block is too short, throw an exception
|
||||||
|
if (((float) sr) / x[0].length > 31.25) {
|
||||||
|
throw new IllegalArgumentException("Input audio is too short");
|
||||||
|
}
|
||||||
|
|
||||||
|
// Return the validated result
|
||||||
|
return new ValidationResult(x, sr);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Method to call the ONNX model
|
||||||
|
*/
|
||||||
|
public float[] call(float[][] x, int sr) throws OrtException {
|
||||||
|
ValidationResult result = validateInput(x, sr);
|
||||||
|
x = result.x;
|
||||||
|
sr = result.sr;
|
||||||
|
|
||||||
|
int batchSize = x.length;
|
||||||
|
|
||||||
|
if (lastBatchSize == 0 || lastSr != sr || lastBatchSize != batchSize) {
|
||||||
|
resetStates();
|
||||||
|
}
|
||||||
|
|
||||||
|
OrtEnvironment env = OrtEnvironment.getEnvironment();
|
||||||
|
|
||||||
|
OnnxTensor inputTensor = null;
|
||||||
|
OnnxTensor hTensor = null;
|
||||||
|
OnnxTensor cTensor = null;
|
||||||
|
OnnxTensor srTensor = null;
|
||||||
|
OrtSession.Result ortOutputs = null;
|
||||||
|
|
||||||
|
try {
|
||||||
|
// Create input tensors
|
||||||
|
inputTensor = OnnxTensor.createTensor(env, x);
|
||||||
|
hTensor = OnnxTensor.createTensor(env, h);
|
||||||
|
cTensor = OnnxTensor.createTensor(env, c);
|
||||||
|
srTensor = OnnxTensor.createTensor(env, new long[]{sr});
|
||||||
|
|
||||||
|
Map<String, OnnxTensor> inputs = new HashMap<>();
|
||||||
|
inputs.put("input", inputTensor);
|
||||||
|
inputs.put("sr", srTensor);
|
||||||
|
inputs.put("h", hTensor);
|
||||||
|
inputs.put("c", cTensor);
|
||||||
|
|
||||||
|
// Call the ONNX model for calculation
|
||||||
|
ortOutputs = session.run(inputs);
|
||||||
|
// Get the output results
|
||||||
|
float[][] output = (float[][]) ortOutputs.get(0).getValue();
|
||||||
|
h = (float[][][]) ortOutputs.get(1).getValue();
|
||||||
|
c = (float[][][]) ortOutputs.get(2).getValue();
|
||||||
|
|
||||||
|
lastSr = sr;
|
||||||
|
lastBatchSize = batchSize;
|
||||||
|
return output[0];
|
||||||
|
} finally {
|
||||||
|
if (inputTensor != null) {
|
||||||
|
inputTensor.close();
|
||||||
|
}
|
||||||
|
if (hTensor != null) {
|
||||||
|
hTensor.close();
|
||||||
|
}
|
||||||
|
if (cTensor != null) {
|
||||||
|
cTensor.close();
|
||||||
|
}
|
||||||
|
if (srTensor != null) {
|
||||||
|
srTensor.close();
|
||||||
|
}
|
||||||
|
if (ortOutputs != null) {
|
||||||
|
ortOutputs.close();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -186,7 +186,7 @@ if __name__ == '__main__':
|
|||||||
help="same as trig_sum, but for switching from triggered to non-triggered state (non-speech)")
|
help="same as trig_sum, but for switching from triggered to non-triggered state (non-speech)")
|
||||||
|
|
||||||
parser.add_argument('-N', '--num_steps', type=int, default=8,
|
parser.add_argument('-N', '--num_steps', type=int, default=8,
|
||||||
help="nubmer of overlapping windows to split audio chunk into (we recommend 4 or 8)")
|
help="number of overlapping windows to split audio chunk into (we recommend 4 or 8)")
|
||||||
|
|
||||||
parser.add_argument('-nspw', '--num_samples_per_window', type=int, default=4000,
|
parser.add_argument('-nspw', '--num_samples_per_window', type=int, default=4000,
|
||||||
help="number of samples in each window, our models were trained using 4000 samples (250 ms) per window, so this is preferable value (lesser values reduce quality)")
|
help="number of samples in each window, our models were trained using 4000 samples (250 ms) per window, so this is preferable value (lesser values reduce quality)")
|
||||||
@@ -198,4 +198,4 @@ if __name__ == '__main__':
|
|||||||
help=" minimum silence duration in samples between to separate speech chunks")
|
help=" minimum silence duration in samples between to separate speech chunks")
|
||||||
ARGS = parser.parse_args()
|
ARGS = parser.parse_args()
|
||||||
ARGS.rate=DEFAULT_SAMPLE_RATE
|
ARGS.rate=DEFAULT_SAMPLE_RATE
|
||||||
main(ARGS)
|
main(ARGS)
|
||||||
|
|||||||
149
examples/parallel_example.ipynb
Normal file
149
examples/parallel_example.ipynb
Normal file
@@ -0,0 +1,149 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"attachments": {},
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Install Dependencies"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# !pip install -q torchaudio\n",
|
||||||
|
"SAMPLING_RATE = 16000\n",
|
||||||
|
"import torch\n",
|
||||||
|
"from pprint import pprint\n",
|
||||||
|
"\n",
|
||||||
|
"torch.set_num_threads(1)\n",
|
||||||
|
"NUM_PROCESS=4 # set to the number of CPU cores in the machine\n",
|
||||||
|
"NUM_COPIES=8\n",
|
||||||
|
"# download wav files, make multiple copies\n",
|
||||||
|
"for idx in range(NUM_COPIES):\n",
|
||||||
|
" torch.hub.download_url_to_file('https://models.silero.ai/vad_models/en.wav', f\"en_example{idx}.wav\")\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"attachments": {},
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Load VAD model from torch hub"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
|
||||||
|
" model='silero_vad',\n",
|
||||||
|
" force_reload=True,\n",
|
||||||
|
" onnx=False)\n",
|
||||||
|
"\n",
|
||||||
|
"(get_speech_timestamps,\n",
|
||||||
|
"save_audio,\n",
|
||||||
|
"read_audio,\n",
|
||||||
|
"VADIterator,\n",
|
||||||
|
"collect_chunks) = utils"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"attachments": {},
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Define a vad process function"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import multiprocessing\n",
|
||||||
|
"\n",
|
||||||
|
"vad_models = dict()\n",
|
||||||
|
"\n",
|
||||||
|
"def init_model(model):\n",
|
||||||
|
" pid = multiprocessing.current_process().pid\n",
|
||||||
|
" model, _ = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
|
||||||
|
" model='silero_vad',\n",
|
||||||
|
" force_reload=False,\n",
|
||||||
|
" onnx=False)\n",
|
||||||
|
" vad_models[pid] = model\n",
|
||||||
|
"\n",
|
||||||
|
"def vad_process(audio_file: str):\n",
|
||||||
|
" \n",
|
||||||
|
" pid = multiprocessing.current_process().pid\n",
|
||||||
|
" \n",
|
||||||
|
" with torch.no_grad():\n",
|
||||||
|
" wav = read_audio(audio_file, sampling_rate=SAMPLING_RATE)\n",
|
||||||
|
" return get_speech_timestamps(\n",
|
||||||
|
" wav,\n",
|
||||||
|
" vad_models[pid],\n",
|
||||||
|
" 0.46, # speech prob threshold\n",
|
||||||
|
" 16000, # sample rate\n",
|
||||||
|
" 300, # min speech duration in ms\n",
|
||||||
|
" 20, # max speech duration in seconds\n",
|
||||||
|
" 600, # min silence duration\n",
|
||||||
|
" 512, # window size\n",
|
||||||
|
" 200, # spech pad ms\n",
|
||||||
|
" )"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"attachments": {},
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Parallelization"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from concurrent.futures import ProcessPoolExecutor, as_completed\n",
|
||||||
|
"\n",
|
||||||
|
"futures = []\n",
|
||||||
|
"\n",
|
||||||
|
"with ProcessPoolExecutor(max_workers=NUM_PROCESS, initializer=init_model, initargs=(model,)) as ex:\n",
|
||||||
|
" for i in range(NUM_COPIES):\n",
|
||||||
|
" futures.append(ex.submit(vad_process, f\"en_example{idx}.wav\"))\n",
|
||||||
|
"\n",
|
||||||
|
"for finished in as_completed(futures):\n",
|
||||||
|
" pprint(finished.result())"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "diarization",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.9.15"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
||||||
File diff suppressed because one or more lines are too long
2
examples/rust-example/.gitignore
vendored
Normal file
2
examples/rust-example/.gitignore
vendored
Normal file
@@ -0,0 +1,2 @@
|
|||||||
|
target/
|
||||||
|
recorder.wav
|
||||||
781
examples/rust-example/Cargo.lock
generated
Normal file
781
examples/rust-example/Cargo.lock
generated
Normal file
@@ -0,0 +1,781 @@
|
|||||||
|
# This file is automatically @generated by Cargo.
|
||||||
|
# It is not intended for manual editing.
|
||||||
|
version = 3
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "adler"
|
||||||
|
version = "1.0.2"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "f26201604c87b1e01bd3d98f8d5d9a8fcbb815e8cedb41ffccbeb4bf593a35fe"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "autocfg"
|
||||||
|
version = "1.3.0"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "0c4b4d0bd25bd0b74681c0ad21497610ce1b7c91b1022cd21c80c6fbdd9476b0"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "base64"
|
||||||
|
version = "0.22.1"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "72b3254f16251a8381aa12e40e3c4d2f0199f8c6508fbecb9d91f575e0fbb8c6"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "bitflags"
|
||||||
|
version = "1.3.2"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "bef38d45163c2f1dde094a7dfd33ccf595c92905c8f8f4fdc18d06fb1037718a"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "bitflags"
|
||||||
|
version = "2.5.0"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "cf4b9d6a944f767f8e5e0db018570623c85f3d925ac718db4e06d0187adb21c1"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "block-buffer"
|
||||||
|
version = "0.10.4"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "3078c7629b62d3f0439517fa394996acacc5cbc91c5a20d8c658e77abd503a71"
|
||||||
|
dependencies = [
|
||||||
|
"generic-array",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "bumpalo"
|
||||||
|
version = "3.16.0"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "79296716171880943b8470b5f8d03aa55eb2e645a4874bdbb28adb49162e012c"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "cc"
|
||||||
|
version = "1.0.98"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "41c270e7540d725e65ac7f1b212ac8ce349719624d7bcff99f8e2e488e8cf03f"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "cfg-if"
|
||||||
|
version = "1.0.0"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "cpufeatures"
|
||||||
|
version = "0.2.12"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "53fe5e26ff1b7aef8bca9c6080520cfb8d9333c7568e1829cef191a9723e5504"
|
||||||
|
dependencies = [
|
||||||
|
"libc",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "crc32fast"
|
||||||
|
version = "1.4.2"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "a97769d94ddab943e4510d138150169a2758b5ef3eb191a9ee688de3e23ef7b3"
|
||||||
|
dependencies = [
|
||||||
|
"cfg-if",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "crunchy"
|
||||||
|
version = "0.2.2"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "7a81dae078cea95a014a339291cec439d2f232ebe854a9d672b796c6afafa9b7"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "crypto-common"
|
||||||
|
version = "0.1.6"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "1bfb12502f3fc46cca1bb51ac28df9d618d813cdc3d2f25b9fe775a34af26bb3"
|
||||||
|
dependencies = [
|
||||||
|
"generic-array",
|
||||||
|
"typenum",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "digest"
|
||||||
|
version = "0.10.7"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "9ed9a281f7bc9b7576e61468ba615a66a5c8cfdff42420a70aa82701a3b1e292"
|
||||||
|
dependencies = [
|
||||||
|
"block-buffer",
|
||||||
|
"crypto-common",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "errno"
|
||||||
|
version = "0.3.9"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "534c5cf6194dfab3db3242765c03bbe257cf92f22b38f6bc0c58d59108a820ba"
|
||||||
|
dependencies = [
|
||||||
|
"libc",
|
||||||
|
"windows-sys",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "filetime"
|
||||||
|
version = "0.2.23"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "1ee447700ac8aa0b2f2bd7bc4462ad686ba06baa6727ac149a2d6277f0d240fd"
|
||||||
|
dependencies = [
|
||||||
|
"cfg-if",
|
||||||
|
"libc",
|
||||||
|
"redox_syscall",
|
||||||
|
"windows-sys",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "flate2"
|
||||||
|
version = "1.0.30"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "5f54427cfd1c7829e2a139fcefea601bf088ebca651d2bf53ebc600eac295dae"
|
||||||
|
dependencies = [
|
||||||
|
"crc32fast",
|
||||||
|
"miniz_oxide",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "form_urlencoded"
|
||||||
|
version = "1.2.1"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "e13624c2627564efccf4934284bdd98cbaa14e79b0b5a141218e507b3a823456"
|
||||||
|
dependencies = [
|
||||||
|
"percent-encoding",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "generic-array"
|
||||||
|
version = "0.14.7"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "85649ca51fd72272d7821adaf274ad91c288277713d9c18820d8499a7ff69e9a"
|
||||||
|
dependencies = [
|
||||||
|
"typenum",
|
||||||
|
"version_check",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "getrandom"
|
||||||
|
version = "0.2.15"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "c4567c8db10ae91089c99af84c68c38da3ec2f087c3f82960bcdbf3656b6f4d7"
|
||||||
|
dependencies = [
|
||||||
|
"cfg-if",
|
||||||
|
"libc",
|
||||||
|
"wasi",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "half"
|
||||||
|
version = "2.4.1"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "6dd08c532ae367adf81c312a4580bc67f1d0fe8bc9c460520283f4c0ff277888"
|
||||||
|
dependencies = [
|
||||||
|
"cfg-if",
|
||||||
|
"crunchy",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "hound"
|
||||||
|
version = "3.5.1"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "62adaabb884c94955b19907d60019f4e145d091c75345379e70d1ee696f7854f"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "idna"
|
||||||
|
version = "0.5.0"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "634d9b1461af396cad843f47fdba5597a4f9e6ddd4bfb6ff5d85028c25cb12f6"
|
||||||
|
dependencies = [
|
||||||
|
"unicode-bidi",
|
||||||
|
"unicode-normalization",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "js-sys"
|
||||||
|
version = "0.3.69"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "29c15563dc2726973df627357ce0c9ddddbea194836909d655df6a75d2cf296d"
|
||||||
|
dependencies = [
|
||||||
|
"wasm-bindgen",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "libc"
|
||||||
|
version = "0.2.155"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "97b3888a4aecf77e811145cadf6eef5901f4782c53886191b2f693f24761847c"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "libloading"
|
||||||
|
version = "0.8.3"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "0c2a198fb6b0eada2a8df47933734e6d35d350665a33a3593d7164fa52c75c19"
|
||||||
|
dependencies = [
|
||||||
|
"cfg-if",
|
||||||
|
"windows-targets",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "linux-raw-sys"
|
||||||
|
version = "0.4.14"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "78b3ae25bc7c8c38cec158d1f2757ee79e9b3740fbc7ccf0e59e4b08d793fa89"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "log"
|
||||||
|
version = "0.4.21"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "90ed8c1e510134f979dbc4f070f87d4313098b704861a105fe34231c70a3901c"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "matrixmultiply"
|
||||||
|
version = "0.3.8"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "7574c1cf36da4798ab73da5b215bbf444f50718207754cb522201d78d1cd0ff2"
|
||||||
|
dependencies = [
|
||||||
|
"autocfg",
|
||||||
|
"rawpointer",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "miniz_oxide"
|
||||||
|
version = "0.7.3"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "87dfd01fe195c66b572b37921ad8803d010623c0aca821bea2302239d155cdae"
|
||||||
|
dependencies = [
|
||||||
|
"adler",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "ndarray"
|
||||||
|
version = "0.15.6"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "adb12d4e967ec485a5f71c6311fe28158e9d6f4bc4a447b474184d0f91a8fa32"
|
||||||
|
dependencies = [
|
||||||
|
"matrixmultiply",
|
||||||
|
"num-complex",
|
||||||
|
"num-integer",
|
||||||
|
"num-traits",
|
||||||
|
"rawpointer",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "num-complex"
|
||||||
|
version = "0.4.6"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "73f88a1307638156682bada9d7604135552957b7818057dcef22705b4d509495"
|
||||||
|
dependencies = [
|
||||||
|
"num-traits",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "num-integer"
|
||||||
|
version = "0.1.46"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "7969661fd2958a5cb096e56c8e1ad0444ac2bbcd0061bd28660485a44879858f"
|
||||||
|
dependencies = [
|
||||||
|
"num-traits",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "num-traits"
|
||||||
|
version = "0.2.19"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "071dfc062690e90b734c0b2273ce72ad0ffa95f0c74596bc250dcfd960262841"
|
||||||
|
dependencies = [
|
||||||
|
"autocfg",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "once_cell"
|
||||||
|
version = "1.19.0"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "3fdb12b2476b595f9358c5161aa467c2438859caa136dec86c26fdd2efe17b92"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "ort"
|
||||||
|
version = "2.0.0-rc.2"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "0bc80894094c6a875bfac64415ed456fa661081a278a035e22be661305c87e14"
|
||||||
|
dependencies = [
|
||||||
|
"half",
|
||||||
|
"js-sys",
|
||||||
|
"libloading",
|
||||||
|
"ndarray",
|
||||||
|
"ort-sys",
|
||||||
|
"thiserror",
|
||||||
|
"tracing",
|
||||||
|
"web-sys",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "ort-sys"
|
||||||
|
version = "2.0.0-rc.2"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "b3d9c1373fc813d3f024d394f621f4c6dde0734c79b1c17113c3bb5bf0084bbe"
|
||||||
|
dependencies = [
|
||||||
|
"flate2",
|
||||||
|
"sha2",
|
||||||
|
"tar",
|
||||||
|
"ureq",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "percent-encoding"
|
||||||
|
version = "2.3.1"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "e3148f5046208a5d56bcfc03053e3ca6334e51da8dfb19b6cdc8b306fae3283e"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "pin-project-lite"
|
||||||
|
version = "0.2.14"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "bda66fc9667c18cb2758a2ac84d1167245054bcf85d5d1aaa6923f45801bdd02"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "proc-macro2"
|
||||||
|
version = "1.0.84"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "ec96c6a92621310b51366f1e28d05ef11489516e93be030060e5fc12024a49d6"
|
||||||
|
dependencies = [
|
||||||
|
"unicode-ident",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "quote"
|
||||||
|
version = "1.0.36"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "0fa76aaf39101c457836aec0ce2316dbdc3ab723cdda1c6bd4e6ad4208acaca7"
|
||||||
|
dependencies = [
|
||||||
|
"proc-macro2",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "rawpointer"
|
||||||
|
version = "0.2.1"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "60a357793950651c4ed0f3f52338f53b2f809f32d83a07f72909fa13e4c6c1e3"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "redox_syscall"
|
||||||
|
version = "0.4.1"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "4722d768eff46b75989dd134e5c353f0d6296e5aaa3132e776cbdb56be7731aa"
|
||||||
|
dependencies = [
|
||||||
|
"bitflags 1.3.2",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "ring"
|
||||||
|
version = "0.17.8"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "c17fa4cb658e3583423e915b9f3acc01cceaee1860e33d59ebae66adc3a2dc0d"
|
||||||
|
dependencies = [
|
||||||
|
"cc",
|
||||||
|
"cfg-if",
|
||||||
|
"getrandom",
|
||||||
|
"libc",
|
||||||
|
"spin",
|
||||||
|
"untrusted",
|
||||||
|
"windows-sys",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "rust-example"
|
||||||
|
version = "0.1.0"
|
||||||
|
dependencies = [
|
||||||
|
"hound",
|
||||||
|
"ndarray",
|
||||||
|
"ort",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "rustix"
|
||||||
|
version = "0.38.34"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "70dc5ec042f7a43c4a73241207cecc9873a06d45debb38b329f8541d85c2730f"
|
||||||
|
dependencies = [
|
||||||
|
"bitflags 2.5.0",
|
||||||
|
"errno",
|
||||||
|
"libc",
|
||||||
|
"linux-raw-sys",
|
||||||
|
"windows-sys",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "rustls"
|
||||||
|
version = "0.22.4"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "bf4ef73721ac7bcd79b2b315da7779d8fc09718c6b3d2d1b2d94850eb8c18432"
|
||||||
|
dependencies = [
|
||||||
|
"log",
|
||||||
|
"ring",
|
||||||
|
"rustls-pki-types",
|
||||||
|
"rustls-webpki",
|
||||||
|
"subtle",
|
||||||
|
"zeroize",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "rustls-pki-types"
|
||||||
|
version = "1.7.0"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "976295e77ce332211c0d24d92c0e83e50f5c5f046d11082cea19f3df13a3562d"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "rustls-webpki"
|
||||||
|
version = "0.102.4"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "ff448f7e92e913c4b7d4c6d8e4540a1724b319b4152b8aef6d4cf8339712b33e"
|
||||||
|
dependencies = [
|
||||||
|
"ring",
|
||||||
|
"rustls-pki-types",
|
||||||
|
"untrusted",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "sha2"
|
||||||
|
version = "0.10.8"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "793db75ad2bcafc3ffa7c68b215fee268f537982cd901d132f89c6343f3a3dc8"
|
||||||
|
dependencies = [
|
||||||
|
"cfg-if",
|
||||||
|
"cpufeatures",
|
||||||
|
"digest",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "spin"
|
||||||
|
version = "0.9.8"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "6980e8d7511241f8acf4aebddbb1ff938df5eebe98691418c4468d0b72a96a67"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "subtle"
|
||||||
|
version = "2.5.0"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "81cdd64d312baedb58e21336b31bc043b77e01cc99033ce76ef539f78e965ebc"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "syn"
|
||||||
|
version = "2.0.66"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "c42f3f41a2de00b01c0aaad383c5a45241efc8b2d1eda5661812fda5f3cdcff5"
|
||||||
|
dependencies = [
|
||||||
|
"proc-macro2",
|
||||||
|
"quote",
|
||||||
|
"unicode-ident",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "tar"
|
||||||
|
version = "0.4.40"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "b16afcea1f22891c49a00c751c7b63b2233284064f11a200fc624137c51e2ddb"
|
||||||
|
dependencies = [
|
||||||
|
"filetime",
|
||||||
|
"libc",
|
||||||
|
"xattr",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "thiserror"
|
||||||
|
version = "1.0.61"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "c546c80d6be4bc6a00c0f01730c08df82eaa7a7a61f11d656526506112cc1709"
|
||||||
|
dependencies = [
|
||||||
|
"thiserror-impl",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "thiserror-impl"
|
||||||
|
version = "1.0.61"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "46c3384250002a6d5af4d114f2845d37b57521033f30d5c3f46c4d70e1197533"
|
||||||
|
dependencies = [
|
||||||
|
"proc-macro2",
|
||||||
|
"quote",
|
||||||
|
"syn",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "tinyvec"
|
||||||
|
version = "1.6.0"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "87cc5ceb3875bb20c2890005a4e226a4651264a5c75edb2421b52861a0a0cb50"
|
||||||
|
dependencies = [
|
||||||
|
"tinyvec_macros",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "tinyvec_macros"
|
||||||
|
version = "0.1.1"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "1f3ccbac311fea05f86f61904b462b55fb3df8837a366dfc601a0161d0532f20"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "tracing"
|
||||||
|
version = "0.1.40"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "c3523ab5a71916ccf420eebdf5521fcef02141234bbc0b8a49f2fdc4544364ef"
|
||||||
|
dependencies = [
|
||||||
|
"pin-project-lite",
|
||||||
|
"tracing-attributes",
|
||||||
|
"tracing-core",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "tracing-attributes"
|
||||||
|
version = "0.1.27"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "34704c8d6ebcbc939824180af020566b01a7c01f80641264eba0999f6c2b6be7"
|
||||||
|
dependencies = [
|
||||||
|
"proc-macro2",
|
||||||
|
"quote",
|
||||||
|
"syn",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "tracing-core"
|
||||||
|
version = "0.1.32"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "c06d3da6113f116aaee68e4d601191614c9053067f9ab7f6edbcb161237daa54"
|
||||||
|
dependencies = [
|
||||||
|
"once_cell",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "typenum"
|
||||||
|
version = "1.17.0"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "42ff0bf0c66b8238c6f3b578df37d0b7848e55df8577b3f74f92a69acceeb825"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "unicode-bidi"
|
||||||
|
version = "0.3.15"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "08f95100a766bf4f8f28f90d77e0a5461bbdb219042e7679bebe79004fed8d75"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "unicode-ident"
|
||||||
|
version = "1.0.12"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "3354b9ac3fae1ff6755cb6db53683adb661634f67557942dea4facebec0fee4b"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "unicode-normalization"
|
||||||
|
version = "0.1.23"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "a56d1686db2308d901306f92a263857ef59ea39678a5458e7cb17f01415101f5"
|
||||||
|
dependencies = [
|
||||||
|
"tinyvec",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "untrusted"
|
||||||
|
version = "0.9.0"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "8ecb6da28b8a351d773b68d5825ac39017e680750f980f3a1a85cd8dd28a47c1"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "ureq"
|
||||||
|
version = "2.9.7"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "d11a831e3c0b56e438a28308e7c810799e3c118417f342d30ecec080105395cd"
|
||||||
|
dependencies = [
|
||||||
|
"base64",
|
||||||
|
"log",
|
||||||
|
"once_cell",
|
||||||
|
"rustls",
|
||||||
|
"rustls-pki-types",
|
||||||
|
"rustls-webpki",
|
||||||
|
"url",
|
||||||
|
"webpki-roots",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "url"
|
||||||
|
version = "2.5.0"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "31e6302e3bb753d46e83516cae55ae196fc0c309407cf11ab35cc51a4c2a4633"
|
||||||
|
dependencies = [
|
||||||
|
"form_urlencoded",
|
||||||
|
"idna",
|
||||||
|
"percent-encoding",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "version_check"
|
||||||
|
version = "0.9.4"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "49874b5167b65d7193b8aba1567f5c7d93d001cafc34600cee003eda787e483f"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "wasi"
|
||||||
|
version = "0.11.0+wasi-snapshot-preview1"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "9c8d87e72b64a3b4db28d11ce29237c246188f4f51057d65a7eab63b7987e423"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "wasm-bindgen"
|
||||||
|
version = "0.2.92"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "4be2531df63900aeb2bca0daaaddec08491ee64ceecbee5076636a3b026795a8"
|
||||||
|
dependencies = [
|
||||||
|
"cfg-if",
|
||||||
|
"wasm-bindgen-macro",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "wasm-bindgen-backend"
|
||||||
|
version = "0.2.92"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "614d787b966d3989fa7bb98a654e369c762374fd3213d212cfc0251257e747da"
|
||||||
|
dependencies = [
|
||||||
|
"bumpalo",
|
||||||
|
"log",
|
||||||
|
"once_cell",
|
||||||
|
"proc-macro2",
|
||||||
|
"quote",
|
||||||
|
"syn",
|
||||||
|
"wasm-bindgen-shared",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "wasm-bindgen-macro"
|
||||||
|
version = "0.2.92"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "a1f8823de937b71b9460c0c34e25f3da88250760bec0ebac694b49997550d726"
|
||||||
|
dependencies = [
|
||||||
|
"quote",
|
||||||
|
"wasm-bindgen-macro-support",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "wasm-bindgen-macro-support"
|
||||||
|
version = "0.2.92"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "e94f17b526d0a461a191c78ea52bbce64071ed5c04c9ffe424dcb38f74171bb7"
|
||||||
|
dependencies = [
|
||||||
|
"proc-macro2",
|
||||||
|
"quote",
|
||||||
|
"syn",
|
||||||
|
"wasm-bindgen-backend",
|
||||||
|
"wasm-bindgen-shared",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "wasm-bindgen-shared"
|
||||||
|
version = "0.2.92"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "af190c94f2773fdb3729c55b007a722abb5384da03bc0986df4c289bf5567e96"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "web-sys"
|
||||||
|
version = "0.3.69"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "77afa9a11836342370f4817622a2f0f418b134426d91a82dfb48f532d2ec13ef"
|
||||||
|
dependencies = [
|
||||||
|
"js-sys",
|
||||||
|
"wasm-bindgen",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "webpki-roots"
|
||||||
|
version = "0.26.1"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "b3de34ae270483955a94f4b21bdaaeb83d508bb84a01435f393818edb0012009"
|
||||||
|
dependencies = [
|
||||||
|
"rustls-pki-types",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "windows-sys"
|
||||||
|
version = "0.52.0"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "282be5f36a8ce781fad8c8ae18fa3f9beff57ec1b52cb3de0789201425d9a33d"
|
||||||
|
dependencies = [
|
||||||
|
"windows-targets",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "windows-targets"
|
||||||
|
version = "0.52.5"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "6f0713a46559409d202e70e28227288446bf7841d3211583a4b53e3f6d96e7eb"
|
||||||
|
dependencies = [
|
||||||
|
"windows_aarch64_gnullvm",
|
||||||
|
"windows_aarch64_msvc",
|
||||||
|
"windows_i686_gnu",
|
||||||
|
"windows_i686_gnullvm",
|
||||||
|
"windows_i686_msvc",
|
||||||
|
"windows_x86_64_gnu",
|
||||||
|
"windows_x86_64_gnullvm",
|
||||||
|
"windows_x86_64_msvc",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "windows_aarch64_gnullvm"
|
||||||
|
version = "0.52.5"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "7088eed71e8b8dda258ecc8bac5fb1153c5cffaf2578fc8ff5d61e23578d3263"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "windows_aarch64_msvc"
|
||||||
|
version = "0.52.5"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "9985fd1504e250c615ca5f281c3f7a6da76213ebd5ccc9561496568a2752afb6"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "windows_i686_gnu"
|
||||||
|
version = "0.52.5"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "88ba073cf16d5372720ec942a8ccbf61626074c6d4dd2e745299726ce8b89670"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "windows_i686_gnullvm"
|
||||||
|
version = "0.52.5"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "87f4261229030a858f36b459e748ae97545d6f1ec60e5e0d6a3d32e0dc232ee9"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "windows_i686_msvc"
|
||||||
|
version = "0.52.5"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "db3c2bf3d13d5b658be73463284eaf12830ac9a26a90c717b7f771dfe97487bf"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "windows_x86_64_gnu"
|
||||||
|
version = "0.52.5"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "4e4246f76bdeff09eb48875a0fd3e2af6aada79d409d33011886d3e1581517d9"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "windows_x86_64_gnullvm"
|
||||||
|
version = "0.52.5"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "852298e482cd67c356ddd9570386e2862b5673c85bd5f88df9ab6802b334c596"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "windows_x86_64_msvc"
|
||||||
|
version = "0.52.5"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "bec47e5bfd1bff0eeaf6d8b485cc1074891a197ab4225d504cb7a1ab88b02bf0"
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "xattr"
|
||||||
|
version = "1.3.1"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "8da84f1a25939b27f6820d92aed108f83ff920fdf11a7b19366c27c4cda81d4f"
|
||||||
|
dependencies = [
|
||||||
|
"libc",
|
||||||
|
"linux-raw-sys",
|
||||||
|
"rustix",
|
||||||
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "zeroize"
|
||||||
|
version = "1.8.1"
|
||||||
|
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||||
|
checksum = "ced3678a2879b30306d323f4542626697a464a97c0a07c9aebf7ebca65cd4dde"
|
||||||
9
examples/rust-example/Cargo.toml
Normal file
9
examples/rust-example/Cargo.toml
Normal file
@@ -0,0 +1,9 @@
|
|||||||
|
[package]
|
||||||
|
name = "rust-example"
|
||||||
|
version = "0.1.0"
|
||||||
|
edition = "2021"
|
||||||
|
|
||||||
|
[dependencies]
|
||||||
|
ort = { version = "2.0.0-rc.2", features = ["load-dynamic", "ndarray"] }
|
||||||
|
ndarray = "0.15"
|
||||||
|
hound = "3"
|
||||||
19
examples/rust-example/README.md
Normal file
19
examples/rust-example/README.md
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
# Stream example in Rust
|
||||||
|
Made after [C++ stream example](https://github.com/snakers4/silero-vad/tree/master/examples/cpp)
|
||||||
|
|
||||||
|
## Dependencies
|
||||||
|
- To build Rust crate `ort` you need `cc` installed.
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
Just
|
||||||
|
```
|
||||||
|
cargo run
|
||||||
|
```
|
||||||
|
If you run example outside of this repo adjust environment variable
|
||||||
|
```
|
||||||
|
SILERO_MODEL_PATH=/path/to/silero_vad.onnx cargo run
|
||||||
|
```
|
||||||
|
If you need to test against other wav file, not `recorder.wav`, specify it as the first argument
|
||||||
|
```
|
||||||
|
cargo run -- /path/to/audio/file.wav
|
||||||
|
```
|
||||||
36
examples/rust-example/src/main.rs
Normal file
36
examples/rust-example/src/main.rs
Normal file
@@ -0,0 +1,36 @@
|
|||||||
|
mod silero;
|
||||||
|
mod utils;
|
||||||
|
mod vad_iter;
|
||||||
|
|
||||||
|
fn main() {
|
||||||
|
let model_path = std::env::var("SILERO_MODEL_PATH")
|
||||||
|
.unwrap_or_else(|_| String::from("../../files/silero_vad.onnx"));
|
||||||
|
let audio_path = std::env::args()
|
||||||
|
.nth(1)
|
||||||
|
.unwrap_or_else(|| String::from("recorder.wav"));
|
||||||
|
let mut wav_reader = hound::WavReader::open(audio_path).unwrap();
|
||||||
|
let sample_rate = match wav_reader.spec().sample_rate {
|
||||||
|
8000 => utils::SampleRate::EightkHz,
|
||||||
|
16000 => utils::SampleRate::SixteenkHz,
|
||||||
|
_ => panic!("Unsupported sample rate. Expect 8 kHz or 16 kHz."),
|
||||||
|
};
|
||||||
|
if wav_reader.spec().sample_format != hound::SampleFormat::Int {
|
||||||
|
panic!("Unsupported sample format. Expect Int.");
|
||||||
|
}
|
||||||
|
let content = wav_reader
|
||||||
|
.samples()
|
||||||
|
.filter_map(|x| x.ok())
|
||||||
|
.collect::<Vec<i16>>();
|
||||||
|
assert!(!content.is_empty());
|
||||||
|
let silero = silero::Silero::new(sample_rate, model_path).unwrap();
|
||||||
|
let vad_params = utils::VadParams {
|
||||||
|
sample_rate: sample_rate.into(),
|
||||||
|
..Default::default()
|
||||||
|
};
|
||||||
|
let mut vad_iterator = vad_iter::VadIter::new(silero, vad_params);
|
||||||
|
vad_iterator.process(&content).unwrap();
|
||||||
|
for timestamp in vad_iterator.speeches() {
|
||||||
|
println!("{}", timestamp);
|
||||||
|
}
|
||||||
|
println!("Finished.");
|
||||||
|
}
|
||||||
59
examples/rust-example/src/silero.rs
Normal file
59
examples/rust-example/src/silero.rs
Normal file
@@ -0,0 +1,59 @@
|
|||||||
|
use crate::utils;
|
||||||
|
use ndarray::{Array, Array2, ArrayBase, ArrayD, Dim, IxDynImpl, OwnedRepr};
|
||||||
|
use std::path::Path;
|
||||||
|
|
||||||
|
#[derive(Debug)]
|
||||||
|
pub struct Silero {
|
||||||
|
session: ort::Session,
|
||||||
|
sample_rate: ArrayBase<OwnedRepr<i64>, Dim<[usize; 1]>>,
|
||||||
|
h: ArrayBase<OwnedRepr<f32>, Dim<IxDynImpl>>,
|
||||||
|
c: ArrayBase<OwnedRepr<f32>, Dim<IxDynImpl>>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Silero {
|
||||||
|
pub fn new(
|
||||||
|
sample_rate: utils::SampleRate,
|
||||||
|
model_path: impl AsRef<Path>,
|
||||||
|
) -> Result<Self, ort::Error> {
|
||||||
|
let session = ort::Session::builder()?.commit_from_file(model_path)?;
|
||||||
|
let h = ArrayD::<f32>::zeros([2, 1, 64].as_slice());
|
||||||
|
let c = ArrayD::<f32>::zeros([2, 1, 64].as_slice());
|
||||||
|
let sample_rate = Array::from_shape_vec([1], vec![sample_rate.into()]).unwrap();
|
||||||
|
Ok(Self {
|
||||||
|
session,
|
||||||
|
sample_rate,
|
||||||
|
h,
|
||||||
|
c,
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn reset(&mut self) {
|
||||||
|
self.h = ArrayD::<f32>::zeros([2, 1, 64].as_slice());
|
||||||
|
self.c = ArrayD::<f32>::zeros([2, 1, 64].as_slice());
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn calc_level(&mut self, audio_frame: &[i16]) -> Result<f32, ort::Error> {
|
||||||
|
let data = audio_frame
|
||||||
|
.iter()
|
||||||
|
.map(|x| (*x as f32) / (i16::MAX as f32))
|
||||||
|
.collect::<Vec<_>>();
|
||||||
|
let frame = Array2::<f32>::from_shape_vec([1, data.len()], data).unwrap();
|
||||||
|
let inps = ort::inputs![
|
||||||
|
frame,
|
||||||
|
self.sample_rate.clone(),
|
||||||
|
std::mem::take(&mut self.h),
|
||||||
|
std::mem::take(&mut self.c)
|
||||||
|
]?;
|
||||||
|
let res = self
|
||||||
|
.session
|
||||||
|
.run(ort::SessionInputs::ValueSlice::<4>(&inps))?;
|
||||||
|
self.h = res["hn"].try_extract_tensor().unwrap().to_owned();
|
||||||
|
self.c = res["cn"].try_extract_tensor().unwrap().to_owned();
|
||||||
|
Ok(*res["output"]
|
||||||
|
.try_extract_raw_tensor::<f32>()
|
||||||
|
.unwrap()
|
||||||
|
.1
|
||||||
|
.first()
|
||||||
|
.unwrap())
|
||||||
|
}
|
||||||
|
}
|
||||||
60
examples/rust-example/src/utils.rs
Normal file
60
examples/rust-example/src/utils.rs
Normal file
@@ -0,0 +1,60 @@
|
|||||||
|
#[derive(Debug, Clone, Copy)]
|
||||||
|
pub enum SampleRate {
|
||||||
|
EightkHz,
|
||||||
|
SixteenkHz,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl From<SampleRate> for i64 {
|
||||||
|
fn from(value: SampleRate) -> Self {
|
||||||
|
match value {
|
||||||
|
SampleRate::EightkHz => 8000,
|
||||||
|
SampleRate::SixteenkHz => 16000,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl From<SampleRate> for usize {
|
||||||
|
fn from(value: SampleRate) -> Self {
|
||||||
|
match value {
|
||||||
|
SampleRate::EightkHz => 8000,
|
||||||
|
SampleRate::SixteenkHz => 16000,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug)]
|
||||||
|
pub struct VadParams {
|
||||||
|
pub frame_size: usize,
|
||||||
|
pub threshold: f32,
|
||||||
|
pub min_silence_duration_ms: usize,
|
||||||
|
pub speech_pad_ms: usize,
|
||||||
|
pub min_speech_duration_ms: usize,
|
||||||
|
pub max_speech_duration_s: f32,
|
||||||
|
pub sample_rate: usize,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Default for VadParams {
|
||||||
|
fn default() -> Self {
|
||||||
|
Self {
|
||||||
|
frame_size: 64,
|
||||||
|
threshold: 0.5,
|
||||||
|
min_silence_duration_ms: 0,
|
||||||
|
speech_pad_ms: 64,
|
||||||
|
min_speech_duration_ms: 64,
|
||||||
|
max_speech_duration_s: f32::INFINITY,
|
||||||
|
sample_rate: 16000,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Default)]
|
||||||
|
pub struct TimeStamp {
|
||||||
|
pub start: i64,
|
||||||
|
pub end: i64,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl std::fmt::Display for TimeStamp {
|
||||||
|
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||||
|
write!(f, "[start:{:08}, end:{:08}]", self.start, self.end)
|
||||||
|
}
|
||||||
|
}
|
||||||
223
examples/rust-example/src/vad_iter.rs
Normal file
223
examples/rust-example/src/vad_iter.rs
Normal file
@@ -0,0 +1,223 @@
|
|||||||
|
use crate::{silero, utils};
|
||||||
|
|
||||||
|
const DEBUG_SPEECH_PROB: bool = true;
|
||||||
|
#[derive(Debug)]
|
||||||
|
pub struct VadIter {
|
||||||
|
silero: silero::Silero,
|
||||||
|
params: Params,
|
||||||
|
state: State,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl VadIter {
|
||||||
|
pub fn new(silero: silero::Silero, params: utils::VadParams) -> Self {
|
||||||
|
Self {
|
||||||
|
silero,
|
||||||
|
params: Params::from(params),
|
||||||
|
state: State::new(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn process(&mut self, samples: &[i16]) -> Result<(), ort::Error> {
|
||||||
|
self.reset_states();
|
||||||
|
for audio_frame in samples.chunks_exact(self.params.frame_size_samples) {
|
||||||
|
let speech_prob = self.silero.calc_level(audio_frame)?;
|
||||||
|
self.state.update(&self.params, speech_prob);
|
||||||
|
}
|
||||||
|
self.state.check_for_last_speech(samples.len());
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn speeches(&self) -> &[utils::TimeStamp] {
|
||||||
|
&self.state.speeches
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl VadIter {
|
||||||
|
fn reset_states(&mut self) {
|
||||||
|
self.silero.reset();
|
||||||
|
self.state = State::new()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[allow(unused)]
|
||||||
|
#[derive(Debug)]
|
||||||
|
struct Params {
|
||||||
|
frame_size: usize,
|
||||||
|
threshold: f32,
|
||||||
|
min_silence_duration_ms: usize,
|
||||||
|
speech_pad_ms: usize,
|
||||||
|
min_speech_duration_ms: usize,
|
||||||
|
max_speech_duration_s: f32,
|
||||||
|
sample_rate: usize,
|
||||||
|
sr_per_ms: usize,
|
||||||
|
frame_size_samples: usize,
|
||||||
|
min_speech_samples: usize,
|
||||||
|
speech_pad_samples: usize,
|
||||||
|
max_speech_samples: f32,
|
||||||
|
min_silence_samples: usize,
|
||||||
|
min_silence_samples_at_max_speech: usize,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl From<utils::VadParams> for Params {
|
||||||
|
fn from(value: utils::VadParams) -> Self {
|
||||||
|
let frame_size = value.frame_size;
|
||||||
|
let threshold = value.threshold;
|
||||||
|
let min_silence_duration_ms = value.min_silence_duration_ms;
|
||||||
|
let speech_pad_ms = value.speech_pad_ms;
|
||||||
|
let min_speech_duration_ms = value.min_speech_duration_ms;
|
||||||
|
let max_speech_duration_s = value.max_speech_duration_s;
|
||||||
|
let sample_rate = value.sample_rate;
|
||||||
|
let sr_per_ms = sample_rate / 1000;
|
||||||
|
let frame_size_samples = frame_size * sr_per_ms;
|
||||||
|
let min_speech_samples = sr_per_ms * min_speech_duration_ms;
|
||||||
|
let speech_pad_samples = sr_per_ms * speech_pad_ms;
|
||||||
|
let max_speech_samples = sample_rate as f32 * max_speech_duration_s
|
||||||
|
- frame_size_samples as f32
|
||||||
|
- 2.0 * speech_pad_samples as f32;
|
||||||
|
let min_silence_samples = sr_per_ms * min_silence_duration_ms;
|
||||||
|
let min_silence_samples_at_max_speech = sr_per_ms * 98;
|
||||||
|
Self {
|
||||||
|
frame_size,
|
||||||
|
threshold,
|
||||||
|
min_silence_duration_ms,
|
||||||
|
speech_pad_ms,
|
||||||
|
min_speech_duration_ms,
|
||||||
|
max_speech_duration_s,
|
||||||
|
sample_rate,
|
||||||
|
sr_per_ms,
|
||||||
|
frame_size_samples,
|
||||||
|
min_speech_samples,
|
||||||
|
speech_pad_samples,
|
||||||
|
max_speech_samples,
|
||||||
|
min_silence_samples,
|
||||||
|
min_silence_samples_at_max_speech,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug, Default)]
|
||||||
|
struct State {
|
||||||
|
current_sample: usize,
|
||||||
|
temp_end: usize,
|
||||||
|
next_start: usize,
|
||||||
|
prev_end: usize,
|
||||||
|
triggered: bool,
|
||||||
|
current_speech: utils::TimeStamp,
|
||||||
|
speeches: Vec<utils::TimeStamp>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl State {
|
||||||
|
fn new() -> Self {
|
||||||
|
Default::default()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn update(&mut self, params: &Params, speech_prob: f32) {
|
||||||
|
self.current_sample += params.frame_size_samples;
|
||||||
|
if speech_prob > params.threshold {
|
||||||
|
if self.temp_end != 0 {
|
||||||
|
self.temp_end = 0;
|
||||||
|
if self.next_start < self.prev_end {
|
||||||
|
self.next_start = self
|
||||||
|
.current_sample
|
||||||
|
.saturating_sub(params.frame_size_samples)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if !self.triggered {
|
||||||
|
self.debug(speech_prob, params, "start");
|
||||||
|
self.triggered = true;
|
||||||
|
self.current_speech.start =
|
||||||
|
self.current_sample as i64 - params.frame_size_samples as i64;
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
if self.triggered
|
||||||
|
&& (self.current_sample as i64 - self.current_speech.start) as f32
|
||||||
|
> params.max_speech_samples
|
||||||
|
{
|
||||||
|
if self.prev_end > 0 {
|
||||||
|
self.current_speech.end = self.prev_end as _;
|
||||||
|
self.take_speech();
|
||||||
|
if self.next_start < self.prev_end {
|
||||||
|
self.triggered = false
|
||||||
|
} else {
|
||||||
|
self.current_speech.start = self.next_start as _;
|
||||||
|
}
|
||||||
|
self.prev_end = 0;
|
||||||
|
self.next_start = 0;
|
||||||
|
self.temp_end = 0;
|
||||||
|
} else {
|
||||||
|
self.current_speech.end = self.current_sample as _;
|
||||||
|
self.take_speech();
|
||||||
|
self.prev_end = 0;
|
||||||
|
self.next_start = 0;
|
||||||
|
self.temp_end = 0;
|
||||||
|
self.triggered = false;
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
if speech_prob >= (params.threshold - 0.15) && (speech_prob < params.threshold) {
|
||||||
|
if self.triggered {
|
||||||
|
self.debug(speech_prob, params, "speaking")
|
||||||
|
} else {
|
||||||
|
self.debug(speech_prob, params, "silence")
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if self.triggered && speech_prob < (params.threshold - 0.15) {
|
||||||
|
self.debug(speech_prob, params, "end");
|
||||||
|
if self.temp_end == 0 {
|
||||||
|
self.temp_end = self.current_sample;
|
||||||
|
}
|
||||||
|
if self.current_sample.saturating_sub(self.temp_end)
|
||||||
|
> params.min_silence_samples_at_max_speech
|
||||||
|
{
|
||||||
|
self.prev_end = self.temp_end;
|
||||||
|
}
|
||||||
|
if self.current_sample.saturating_sub(self.temp_end) >= params.min_silence_samples {
|
||||||
|
self.current_speech.end = self.temp_end as _;
|
||||||
|
if self.current_speech.end - self.current_speech.start
|
||||||
|
> params.min_speech_samples as _
|
||||||
|
{
|
||||||
|
self.take_speech();
|
||||||
|
self.prev_end = 0;
|
||||||
|
self.next_start = 0;
|
||||||
|
self.temp_end = 0;
|
||||||
|
self.triggered = false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn take_speech(&mut self) {
|
||||||
|
self.speeches.push(std::mem::take(&mut self.current_speech)); // current speech becomes TimeStamp::default() due to take()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn check_for_last_speech(&mut self, last_sample: usize) {
|
||||||
|
if self.current_speech.start > 0 {
|
||||||
|
self.current_speech.end = last_sample as _;
|
||||||
|
self.take_speech();
|
||||||
|
self.prev_end = 0;
|
||||||
|
self.next_start = 0;
|
||||||
|
self.temp_end = 0;
|
||||||
|
self.triggered = false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn debug(&self, speech_prob: f32, params: &Params, title: &str) {
|
||||||
|
if DEBUG_SPEECH_PROB {
|
||||||
|
let speech = self.current_sample as f32
|
||||||
|
- params.frame_size_samples as f32
|
||||||
|
- if title == "end" {
|
||||||
|
params.speech_pad_samples
|
||||||
|
} else {
|
||||||
|
0
|
||||||
|
} as f32; // minus window_size_samples to get precise start time point.
|
||||||
|
println!(
|
||||||
|
"[{:10}: {:.3} s ({:.3}) {:8}]",
|
||||||
|
title,
|
||||||
|
speech / params.sample_rate as f32,
|
||||||
|
speech_prob,
|
||||||
|
self.current_sample - params.frame_size_samples,
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
BIN
files/de.wav
BIN
files/de.wav
Binary file not shown.
BIN
files/en.wav
BIN
files/en.wav
Binary file not shown.
BIN
files/en_num.wav
BIN
files/en_num.wav
Binary file not shown.
BIN
files/es.wav
BIN
files/es.wav
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -1 +0,0 @@
|
|||||||
{"59": "mg, Malagasy", "76": "tk, Turkmen", "20": "lb, Luxembourgish, Letzeburgesch", "62": "or, Oriya", "30": "en, English", "26": "oc, Occitan", "69": "no, Norwegian", "77": "sr, Serbian", "90": "bs, Bosnian", "71": "el, Greek, Modern (1453\u2013)", "15": "az, Azerbaijani", "12": "lo, Lao", "85": "zh-HK, Chinese", "79": "cs, Czech", "43": "sv, Swedish", "37": "mn, Mongolian", "32": "fi, Finnish", "51": "tg, Tajik", "46": "am, Amharic", "17": "nn, Norwegian Nynorsk", "40": "ja, Japanese", "8": "it, Italian", "21": "ha, Hausa", "11": "as, Assamese", "29": "fa, Persian", "82": "bn, Bengali", "54": "mk, Macedonian", "31": "sw, Swahili", "45": "vi, Vietnamese", "41": "ur, Urdu", "74": "bo, Tibetan", "4": "hi, Hindi", "86": "mr, Marathi", "3": "fy-NL, Western Frisian", "65": "sk, Slovak", "2": "ln, Lingala", "92": "gl, Galician", "53": "sn, Shona", "87": "su, Sundanese", "35": "tt, Tatar", "93": "kn, Kannada", "6": "yo, Yoruba", "27": "ps, Pashto, Pushto", "34": "hy, Armenian", "25": "pa-IN, Punjabi, Panjabi", "23": "nl, Dutch, Flemish", "48": "th, Thai", "73": "mt, Maltese", "55": "ar, Arabic", "89": "ba, Bashkir", "78": "bg, Bulgarian", "42": "yi, Yiddish", "5": "ru, Russian", "84": "sv-SE, Swedish", "80": "tr, Turkish", "33": "sq, Albanian", "38": "kk, Kazakh", "50": "pl, Polish", "9": "hr, Croatian", "66": "ky, Kirghiz, Kyrgyz", "49": "hu, Hungarian", "10": "si, Sinhala, Sinhalese", "56": "la, Latin", "75": "de, German", "14": "ko, Korean", "22": "id, Indonesian", "47": "sl, Slovenian", "57": "be, Belarusian", "36": "ta, Tamil", "7": "da, Danish", "91": "sd, Sindhi", "28": "et, Estonian", "63": "pt, Portuguese", "60": "ne, Nepali", "94": "zh-TW, Chinese", "18": "zh-CN, Chinese", "88": "rw, Kinyarwanda", "19": "es, Spanish, Castilian", "39": "ht, Haitian, Haitian Creole", "64": "tl, Tagalog", "83": "ms, Malay", "70": "ro, Romanian, Moldavian, Moldovan", "68": "pa, Punjabi, Panjabi", "52": "uz, Uzbek", "58": "km, Central Khmer", "67": "my, Burmese", "0": "fr, French", "24": "af, Afrikaans", "16": "gu, Gujarati", "81": "so, Somali", "13": "uk, Ukrainian", "44": "ca, Catalan, Valencian", "72": "ml, Malayalam", "61": "te, Telugu", "1": "zh, Chinese"}
|
|
||||||
@@ -1 +0,0 @@
|
|||||||
{"0": ["Afrikaans", "Dutch, Flemish", "Western Frisian"], "1": ["Turkish", "Azerbaijani"], "2": ["Russian", "Slovak", "Ukrainian", "Czech", "Polish", "Belarusian"], "3": ["Bulgarian", "Macedonian", "Serbian", "Croatian", "Bosnian", "Slovenian"], "4": ["Norwegian Nynorsk", "Swedish", "Danish", "Norwegian"], "5": ["English"], "6": ["Finnish", "Estonian"], "7": ["Yiddish", "Luxembourgish, Letzeburgesch", "German"], "8": ["Spanish", "Occitan", "Portuguese", "Catalan, Valencian", "Galician", "Spanish, Castilian", "Italian"], "9": ["Maltese", "Arabic"], "10": ["Marathi"], "11": ["Hindi", "Urdu"], "12": ["Lao", "Thai"], "13": ["Malay", "Indonesian"], "14": ["Romanian, Moldavian, Moldovan"], "15": ["Tagalog"], "16": ["Tajik", "Persian"], "17": ["Kazakh", "Uzbek", "Kirghiz, Kyrgyz"], "18": ["Kinyarwanda"], "19": ["Tatar", "Bashkir"], "20": ["French"], "21": ["Chinese"], "22": ["Lingala"], "23": ["Yoruba"], "24": ["Sinhala, Sinhalese"], "25": ["Assamese"], "26": ["Korean"], "27": ["Gujarati"], "28": ["Hausa"], "29": ["Punjabi, Panjabi"], "30": ["Pashto, Pushto"], "31": ["Swahili"], "32": ["Albanian"], "33": ["Armenian"], "34": ["Mongolian"], "35": ["Tamil"], "36": ["Haitian, Haitian Creole"], "37": ["Japanese"], "38": ["Vietnamese"], "39": ["Amharic"], "40": ["Hungarian"], "41": ["Shona"], "42": ["Latin"], "43": ["Central Khmer"], "44": ["Malagasy"], "45": ["Nepali"], "46": ["Telugu"], "47": ["Oriya"], "48": ["Burmese"], "49": ["Greek, Modern (1453\u2013)"], "50": ["Malayalam"], "51": ["Tibetan"], "52": ["Turkmen"], "53": ["Somali"], "54": ["Bengali"], "55": ["Sundanese"], "56": ["Sindhi"], "57": ["Kannada"]}
|
|
||||||
Binary file not shown.
Binary file not shown.
BIN
files/ru.wav
BIN
files/ru.wav
Binary file not shown.
BIN
files/ru_num.wav
BIN
files/ru_num.wav
Binary file not shown.
Binary file not shown.
97
hubconf.py
97
hubconf.py
@@ -1,25 +1,45 @@
|
|||||||
dependencies = ['torch', 'torchaudio']
|
dependencies = ['torch', 'torchaudio']
|
||||||
import torch
|
import torch
|
||||||
import json
|
import os
|
||||||
from utils_vad import (init_jit_model,
|
import sys
|
||||||
get_speech_timestamps,
|
sys.path.insert(0, os.path.join(os.path.dirname(__file__), 'src'))
|
||||||
get_number_ts,
|
from silero_vad.utils_vad import (init_jit_model,
|
||||||
get_language,
|
get_speech_timestamps,
|
||||||
get_language_and_group,
|
save_audio,
|
||||||
save_audio,
|
read_audio,
|
||||||
read_audio,
|
VADIterator,
|
||||||
VADIterator,
|
collect_chunks,
|
||||||
collect_chunks,
|
OnnxWrapper)
|
||||||
drop_chunks)
|
|
||||||
|
|
||||||
|
|
||||||
def silero_vad(**kwargs):
|
def versiontuple(v):
|
||||||
|
splitted = v.split('+')[0].split(".")
|
||||||
|
version_list = []
|
||||||
|
for i in splitted:
|
||||||
|
try:
|
||||||
|
version_list.append(int(i))
|
||||||
|
except:
|
||||||
|
version_list.append(0)
|
||||||
|
return tuple(version_list)
|
||||||
|
|
||||||
|
|
||||||
|
def silero_vad(onnx=False, force_onnx_cpu=False):
|
||||||
"""Silero Voice Activity Detector
|
"""Silero Voice Activity Detector
|
||||||
Returns a model with a set of utils
|
Returns a model with a set of utils
|
||||||
Please see https://github.com/snakers4/silero-vad for usage examples
|
Please see https://github.com/snakers4/silero-vad for usage examples
|
||||||
"""
|
"""
|
||||||
hub_dir = torch.hub.get_dir()
|
|
||||||
model = init_jit_model(model_path=f'{hub_dir}/snakers4_silero-vad_master/files/silero_vad.jit')
|
if not onnx:
|
||||||
|
installed_version = torch.__version__
|
||||||
|
supported_version = '1.12.0'
|
||||||
|
if versiontuple(installed_version) < versiontuple(supported_version):
|
||||||
|
raise Exception(f'Please install torch {supported_version} or greater ({installed_version} installed)')
|
||||||
|
|
||||||
|
model_dir = os.path.join(os.path.dirname(__file__), 'src', 'silero_vad', 'data')
|
||||||
|
if onnx:
|
||||||
|
model = OnnxWrapper(os.path.join(model_dir, 'silero_vad.onnx'), force_onnx_cpu)
|
||||||
|
else:
|
||||||
|
model = init_jit_model(os.path.join(model_dir, 'silero_vad.jit'))
|
||||||
utils = (get_speech_timestamps,
|
utils = (get_speech_timestamps,
|
||||||
save_audio,
|
save_audio,
|
||||||
read_audio,
|
read_audio,
|
||||||
@@ -27,52 +47,3 @@ def silero_vad(**kwargs):
|
|||||||
collect_chunks)
|
collect_chunks)
|
||||||
|
|
||||||
return model, utils
|
return model, utils
|
||||||
|
|
||||||
|
|
||||||
def silero_number_detector(**kwargs):
|
|
||||||
"""Silero Number Detector
|
|
||||||
Returns a model with a set of utils
|
|
||||||
Please see https://github.com/snakers4/silero-vad for usage examples
|
|
||||||
"""
|
|
||||||
hub_dir = torch.hub.get_dir()
|
|
||||||
model = init_jit_model(model_path=f'{hub_dir}/snakers4_silero-vad_master/files/number_detector.jit')
|
|
||||||
utils = (get_number_ts,
|
|
||||||
save_audio,
|
|
||||||
read_audio,
|
|
||||||
collect_chunks,
|
|
||||||
drop_chunks)
|
|
||||||
|
|
||||||
return model, utils
|
|
||||||
|
|
||||||
|
|
||||||
def silero_lang_detector(**kwargs):
|
|
||||||
"""Silero Language Classifier
|
|
||||||
Returns a model with a set of utils
|
|
||||||
Please see https://github.com/snakers4/silero-vad for usage examples
|
|
||||||
"""
|
|
||||||
hub_dir = torch.hub.get_dir()
|
|
||||||
model = init_jit_model(model_path=f'{hub_dir}/snakers4_silero-vad_master/files/number_detector.jit')
|
|
||||||
utils = (get_language,
|
|
||||||
read_audio)
|
|
||||||
|
|
||||||
return model, utils
|
|
||||||
|
|
||||||
|
|
||||||
def silero_lang_detector_95(**kwargs):
|
|
||||||
"""Silero Language Classifier (95 languages)
|
|
||||||
Returns a model with a set of utils
|
|
||||||
Please see https://github.com/snakers4/silero-vad for usage examples
|
|
||||||
"""
|
|
||||||
|
|
||||||
hub_dir = torch.hub.get_dir()
|
|
||||||
model = init_jit_model(model_path=f'{hub_dir}/snakers4_silero-vad_master/files/lang_classifier_95.jit')
|
|
||||||
|
|
||||||
with open(f'{hub_dir}/snakers4_silero-vad_master/files/lang_dict_95.json', 'r') as f:
|
|
||||||
lang_dict = json.load(f)
|
|
||||||
|
|
||||||
with open(f'{hub_dir}/snakers4_silero-vad_master/files/lang_group_dict_95.json', 'r') as f:
|
|
||||||
lang_group_dict = json.load(f)
|
|
||||||
|
|
||||||
utils = (get_language_and_group, read_audio)
|
|
||||||
|
|
||||||
return model, lang_dict, lang_group_dict, utils
|
|
||||||
|
|||||||
35
pyproject.toml
Normal file
35
pyproject.toml
Normal file
@@ -0,0 +1,35 @@
|
|||||||
|
[build-system]
|
||||||
|
requires = ["hatchling"]
|
||||||
|
build-backend = "hatchling.build"
|
||||||
|
[project]
|
||||||
|
name = "silero-vad"
|
||||||
|
version = "5.0.1b3"
|
||||||
|
authors = [
|
||||||
|
{name="Silero Team", email="hello@silero.ai"},
|
||||||
|
]
|
||||||
|
description = "Voice Activity Detector (VAD) by Silero"
|
||||||
|
readme = "README.md"
|
||||||
|
requires-python = ">=3.8"
|
||||||
|
classifiers = [
|
||||||
|
"Development Status :: 5 - Production/Stable",
|
||||||
|
"License :: OSI Approved :: MIT License",
|
||||||
|
"Operating System :: OS Independent",
|
||||||
|
"Intended Audience :: Science/Research",
|
||||||
|
"Intended Audience :: Developers",
|
||||||
|
"Programming Language :: Python :: 3.8",
|
||||||
|
"Programming Language :: Python :: 3.9",
|
||||||
|
"Programming Language :: Python :: 3.10",
|
||||||
|
"Programming Language :: Python :: 3.11",
|
||||||
|
"Programming Language :: Python :: 3.12",
|
||||||
|
"Topic :: Scientific/Engineering :: Artificial Intelligence",
|
||||||
|
"Topic :: Scientific/Engineering",
|
||||||
|
]
|
||||||
|
dependencies = [
|
||||||
|
"torch>=1.12.0",
|
||||||
|
"torchaudio>=0.12.0",
|
||||||
|
"onnxruntime>=1.18.0",
|
||||||
|
]
|
||||||
|
|
||||||
|
[project.urls]
|
||||||
|
Homepage = "https://github.com/snakers4/silero-vad"
|
||||||
|
Issues = "https://github.com/snakers4/silero-vad/issues"
|
||||||
570
silero-vad.ipynb
570
silero-vad.ipynb
@@ -1,23 +1,5 @@
|
|||||||
{
|
{
|
||||||
"cells": [
|
"cells": [
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {
|
|
||||||
"id": "sVNOuHQQjsrp"
|
|
||||||
},
|
|
||||||
"source": [
|
|
||||||
"# PyTorch Examples"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {
|
|
||||||
"id": "FpMplOCA2Fwp"
|
|
||||||
},
|
|
||||||
"source": [
|
|
||||||
"## VAD"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {
|
"metadata": {
|
||||||
@@ -25,7 +7,7 @@
|
|||||||
"id": "62A6F_072Fwq"
|
"id": "62A6F_072Fwq"
|
||||||
},
|
},
|
||||||
"source": [
|
"source": [
|
||||||
"### Install Dependencies"
|
"## Install Dependencies"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -42,26 +24,39 @@
|
|||||||
"# this assumes that you have a relevant version of PyTorch installed\n",
|
"# this assumes that you have a relevant version of PyTorch installed\n",
|
||||||
"!pip install -q torchaudio\n",
|
"!pip install -q torchaudio\n",
|
||||||
"\n",
|
"\n",
|
||||||
"SAMPLE_RATE = 16000\n",
|
"SAMPLING_RATE = 16000\n",
|
||||||
"\n",
|
"\n",
|
||||||
"import glob\n",
|
|
||||||
"import torch\n",
|
"import torch\n",
|
||||||
"torch.set_num_threads(1)\n",
|
"torch.set_num_threads(1)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"from IPython.display import Audio\n",
|
"from IPython.display import Audio\n",
|
||||||
"from pprint import pprint\n",
|
"from pprint import pprint\n",
|
||||||
|
"# download example\n",
|
||||||
|
"torch.hub.download_url_to_file('https://models.silero.ai/vad_models/en.wav', 'en_example.wav')"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"id": "pSifus5IilRp"
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"USE_ONNX = False # change this to True if you want to test onnx model\n",
|
||||||
|
"if USE_ONNX:\n",
|
||||||
|
" !pip install -q onnxruntime\n",
|
||||||
"\n",
|
"\n",
|
||||||
"model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
|
"model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
|
||||||
" model='silero_vad',\n",
|
" model='silero_vad',\n",
|
||||||
" force_reload=True)\n",
|
" force_reload=True,\n",
|
||||||
|
" onnx=USE_ONNX)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"(get_speech_timestamps,\n",
|
"(get_speech_timestamps,\n",
|
||||||
" save_audio,\n",
|
" save_audio,\n",
|
||||||
" read_audio,\n",
|
" read_audio,\n",
|
||||||
" VADIterator,\n",
|
" VADIterator,\n",
|
||||||
" collect_chunks) = utils\n",
|
" collect_chunks) = utils"
|
||||||
"\n",
|
|
||||||
"files_dir = torch.hub.get_dir() + '/snakers4_silero-vad_master/files'"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -70,16 +65,7 @@
|
|||||||
"id": "fXbbaUO3jsrw"
|
"id": "fXbbaUO3jsrw"
|
||||||
},
|
},
|
||||||
"source": [
|
"source": [
|
||||||
"### Full Audio"
|
"## Speech timestapms from full audio"
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {
|
|
||||||
"id": "RAfJPb_a-Auj"
|
|
||||||
},
|
|
||||||
"source": [
|
|
||||||
"**Speech timestapms from full audio**"
|
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -90,9 +76,9 @@
|
|||||||
},
|
},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
"wav = read_audio(f'{files_dir}/en.wav', sampling_rate=SAMPLE_RATE)\n",
|
"wav = read_audio('en_example.wav', sampling_rate=SAMPLING_RATE)\n",
|
||||||
"# get speech timestamps from full audio file\n",
|
"# get speech timestamps from full audio file\n",
|
||||||
"speech_timestamps = get_speech_timestamps(wav, model, sampling_rate=SAMPLE_RATE)\n",
|
"speech_timestamps = get_speech_timestamps(wav, model, sampling_rate=SAMPLING_RATE)\n",
|
||||||
"pprint(speech_timestamps)"
|
"pprint(speech_timestamps)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
@@ -106,17 +92,40 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"# merge all speech chunks to one audio\n",
|
"# merge all speech chunks to one audio\n",
|
||||||
"save_audio('only_speech.wav',\n",
|
"save_audio('only_speech.wav',\n",
|
||||||
" collect_chunks(speech_timestamps, wav), sampling_rate=16000) \n",
|
" collect_chunks(speech_timestamps, wav), sampling_rate=SAMPLING_RATE)\n",
|
||||||
"Audio('only_speech.wav')"
|
"Audio('only_speech.wav')"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"id": "zeO1xCqxUC6w"
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## Entire audio inference"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {
|
||||||
|
"id": "LjZBcsaTT7Mk"
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"wav = read_audio('en_example.wav', sampling_rate=SAMPLING_RATE)\n",
|
||||||
|
"# audio is being splitted into 31.25 ms long pieces\n",
|
||||||
|
"# so output length equals ceil(input_length * 31.25 / SAMPLING_RATE)\n",
|
||||||
|
"predicts = model.audio_forward(wav, sr=SAMPLING_RATE)"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "markdown",
|
"cell_type": "markdown",
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"id": "iDKQbVr8jsry"
|
"id": "iDKQbVr8jsry"
|
||||||
},
|
},
|
||||||
"source": [
|
"source": [
|
||||||
"### Stream imitation example"
|
"## Stream imitation example"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
@@ -129,12 +138,15 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"## using VADIterator class\n",
|
"## using VADIterator class\n",
|
||||||
"\n",
|
"\n",
|
||||||
"vad_iterator = VADIterator(model)\n",
|
"vad_iterator = VADIterator(model, sampling_rate=SAMPLING_RATE)\n",
|
||||||
"wav = read_audio(f'{files_dir}/en.wav', sampling_rate=SAMPLE_RATE)\n",
|
"wav = read_audio(f'en_example.wav', sampling_rate=SAMPLING_RATE)\n",
|
||||||
"\n",
|
"\n",
|
||||||
"window_size_samples = 1536 # number of samples in a single audio chunk\n",
|
"window_size_samples = 512 if SAMPLING_RATE == 16000 else 256\n",
|
||||||
"for i in range(0, len(wav), window_size_samples):\n",
|
"for i in range(0, len(wav), window_size_samples):\n",
|
||||||
" speech_dict = vad_iterator(wav[i: i+ window_size_samples], return_seconds=True)\n",
|
" chunk = wav[i: i+ window_size_samples]\n",
|
||||||
|
" if len(chunk) < window_size_samples:\n",
|
||||||
|
" break\n",
|
||||||
|
" speech_dict = vad_iterator(chunk, return_seconds=True)\n",
|
||||||
" if speech_dict:\n",
|
" if speech_dict:\n",
|
||||||
" print(speech_dict, end=' ')\n",
|
" print(speech_dict, end=' ')\n",
|
||||||
"vad_iterator.reset_states() # reset model states after each audio"
|
"vad_iterator.reset_states() # reset model states after each audio"
|
||||||
@@ -150,474 +162,18 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"## just probabilities\n",
|
"## just probabilities\n",
|
||||||
"\n",
|
"\n",
|
||||||
"wav = read_audio(f'{files_dir}/en.wav', sampling_rate=SAMPLE_RATE)\n",
|
"wav = read_audio('en_example.wav', sampling_rate=SAMPLING_RATE)\n",
|
||||||
"speech_probs = []\n",
|
"speech_probs = []\n",
|
||||||
"window_size_samples = 1536\n",
|
"window_size_samples = 512 if SAMPLING_RATE == 16000 else 256\n",
|
||||||
"for i in range(0, len(wav), window_size_samples):\n",
|
"for i in range(0, len(wav), window_size_samples):\n",
|
||||||
" speech_prob = model(wav[i: i+ window_size_samples], SAMPLE_RATE).item()\n",
|
" chunk = wav[i: i+ window_size_samples]\n",
|
||||||
|
" if len(chunk) < window_size_samples:\n",
|
||||||
|
" break\n",
|
||||||
|
" speech_prob = model(chunk, SAMPLING_RATE).item()\n",
|
||||||
" speech_probs.append(speech_prob)\n",
|
" speech_probs.append(speech_prob)\n",
|
||||||
|
"vad_iterator.reset_states() # reset model states after each audio\n",
|
||||||
"\n",
|
"\n",
|
||||||
"pprint(speech_probs[:100])"
|
"print(speech_probs[:10]) # first 10 chunks predicts"
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {
|
|
||||||
"heading_collapsed": true,
|
|
||||||
"id": "36jY0niD2Fww"
|
|
||||||
},
|
|
||||||
"source": [
|
|
||||||
"## Number detector"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {
|
|
||||||
"heading_collapsed": true,
|
|
||||||
"hidden": true,
|
|
||||||
"id": "scd1DlS42Fwx"
|
|
||||||
},
|
|
||||||
"source": [
|
|
||||||
"### Install Dependencies"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"hidden": true,
|
|
||||||
"id": "Kq5gQuYq2Fwx"
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"#@title Install and Import Dependencies\n",
|
|
||||||
"\n",
|
|
||||||
"# this assumes that you have a relevant version of PyTorch installed\n",
|
|
||||||
"!pip install -q torchaudio soundfile\n",
|
|
||||||
"\n",
|
|
||||||
"import glob\n",
|
|
||||||
"import torch\n",
|
|
||||||
"torch.set_num_threads(1)\n",
|
|
||||||
"\n",
|
|
||||||
"from IPython.display import Audio\n",
|
|
||||||
"from pprint import pprint\n",
|
|
||||||
"\n",
|
|
||||||
"model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
|
|
||||||
" model='silero_number_detector',\n",
|
|
||||||
" force_reload=True)\n",
|
|
||||||
"\n",
|
|
||||||
"(get_number_ts,\n",
|
|
||||||
" save_audio,\n",
|
|
||||||
" read_audio,\n",
|
|
||||||
" collect_chunks,\n",
|
|
||||||
" drop_chunks) = utils\n",
|
|
||||||
"\n",
|
|
||||||
"files_dir = torch.hub.get_dir() + '/snakers4_silero-vad_master/files'"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {
|
|
||||||
"heading_collapsed": true,
|
|
||||||
"hidden": true,
|
|
||||||
"id": "qhPa30ij2Fwy"
|
|
||||||
},
|
|
||||||
"source": [
|
|
||||||
"### Full audio"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"hidden": true,
|
|
||||||
"id": "EXpau6xq2Fwy"
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"wav = read_audio(f'{files_dir}/en_num.wav')\n",
|
|
||||||
"# get number timestamps from full audio file\n",
|
|
||||||
"number_timestamps = get_number_ts(wav, model)\n",
|
|
||||||
"pprint(number_timestamps)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"hidden": true,
|
|
||||||
"id": "u-KfXRhZ2Fwy"
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"sample_rate = 16000\n",
|
|
||||||
"# convert ms in timestamps to samples\n",
|
|
||||||
"for timestamp in number_timestamps:\n",
|
|
||||||
" timestamp['start'] = int(timestamp['start'] * sample_rate / 1000)\n",
|
|
||||||
" timestamp['end'] = int(timestamp['end'] * sample_rate / 1000)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"hidden": true,
|
|
||||||
"id": "iwYEC4aZ2Fwy"
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# merge all number chunks to one audio\n",
|
|
||||||
"save_audio('only_numbers.wav',\n",
|
|
||||||
" collect_chunks(number_timestamps, wav), sample_rate) \n",
|
|
||||||
"Audio('only_numbers.wav')"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"hidden": true,
|
|
||||||
"id": "fHaYejX12Fwy"
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# drop all number chunks from audio\n",
|
|
||||||
"save_audio('no_numbers.wav',\n",
|
|
||||||
" drop_chunks(number_timestamps, wav), sample_rate) \n",
|
|
||||||
"Audio('no_numbers.wav')"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {
|
|
||||||
"heading_collapsed": true,
|
|
||||||
"id": "PnKtJKbq2Fwz"
|
|
||||||
},
|
|
||||||
"source": [
|
|
||||||
"## Language detector"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {
|
|
||||||
"heading_collapsed": true,
|
|
||||||
"hidden": true,
|
|
||||||
"id": "F5cAmMbP2Fwz"
|
|
||||||
},
|
|
||||||
"source": [
|
|
||||||
"### Install Dependencies"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"hidden": true,
|
|
||||||
"id": "Zu9D0t6n2Fwz"
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"#@title Install and Import Dependencies\n",
|
|
||||||
"\n",
|
|
||||||
"# this assumes that you have a relevant version of PyTorch installed\n",
|
|
||||||
"!pip install -q torchaudio soundfile\n",
|
|
||||||
"\n",
|
|
||||||
"import glob\n",
|
|
||||||
"import torch\n",
|
|
||||||
"torch.set_num_threads(1)\n",
|
|
||||||
"\n",
|
|
||||||
"from IPython.display import Audio\n",
|
|
||||||
"from pprint import pprint\n",
|
|
||||||
"\n",
|
|
||||||
"model, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
|
|
||||||
" model='silero_lang_detector',\n",
|
|
||||||
" force_reload=True)\n",
|
|
||||||
"\n",
|
|
||||||
"(get_language,\n",
|
|
||||||
" read_audio) = utils\n",
|
|
||||||
"\n",
|
|
||||||
"files_dir = torch.hub.get_dir() + '/snakers4_silero-vad_master/files'"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {
|
|
||||||
"heading_collapsed": true,
|
|
||||||
"hidden": true,
|
|
||||||
"id": "iC696eMX2Fwz"
|
|
||||||
},
|
|
||||||
"source": [
|
|
||||||
"### Full audio"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"hidden": true,
|
|
||||||
"id": "c8UYnYBF2Fw0"
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"wav = read_audio(f'{files_dir}/en.wav')\n",
|
|
||||||
"lang = get_language(wav, model)\n",
|
|
||||||
"print(lang)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {
|
|
||||||
"id": "57avIBd6jsrz"
|
|
||||||
},
|
|
||||||
"source": [
|
|
||||||
"# ONNX Example"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {
|
|
||||||
"id": "hEhnfORV2Fw0"
|
|
||||||
},
|
|
||||||
"source": [
|
|
||||||
"## VAD"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {
|
|
||||||
"id": "Cy7y-NAyALSe"
|
|
||||||
},
|
|
||||||
"source": [
|
|
||||||
"**TO BE DONE**"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {
|
|
||||||
"heading_collapsed": true,
|
|
||||||
"id": "7QMvUvpg2Fw4"
|
|
||||||
},
|
|
||||||
"source": [
|
|
||||||
"## Number detector"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {
|
|
||||||
"heading_collapsed": true,
|
|
||||||
"hidden": true,
|
|
||||||
"id": "tBPDkpHr2Fw4"
|
|
||||||
},
|
|
||||||
"source": [
|
|
||||||
"### Install Dependencies"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"cellView": "form",
|
|
||||||
"hidden": true,
|
|
||||||
"id": "PdjGd56R2Fw5"
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"#@title Install and Import Dependencies\n",
|
|
||||||
"\n",
|
|
||||||
"# this assumes that you have a relevant version of PyTorch installed\n",
|
|
||||||
"!pip install -q torchaudio soundfile onnxruntime\n",
|
|
||||||
"\n",
|
|
||||||
"import glob\n",
|
|
||||||
"import torch\n",
|
|
||||||
"import onnxruntime\n",
|
|
||||||
"from pprint import pprint\n",
|
|
||||||
"\n",
|
|
||||||
"from IPython.display import Audio\n",
|
|
||||||
"\n",
|
|
||||||
"_, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
|
|
||||||
" model='silero_number_detector',\n",
|
|
||||||
" force_reload=True)\n",
|
|
||||||
"\n",
|
|
||||||
"(get_number_ts,\n",
|
|
||||||
" save_audio,\n",
|
|
||||||
" read_audio,\n",
|
|
||||||
" collect_chunks,\n",
|
|
||||||
" drop_chunks) = utils\n",
|
|
||||||
"\n",
|
|
||||||
"files_dir = torch.hub.get_dir() + '/snakers4_silero-vad_master/files'\n",
|
|
||||||
"\n",
|
|
||||||
"def init_onnx_model(model_path: str):\n",
|
|
||||||
" return onnxruntime.InferenceSession(model_path)\n",
|
|
||||||
"\n",
|
|
||||||
"def validate_onnx(model, inputs):\n",
|
|
||||||
" with torch.no_grad():\n",
|
|
||||||
" ort_inputs = {'input': inputs.cpu().numpy()}\n",
|
|
||||||
" outs = model.run(None, ort_inputs)\n",
|
|
||||||
" outs = [torch.Tensor(x) for x in outs]\n",
|
|
||||||
" return outs"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {
|
|
||||||
"heading_collapsed": true,
|
|
||||||
"hidden": true,
|
|
||||||
"id": "I9QWSFZh2Fw5"
|
|
||||||
},
|
|
||||||
"source": [
|
|
||||||
"### Full Audio"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"hidden": true,
|
|
||||||
"id": "_r6QZiwu2Fw5"
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"model = init_onnx_model(f'{files_dir}/number_detector.onnx')\n",
|
|
||||||
"wav = read_audio(f'{files_dir}/en_num.wav')\n",
|
|
||||||
"\n",
|
|
||||||
"# get number timestamps from full audio file\n",
|
|
||||||
"number_timestamps = get_number_ts(wav, model, run_function=validate_onnx)\n",
|
|
||||||
"pprint(number_timestamps)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"hidden": true,
|
|
||||||
"id": "FN4aDwLV2Fw5"
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"sample_rate = 16000\n",
|
|
||||||
"# convert ms in timestamps to samples\n",
|
|
||||||
"for timestamp in number_timestamps:\n",
|
|
||||||
" timestamp['start'] = int(timestamp['start'] * sample_rate / 1000)\n",
|
|
||||||
" timestamp['end'] = int(timestamp['end'] * sample_rate / 1000)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"hidden": true,
|
|
||||||
"id": "JnvS6WTK2Fw5"
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# merge all number chunks to one audio\n",
|
|
||||||
"save_audio('only_numbers.wav',\n",
|
|
||||||
" collect_chunks(number_timestamps, wav), 16000) \n",
|
|
||||||
"Audio('only_numbers.wav')"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"hidden": true,
|
|
||||||
"id": "yUxOcOFG2Fw6"
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"# drop all number chunks from audio\n",
|
|
||||||
"save_audio('no_numbers.wav',\n",
|
|
||||||
" drop_chunks(number_timestamps, wav), 16000) \n",
|
|
||||||
"Audio('no_numbers.wav')"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {
|
|
||||||
"heading_collapsed": true,
|
|
||||||
"id": "SR8Bgcd52Fw6"
|
|
||||||
},
|
|
||||||
"source": [
|
|
||||||
"## Language detector"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {
|
|
||||||
"heading_collapsed": true,
|
|
||||||
"hidden": true,
|
|
||||||
"id": "PBnXPtKo2Fw6"
|
|
||||||
},
|
|
||||||
"source": [
|
|
||||||
"### Install Dependencies"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"cellView": "form",
|
|
||||||
"hidden": true,
|
|
||||||
"id": "iNkDWJ3H2Fw6"
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"#@title Install and Import Dependencies\n",
|
|
||||||
"\n",
|
|
||||||
"# this assumes that you have a relevant version of PyTorch installed\n",
|
|
||||||
"!pip install -q torchaudio soundfile onnxruntime\n",
|
|
||||||
"\n",
|
|
||||||
"import glob\n",
|
|
||||||
"import torch\n",
|
|
||||||
"import onnxruntime\n",
|
|
||||||
"from pprint import pprint\n",
|
|
||||||
"\n",
|
|
||||||
"from IPython.display import Audio\n",
|
|
||||||
"\n",
|
|
||||||
"_, utils = torch.hub.load(repo_or_dir='snakers4/silero-vad',\n",
|
|
||||||
" model='silero_lang_detector',\n",
|
|
||||||
" force_reload=True)\n",
|
|
||||||
"\n",
|
|
||||||
"(get_language,\n",
|
|
||||||
" read_audio) = utils\n",
|
|
||||||
"\n",
|
|
||||||
"files_dir = torch.hub.get_dir() + '/snakers4_silero-vad_master/files'\n",
|
|
||||||
"\n",
|
|
||||||
"def init_onnx_model(model_path: str):\n",
|
|
||||||
" return onnxruntime.InferenceSession(model_path)\n",
|
|
||||||
"\n",
|
|
||||||
"def validate_onnx(model, inputs):\n",
|
|
||||||
" with torch.no_grad():\n",
|
|
||||||
" ort_inputs = {'input': inputs.cpu().numpy()}\n",
|
|
||||||
" outs = model.run(None, ort_inputs)\n",
|
|
||||||
" outs = [torch.Tensor(x) for x in outs]\n",
|
|
||||||
" return outs"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {
|
|
||||||
"hidden": true,
|
|
||||||
"id": "G8N8oP4q2Fw6"
|
|
||||||
},
|
|
||||||
"source": [
|
|
||||||
"### Full Audio"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {
|
|
||||||
"hidden": true,
|
|
||||||
"id": "WHXnh9IV2Fw6"
|
|
||||||
},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"model = init_onnx_model(f'{files_dir}/number_detector.onnx')\n",
|
|
||||||
"wav = read_audio(f'{files_dir}/en.wav')\n",
|
|
||||||
"\n",
|
|
||||||
"lang = get_language(wav, model, run_function=validate_onnx)\n",
|
|
||||||
"print(lang)"
|
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
],
|
],
|
||||||
|
|||||||
12
src/silero_vad/__init__.py
Normal file
12
src/silero_vad/__init__.py
Normal file
@@ -0,0 +1,12 @@
|
|||||||
|
from importlib.metadata import version
|
||||||
|
try:
|
||||||
|
__version__ = version(__name__)
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
from silero_vad.model import load_silero_vad
|
||||||
|
from silero_vad.utils_vad import (get_speech_timestamps,
|
||||||
|
save_audio,
|
||||||
|
read_audio,
|
||||||
|
VADIterator,
|
||||||
|
collect_chunks)
|
||||||
0
src/silero_vad/data/__init__.py
Normal file
0
src/silero_vad/data/__init__.py
Normal file
BIN
src/silero_vad/data/silero_vad.jit
Normal file
BIN
src/silero_vad/data/silero_vad.jit
Normal file
Binary file not shown.
BIN
src/silero_vad/data/silero_vad.onnx
Normal file
BIN
src/silero_vad/data/silero_vad.onnx
Normal file
Binary file not shown.
25
src/silero_vad/model.py
Normal file
25
src/silero_vad/model.py
Normal file
@@ -0,0 +1,25 @@
|
|||||||
|
from .utils_vad import init_jit_model, OnnxWrapper
|
||||||
|
import torch
|
||||||
|
torch.set_num_threads(1)
|
||||||
|
|
||||||
|
def load_silero_vad(onnx=False):
|
||||||
|
model_name = 'silero_vad.onnx' if onnx else 'silero_vad.jit'
|
||||||
|
package_path = "silero_vad.data"
|
||||||
|
|
||||||
|
try:
|
||||||
|
import importlib_resources as impresources
|
||||||
|
model_file_path = str(impresources.files(package_path).joinpath(model_name))
|
||||||
|
except:
|
||||||
|
from importlib import resources as impresources
|
||||||
|
try:
|
||||||
|
with impresources.path(package_path, model_name) as f:
|
||||||
|
model_file_path = f
|
||||||
|
except:
|
||||||
|
model_file_path = str(impresources.files(package_path).joinpath(model_name))
|
||||||
|
|
||||||
|
if onnx:
|
||||||
|
model = OnnxWrapper(model_file_path, force_onnx_cpu=True)
|
||||||
|
else:
|
||||||
|
model = init_jit_model(model_file_path)
|
||||||
|
|
||||||
|
return model
|
||||||
489
src/silero_vad/utils_vad.py
Normal file
489
src/silero_vad/utils_vad.py
Normal file
@@ -0,0 +1,489 @@
|
|||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from typing import Callable, List
|
||||||
|
import warnings
|
||||||
|
|
||||||
|
languages = ['ru', 'en', 'de', 'es']
|
||||||
|
|
||||||
|
|
||||||
|
class OnnxWrapper():
|
||||||
|
|
||||||
|
def __init__(self, path, force_onnx_cpu=False):
|
||||||
|
import numpy as np
|
||||||
|
global np
|
||||||
|
import onnxruntime
|
||||||
|
|
||||||
|
opts = onnxruntime.SessionOptions()
|
||||||
|
opts.inter_op_num_threads = 1
|
||||||
|
opts.intra_op_num_threads = 1
|
||||||
|
|
||||||
|
if force_onnx_cpu and 'CPUExecutionProvider' in onnxruntime.get_available_providers():
|
||||||
|
self.session = onnxruntime.InferenceSession(path, providers=['CPUExecutionProvider'], sess_options=opts)
|
||||||
|
else:
|
||||||
|
self.session = onnxruntime.InferenceSession(path, sess_options=opts)
|
||||||
|
|
||||||
|
self.reset_states()
|
||||||
|
self.sample_rates = [8000, 16000]
|
||||||
|
|
||||||
|
def _validate_input(self, x, sr: int):
|
||||||
|
if x.dim() == 1:
|
||||||
|
x = x.unsqueeze(0)
|
||||||
|
if x.dim() > 2:
|
||||||
|
raise ValueError(f"Too many dimensions for input audio chunk {x.dim()}")
|
||||||
|
|
||||||
|
if sr != 16000 and (sr % 16000 == 0):
|
||||||
|
step = sr // 16000
|
||||||
|
x = x[:,::step]
|
||||||
|
sr = 16000
|
||||||
|
|
||||||
|
if sr not in self.sample_rates:
|
||||||
|
raise ValueError(f"Supported sampling rates: {self.sample_rates} (or multiply of 16000)")
|
||||||
|
if sr / x.shape[1] > 31.25:
|
||||||
|
raise ValueError("Input audio chunk is too short")
|
||||||
|
|
||||||
|
return x, sr
|
||||||
|
|
||||||
|
def reset_states(self, batch_size=1):
|
||||||
|
self._state = torch.zeros((2, batch_size, 128)).float()
|
||||||
|
self._context = torch.zeros(0)
|
||||||
|
self._last_sr = 0
|
||||||
|
self._last_batch_size = 0
|
||||||
|
|
||||||
|
def __call__(self, x, sr: int):
|
||||||
|
|
||||||
|
x, sr = self._validate_input(x, sr)
|
||||||
|
num_samples = 512 if sr == 16000 else 256
|
||||||
|
|
||||||
|
if x.shape[-1] != num_samples:
|
||||||
|
raise ValueError(f"Provided number of samples is {x.shape[-1]} (Supported values: 256 for 8000 sample rate, 512 for 16000)")
|
||||||
|
|
||||||
|
batch_size = x.shape[0]
|
||||||
|
context_size = 64 if sr == 16000 else 32
|
||||||
|
|
||||||
|
if not self._last_batch_size:
|
||||||
|
self.reset_states(batch_size)
|
||||||
|
if (self._last_sr) and (self._last_sr != sr):
|
||||||
|
self.reset_states(batch_size)
|
||||||
|
if (self._last_batch_size) and (self._last_batch_size != batch_size):
|
||||||
|
self.reset_states(batch_size)
|
||||||
|
|
||||||
|
if not len(self._context):
|
||||||
|
self._context = torch.zeros(batch_size, context_size)
|
||||||
|
|
||||||
|
x = torch.cat([self._context, x], dim=1)
|
||||||
|
if sr in [8000, 16000]:
|
||||||
|
ort_inputs = {'input': x.numpy(), 'state': self._state.numpy(), 'sr': np.array(sr, dtype='int64')}
|
||||||
|
ort_outs = self.session.run(None, ort_inputs)
|
||||||
|
out, state = ort_outs
|
||||||
|
self._state = torch.from_numpy(state)
|
||||||
|
else:
|
||||||
|
raise ValueError()
|
||||||
|
|
||||||
|
self._context = x[..., -context_size:]
|
||||||
|
self._last_sr = sr
|
||||||
|
self._last_batch_size = batch_size
|
||||||
|
|
||||||
|
out = torch.from_numpy(out)
|
||||||
|
return out
|
||||||
|
|
||||||
|
def audio_forward(self, x, sr: int):
|
||||||
|
outs = []
|
||||||
|
x, sr = self._validate_input(x, sr)
|
||||||
|
self.reset_states()
|
||||||
|
num_samples = 512 if sr == 16000 else 256
|
||||||
|
|
||||||
|
if x.shape[1] % num_samples:
|
||||||
|
pad_num = num_samples - (x.shape[1] % num_samples)
|
||||||
|
x = torch.nn.functional.pad(x, (0, pad_num), 'constant', value=0.0)
|
||||||
|
|
||||||
|
for i in range(0, x.shape[1], num_samples):
|
||||||
|
wavs_batch = x[:, i:i+num_samples]
|
||||||
|
out_chunk = self.__call__(wavs_batch, sr)
|
||||||
|
outs.append(out_chunk)
|
||||||
|
|
||||||
|
stacked = torch.cat(outs, dim=1)
|
||||||
|
return stacked.cpu()
|
||||||
|
|
||||||
|
|
||||||
|
class Validator():
|
||||||
|
def __init__(self, url, force_onnx_cpu):
|
||||||
|
self.onnx = True if url.endswith('.onnx') else False
|
||||||
|
torch.hub.download_url_to_file(url, 'inf.model')
|
||||||
|
if self.onnx:
|
||||||
|
import onnxruntime
|
||||||
|
if force_onnx_cpu and 'CPUExecutionProvider' in onnxruntime.get_available_providers():
|
||||||
|
self.model = onnxruntime.InferenceSession('inf.model', providers=['CPUExecutionProvider'])
|
||||||
|
else:
|
||||||
|
self.model = onnxruntime.InferenceSession('inf.model')
|
||||||
|
else:
|
||||||
|
self.model = init_jit_model(model_path='inf.model')
|
||||||
|
|
||||||
|
def __call__(self, inputs: torch.Tensor):
|
||||||
|
with torch.no_grad():
|
||||||
|
if self.onnx:
|
||||||
|
ort_inputs = {'input': inputs.cpu().numpy()}
|
||||||
|
outs = self.model.run(None, ort_inputs)
|
||||||
|
outs = [torch.Tensor(x) for x in outs]
|
||||||
|
else:
|
||||||
|
outs = self.model(inputs)
|
||||||
|
|
||||||
|
return outs
|
||||||
|
|
||||||
|
|
||||||
|
def read_audio(path: str,
|
||||||
|
sampling_rate: int = 16000):
|
||||||
|
list_backends = torchaudio.list_audio_backends()
|
||||||
|
|
||||||
|
assert len(list_backends) > 0, 'The list of available backends is empty, please install backend manually. \
|
||||||
|
\n Recommendations: \n \tSox (UNIX OS) \n \tSoundfile (Windows OS, UNIX OS) \n \tffmpeg (Windows OS, UNIX OS)'
|
||||||
|
|
||||||
|
try:
|
||||||
|
effects = [
|
||||||
|
['channels', '1'],
|
||||||
|
['rate', str(sampling_rate)]
|
||||||
|
]
|
||||||
|
|
||||||
|
wav, sr = torchaudio.sox_effects.apply_effects_file(path, effects=effects)
|
||||||
|
except:
|
||||||
|
wav, sr = torchaudio.load(path)
|
||||||
|
|
||||||
|
if wav.size(0) > 1:
|
||||||
|
wav = wav.mean(dim=0, keepdim=True)
|
||||||
|
|
||||||
|
if sr != sampling_rate:
|
||||||
|
transform = torchaudio.transforms.Resample(orig_freq=sr,
|
||||||
|
new_freq=sampling_rate)
|
||||||
|
wav = transform(wav)
|
||||||
|
sr = sampling_rate
|
||||||
|
|
||||||
|
assert sr == sampling_rate
|
||||||
|
return wav.squeeze(0)
|
||||||
|
|
||||||
|
|
||||||
|
def save_audio(path: str,
|
||||||
|
tensor: torch.Tensor,
|
||||||
|
sampling_rate: int = 16000):
|
||||||
|
torchaudio.save(path, tensor.unsqueeze(0), sampling_rate, bits_per_sample=16)
|
||||||
|
|
||||||
|
|
||||||
|
def init_jit_model(model_path: str,
|
||||||
|
device=torch.device('cpu')):
|
||||||
|
model = torch.jit.load(model_path, map_location=device)
|
||||||
|
model.eval()
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def make_visualization(probs, step):
|
||||||
|
import pandas as pd
|
||||||
|
pd.DataFrame({'probs': probs},
|
||||||
|
index=[x * step for x in range(len(probs))]).plot(figsize=(16, 8),
|
||||||
|
kind='area', ylim=[0, 1.05], xlim=[0, len(probs) * step],
|
||||||
|
xlabel='seconds',
|
||||||
|
ylabel='speech probability',
|
||||||
|
colormap='tab20')
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def get_speech_timestamps(audio: torch.Tensor,
|
||||||
|
model,
|
||||||
|
threshold: float = 0.5,
|
||||||
|
sampling_rate: int = 16000,
|
||||||
|
min_speech_duration_ms: int = 250,
|
||||||
|
max_speech_duration_s: float = float('inf'),
|
||||||
|
min_silence_duration_ms: int = 100,
|
||||||
|
speech_pad_ms: int = 30,
|
||||||
|
return_seconds: bool = False,
|
||||||
|
visualize_probs: bool = False,
|
||||||
|
progress_tracking_callback: Callable[[float], None] = None,
|
||||||
|
window_size_samples: int = 512,):
|
||||||
|
|
||||||
|
"""
|
||||||
|
This method is used for splitting long audios into speech chunks using silero VAD
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
audio: torch.Tensor, one dimensional
|
||||||
|
One dimensional float torch.Tensor, other types are casted to torch if possible
|
||||||
|
|
||||||
|
model: preloaded .jit/.onnx silero VAD model
|
||||||
|
|
||||||
|
threshold: float (default - 0.5)
|
||||||
|
Speech threshold. Silero VAD outputs speech probabilities for each audio chunk, probabilities ABOVE this value are considered as SPEECH.
|
||||||
|
It is better to tune this parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets.
|
||||||
|
|
||||||
|
sampling_rate: int (default - 16000)
|
||||||
|
Currently silero VAD models support 8000 and 16000 (or multiply of 16000) sample rates
|
||||||
|
|
||||||
|
min_speech_duration_ms: int (default - 250 milliseconds)
|
||||||
|
Final speech chunks shorter min_speech_duration_ms are thrown out
|
||||||
|
|
||||||
|
max_speech_duration_s: int (default - inf)
|
||||||
|
Maximum duration of speech chunks in seconds
|
||||||
|
Chunks longer than max_speech_duration_s will be split at the timestamp of the last silence that lasts more than 100ms (if any), to prevent agressive cutting.
|
||||||
|
Otherwise, they will be split aggressively just before max_speech_duration_s.
|
||||||
|
|
||||||
|
min_silence_duration_ms: int (default - 100 milliseconds)
|
||||||
|
In the end of each speech chunk wait for min_silence_duration_ms before separating it
|
||||||
|
|
||||||
|
speech_pad_ms: int (default - 30 milliseconds)
|
||||||
|
Final speech chunks are padded by speech_pad_ms each side
|
||||||
|
|
||||||
|
return_seconds: bool (default - False)
|
||||||
|
whether return timestamps in seconds (default - samples)
|
||||||
|
|
||||||
|
visualize_probs: bool (default - False)
|
||||||
|
whether draw prob hist or not
|
||||||
|
|
||||||
|
progress_tracking_callback: Callable[[float], None] (default - None)
|
||||||
|
callback function taking progress in percents as an argument
|
||||||
|
|
||||||
|
window_size_samples: int (default - 512 samples)
|
||||||
|
!!! DEPRECATED, DOES NOTHING !!!
|
||||||
|
|
||||||
|
Returns
|
||||||
|
----------
|
||||||
|
speeches: list of dicts
|
||||||
|
list containing ends and beginnings of speech chunks (samples or seconds based on return_seconds)
|
||||||
|
"""
|
||||||
|
|
||||||
|
if not torch.is_tensor(audio):
|
||||||
|
try:
|
||||||
|
audio = torch.Tensor(audio)
|
||||||
|
except:
|
||||||
|
raise TypeError("Audio cannot be casted to tensor. Cast it manually")
|
||||||
|
|
||||||
|
if len(audio.shape) > 1:
|
||||||
|
for i in range(len(audio.shape)): # trying to squeeze empty dimensions
|
||||||
|
audio = audio.squeeze(0)
|
||||||
|
if len(audio.shape) > 1:
|
||||||
|
raise ValueError("More than one dimension in audio. Are you trying to process audio with 2 channels?")
|
||||||
|
|
||||||
|
if sampling_rate > 16000 and (sampling_rate % 16000 == 0):
|
||||||
|
step = sampling_rate // 16000
|
||||||
|
sampling_rate = 16000
|
||||||
|
audio = audio[::step]
|
||||||
|
warnings.warn('Sampling rate is a multiply of 16000, casting to 16000 manually!')
|
||||||
|
else:
|
||||||
|
step = 1
|
||||||
|
|
||||||
|
if sampling_rate not in [8000, 16000]:
|
||||||
|
raise ValueError("Currently silero VAD models support 8000 and 16000 (or multiply of 16000) sample rates")
|
||||||
|
|
||||||
|
window_size_samples = 512 if sampling_rate == 16000 else 256
|
||||||
|
|
||||||
|
model.reset_states()
|
||||||
|
min_speech_samples = sampling_rate * min_speech_duration_ms / 1000
|
||||||
|
speech_pad_samples = sampling_rate * speech_pad_ms / 1000
|
||||||
|
max_speech_samples = sampling_rate * max_speech_duration_s - window_size_samples - 2 * speech_pad_samples
|
||||||
|
min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
|
||||||
|
min_silence_samples_at_max_speech = sampling_rate * 98 / 1000
|
||||||
|
|
||||||
|
audio_length_samples = len(audio)
|
||||||
|
|
||||||
|
speech_probs = []
|
||||||
|
for current_start_sample in range(0, audio_length_samples, window_size_samples):
|
||||||
|
chunk = audio[current_start_sample: current_start_sample + window_size_samples]
|
||||||
|
if len(chunk) < window_size_samples:
|
||||||
|
chunk = torch.nn.functional.pad(chunk, (0, int(window_size_samples - len(chunk))))
|
||||||
|
speech_prob = model(chunk, sampling_rate).item()
|
||||||
|
speech_probs.append(speech_prob)
|
||||||
|
# caculate progress and seng it to callback function
|
||||||
|
progress = current_start_sample + window_size_samples
|
||||||
|
if progress > audio_length_samples:
|
||||||
|
progress = audio_length_samples
|
||||||
|
progress_percent = (progress / audio_length_samples) * 100
|
||||||
|
if progress_tracking_callback:
|
||||||
|
progress_tracking_callback(progress_percent)
|
||||||
|
|
||||||
|
triggered = False
|
||||||
|
speeches = []
|
||||||
|
current_speech = {}
|
||||||
|
neg_threshold = threshold - 0.15
|
||||||
|
temp_end = 0 # to save potential segment end (and tolerate some silence)
|
||||||
|
prev_end = next_start = 0 # to save potential segment limits in case of maximum segment size reached
|
||||||
|
|
||||||
|
for i, speech_prob in enumerate(speech_probs):
|
||||||
|
if (speech_prob >= threshold) and temp_end:
|
||||||
|
temp_end = 0
|
||||||
|
if next_start < prev_end:
|
||||||
|
next_start = window_size_samples * i
|
||||||
|
|
||||||
|
if (speech_prob >= threshold) and not triggered:
|
||||||
|
triggered = True
|
||||||
|
current_speech['start'] = window_size_samples * i
|
||||||
|
continue
|
||||||
|
|
||||||
|
if triggered and (window_size_samples * i) - current_speech['start'] > max_speech_samples:
|
||||||
|
if prev_end:
|
||||||
|
current_speech['end'] = prev_end
|
||||||
|
speeches.append(current_speech)
|
||||||
|
current_speech = {}
|
||||||
|
if next_start < prev_end: # previously reached silence (< neg_thres) and is still not speech (< thres)
|
||||||
|
triggered = False
|
||||||
|
else:
|
||||||
|
current_speech['start'] = next_start
|
||||||
|
prev_end = next_start = temp_end = 0
|
||||||
|
else:
|
||||||
|
current_speech['end'] = window_size_samples * i
|
||||||
|
speeches.append(current_speech)
|
||||||
|
current_speech = {}
|
||||||
|
prev_end = next_start = temp_end = 0
|
||||||
|
triggered = False
|
||||||
|
continue
|
||||||
|
|
||||||
|
if (speech_prob < neg_threshold) and triggered:
|
||||||
|
if not temp_end:
|
||||||
|
temp_end = window_size_samples * i
|
||||||
|
if ((window_size_samples * i) - temp_end) > min_silence_samples_at_max_speech : # condition to avoid cutting in very short silence
|
||||||
|
prev_end = temp_end
|
||||||
|
if (window_size_samples * i) - temp_end < min_silence_samples:
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
current_speech['end'] = temp_end
|
||||||
|
if (current_speech['end'] - current_speech['start']) > min_speech_samples:
|
||||||
|
speeches.append(current_speech)
|
||||||
|
current_speech = {}
|
||||||
|
prev_end = next_start = temp_end = 0
|
||||||
|
triggered = False
|
||||||
|
continue
|
||||||
|
|
||||||
|
if current_speech and (audio_length_samples - current_speech['start']) > min_speech_samples:
|
||||||
|
current_speech['end'] = audio_length_samples
|
||||||
|
speeches.append(current_speech)
|
||||||
|
|
||||||
|
for i, speech in enumerate(speeches):
|
||||||
|
if i == 0:
|
||||||
|
speech['start'] = int(max(0, speech['start'] - speech_pad_samples))
|
||||||
|
if i != len(speeches) - 1:
|
||||||
|
silence_duration = speeches[i+1]['start'] - speech['end']
|
||||||
|
if silence_duration < 2 * speech_pad_samples:
|
||||||
|
speech['end'] += int(silence_duration // 2)
|
||||||
|
speeches[i+1]['start'] = int(max(0, speeches[i+1]['start'] - silence_duration // 2))
|
||||||
|
else:
|
||||||
|
speech['end'] = int(min(audio_length_samples, speech['end'] + speech_pad_samples))
|
||||||
|
speeches[i+1]['start'] = int(max(0, speeches[i+1]['start'] - speech_pad_samples))
|
||||||
|
else:
|
||||||
|
speech['end'] = int(min(audio_length_samples, speech['end'] + speech_pad_samples))
|
||||||
|
|
||||||
|
if return_seconds:
|
||||||
|
for speech_dict in speeches:
|
||||||
|
speech_dict['start'] = round(speech_dict['start'] / sampling_rate, 1)
|
||||||
|
speech_dict['end'] = round(speech_dict['end'] / sampling_rate, 1)
|
||||||
|
elif step > 1:
|
||||||
|
for speech_dict in speeches:
|
||||||
|
speech_dict['start'] *= step
|
||||||
|
speech_dict['end'] *= step
|
||||||
|
|
||||||
|
if visualize_probs:
|
||||||
|
make_visualization(speech_probs, window_size_samples / sampling_rate)
|
||||||
|
|
||||||
|
return speeches
|
||||||
|
|
||||||
|
|
||||||
|
class VADIterator:
|
||||||
|
def __init__(self,
|
||||||
|
model,
|
||||||
|
threshold: float = 0.5,
|
||||||
|
sampling_rate: int = 16000,
|
||||||
|
min_silence_duration_ms: int = 100,
|
||||||
|
speech_pad_ms: int = 30
|
||||||
|
):
|
||||||
|
|
||||||
|
"""
|
||||||
|
Class for stream imitation
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
model: preloaded .jit/.onnx silero VAD model
|
||||||
|
|
||||||
|
threshold: float (default - 0.5)
|
||||||
|
Speech threshold. Silero VAD outputs speech probabilities for each audio chunk, probabilities ABOVE this value are considered as SPEECH.
|
||||||
|
It is better to tune this parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets.
|
||||||
|
|
||||||
|
sampling_rate: int (default - 16000)
|
||||||
|
Currently silero VAD models support 8000 and 16000 sample rates
|
||||||
|
|
||||||
|
min_silence_duration_ms: int (default - 100 milliseconds)
|
||||||
|
In the end of each speech chunk wait for min_silence_duration_ms before separating it
|
||||||
|
|
||||||
|
speech_pad_ms: int (default - 30 milliseconds)
|
||||||
|
Final speech chunks are padded by speech_pad_ms each side
|
||||||
|
"""
|
||||||
|
|
||||||
|
self.model = model
|
||||||
|
self.threshold = threshold
|
||||||
|
self.sampling_rate = sampling_rate
|
||||||
|
|
||||||
|
if sampling_rate not in [8000, 16000]:
|
||||||
|
raise ValueError('VADIterator does not support sampling rates other than [8000, 16000]')
|
||||||
|
|
||||||
|
self.min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
|
||||||
|
self.speech_pad_samples = sampling_rate * speech_pad_ms / 1000
|
||||||
|
self.reset_states()
|
||||||
|
|
||||||
|
def reset_states(self):
|
||||||
|
|
||||||
|
self.model.reset_states()
|
||||||
|
self.triggered = False
|
||||||
|
self.temp_end = 0
|
||||||
|
self.current_sample = 0
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def __call__(self, x, return_seconds=False):
|
||||||
|
"""
|
||||||
|
x: torch.Tensor
|
||||||
|
audio chunk (see examples in repo)
|
||||||
|
|
||||||
|
return_seconds: bool (default - False)
|
||||||
|
whether return timestamps in seconds (default - samples)
|
||||||
|
"""
|
||||||
|
|
||||||
|
if not torch.is_tensor(x):
|
||||||
|
try:
|
||||||
|
x = torch.Tensor(x)
|
||||||
|
except:
|
||||||
|
raise TypeError("Audio cannot be casted to tensor. Cast it manually")
|
||||||
|
|
||||||
|
window_size_samples = len(x[0]) if x.dim() == 2 else len(x)
|
||||||
|
self.current_sample += window_size_samples
|
||||||
|
|
||||||
|
speech_prob = self.model(x, self.sampling_rate).item()
|
||||||
|
|
||||||
|
if (speech_prob >= self.threshold) and self.temp_end:
|
||||||
|
self.temp_end = 0
|
||||||
|
|
||||||
|
if (speech_prob >= self.threshold) and not self.triggered:
|
||||||
|
self.triggered = True
|
||||||
|
speech_start = self.current_sample - self.speech_pad_samples - window_size_samples
|
||||||
|
return {'start': int(speech_start) if not return_seconds else round(speech_start / self.sampling_rate, 1)}
|
||||||
|
|
||||||
|
if (speech_prob < self.threshold - 0.15) and self.triggered:
|
||||||
|
if not self.temp_end:
|
||||||
|
self.temp_end = self.current_sample
|
||||||
|
if self.current_sample - self.temp_end < self.min_silence_samples:
|
||||||
|
return None
|
||||||
|
else:
|
||||||
|
speech_end = self.temp_end + self.speech_pad_samples - window_size_samples
|
||||||
|
self.temp_end = 0
|
||||||
|
self.triggered = False
|
||||||
|
return {'end': int(speech_end) if not return_seconds else round(speech_end / self.sampling_rate, 1)}
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
|
||||||
|
def collect_chunks(tss: List[dict],
|
||||||
|
wav: torch.Tensor):
|
||||||
|
chunks = []
|
||||||
|
for i in tss:
|
||||||
|
chunks.append(wav[i['start']: i['end']])
|
||||||
|
return torch.cat(chunks)
|
||||||
|
|
||||||
|
|
||||||
|
def drop_chunks(tss: List[dict],
|
||||||
|
wav: torch.Tensor):
|
||||||
|
chunks = []
|
||||||
|
cur_start = 0
|
||||||
|
for i in tss:
|
||||||
|
chunks.append((wav[cur_start: i['start']]))
|
||||||
|
cur_start = i['end']
|
||||||
|
return torch.cat(chunks)
|
||||||
368
utils_vad.py
368
utils_vad.py
@@ -1,368 +0,0 @@
|
|||||||
import torch
|
|
||||||
import torchaudio
|
|
||||||
from typing import List
|
|
||||||
import torch.nn.functional as F
|
|
||||||
import warnings
|
|
||||||
|
|
||||||
languages = ['ru', 'en', 'de', 'es']
|
|
||||||
|
|
||||||
|
|
||||||
def validate(model,
|
|
||||||
inputs: torch.Tensor,
|
|
||||||
**kwargs):
|
|
||||||
with torch.no_grad():
|
|
||||||
outs = model(inputs, **kwargs)
|
|
||||||
if len(outs.shape) == 1:
|
|
||||||
return outs[1:]
|
|
||||||
return outs[:, 1] # 0 for noise, 1 for speech
|
|
||||||
|
|
||||||
|
|
||||||
def read_audio(path: str,
|
|
||||||
sampling_rate: int = 16000):
|
|
||||||
|
|
||||||
wav, sr = torchaudio.load(path)
|
|
||||||
|
|
||||||
if wav.size(0) > 1:
|
|
||||||
wav = wav.mean(dim=0, keepdim=True)
|
|
||||||
|
|
||||||
if sr != sampling_rate:
|
|
||||||
transform = torchaudio.transforms.Resample(orig_freq=sr,
|
|
||||||
new_freq=sampling_rate)
|
|
||||||
wav = transform(wav)
|
|
||||||
sr = sampling_rate
|
|
||||||
|
|
||||||
assert sr == sampling_rate
|
|
||||||
return wav.squeeze(0)
|
|
||||||
|
|
||||||
|
|
||||||
def save_audio(path: str,
|
|
||||||
tensor: torch.Tensor,
|
|
||||||
sampling_rate: int = 16000):
|
|
||||||
torchaudio.save(path, tensor.unsqueeze(0), sampling_rate)
|
|
||||||
|
|
||||||
|
|
||||||
def init_jit_model(model_path: str,
|
|
||||||
device=torch.device('cpu')):
|
|
||||||
torch.set_grad_enabled(False)
|
|
||||||
model = torch.jit.load(model_path, map_location=device)
|
|
||||||
model.eval()
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
def make_visualization(probs, step):
|
|
||||||
import pandas as pd
|
|
||||||
pd.DataFrame({'probs': probs},
|
|
||||||
index=[x * step for x in range(len(probs))]).plot(figsize=(16, 8),
|
|
||||||
kind='area', ylim=[0, 1.05], xlim=[0, len(probs) * step],
|
|
||||||
xlabel='seconds',
|
|
||||||
ylabel='speech probability',
|
|
||||||
colormap='tab20')
|
|
||||||
|
|
||||||
|
|
||||||
def get_speech_timestamps(audio: torch.Tensor,
|
|
||||||
model,
|
|
||||||
threshold: float = 0.5,
|
|
||||||
sampling_rate: int = 16000,
|
|
||||||
min_speech_duration_ms: int = 250,
|
|
||||||
min_silence_duration_ms: int = 100,
|
|
||||||
window_size_samples: int = 1536,
|
|
||||||
speech_pad_ms: int = 30,
|
|
||||||
return_seconds: bool = False,
|
|
||||||
visualize_probs: bool = False):
|
|
||||||
|
|
||||||
"""
|
|
||||||
This method is used for splitting long audios into speech chunks using silero VAD
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
audio: torch.Tensor, one dimensional
|
|
||||||
One dimensional float torch.Tensor, other types are casted to torch if possible
|
|
||||||
|
|
||||||
model: preloaded .jit silero VAD model
|
|
||||||
|
|
||||||
threshold: float (default - 0.5)
|
|
||||||
Speech threshold. Silero VAD outputs speech probabilities for each audio chunk, probabilities ABOVE this value are considered as SPEECH.
|
|
||||||
It is better to tune this parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets.
|
|
||||||
|
|
||||||
sampling_rate: int (default - 16000)
|
|
||||||
Currently silero VAD models support 8000 and 16000 sample rates
|
|
||||||
|
|
||||||
min_speech_duration_ms: int (default - 250 milliseconds)
|
|
||||||
Final speech chunks shorter min_speech_duration_ms are thrown out
|
|
||||||
|
|
||||||
min_silence_duration_ms: int (default - 100 milliseconds)
|
|
||||||
In the end of each speech chunk wait for min_silence_duration_ms before separating it
|
|
||||||
|
|
||||||
window_size_samples: int (default - 1536 samples)
|
|
||||||
Audio chunks of window_size_samples size are fed to the silero VAD model.
|
|
||||||
WARNING! Silero VAD models were trained using 512, 1024, 1536 samples for 16000 sample rate and 256, 512, 768 samples for 8000 sample rate.
|
|
||||||
Values other than these may affect model perfomance!!
|
|
||||||
|
|
||||||
speech_pad_ms: int (default - 30 milliseconds)
|
|
||||||
Final speech chunks are padded by speech_pad_ms each side
|
|
||||||
|
|
||||||
return_seconds: bool (default - False)
|
|
||||||
whether return timestamps in seconds (default - samples)
|
|
||||||
|
|
||||||
visualize_probs: bool (default - False)
|
|
||||||
whether draw prob hist or not
|
|
||||||
|
|
||||||
Returns
|
|
||||||
----------
|
|
||||||
speeches: list of dicts
|
|
||||||
list containing ends and beginnings of speech chunks (samples or seconds based on return_seconds)
|
|
||||||
"""
|
|
||||||
|
|
||||||
if not torch.is_tensor(audio):
|
|
||||||
try:
|
|
||||||
audio = torch.Tensor(audio)
|
|
||||||
except:
|
|
||||||
raise TypeError("Audio cannot be casted to tensor. Cast it manually")
|
|
||||||
|
|
||||||
if len(audio.shape) > 1:
|
|
||||||
for i in range(len(audio.shape)): # trying to squeeze empty dimensions
|
|
||||||
audio = audio.squeeze(0)
|
|
||||||
if len(audio.shape) > 1:
|
|
||||||
raise ValueError("More than one dimension in audio. Are you trying to process audio with 2 channels?")
|
|
||||||
|
|
||||||
if sampling_rate == 8000 and window_size_samples > 768:
|
|
||||||
warnings.warn('window_size_samples is too big for 8000 sampling_rate! Better set window_size_samples to 256, 512 or 1536 for 8000 sample rate!')
|
|
||||||
if window_size_samples not in [256, 512, 768, 1024, 1536]:
|
|
||||||
warnings.warn('Unusual window_size_samples! Supported window_size_samples:\n - [512, 1024, 1536] for 16000 sampling_rate\n - [256, 512, 768] for 8000 sampling_rate')
|
|
||||||
|
|
||||||
model.reset_states()
|
|
||||||
min_speech_samples = sampling_rate * min_speech_duration_ms / 1000
|
|
||||||
min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
|
|
||||||
speech_pad_samples = sampling_rate * speech_pad_ms / 1000
|
|
||||||
|
|
||||||
audio_length_samples = len(audio)
|
|
||||||
|
|
||||||
speech_probs = []
|
|
||||||
for current_start_sample in range(0, audio_length_samples, window_size_samples):
|
|
||||||
chunk = audio[current_start_sample: current_start_sample + window_size_samples]
|
|
||||||
if len(chunk) < window_size_samples:
|
|
||||||
chunk = torch.nn.functional.pad(chunk, (0, int(window_size_samples - len(chunk))))
|
|
||||||
speech_prob = model(chunk, sampling_rate).item()
|
|
||||||
speech_probs.append(speech_prob)
|
|
||||||
|
|
||||||
triggered = False
|
|
||||||
speeches = []
|
|
||||||
current_speech = {}
|
|
||||||
neg_threshold = threshold - 0.15
|
|
||||||
temp_end = 0
|
|
||||||
|
|
||||||
for i, speech_prob in enumerate(speech_probs):
|
|
||||||
if (speech_prob >= threshold) and temp_end:
|
|
||||||
temp_end = 0
|
|
||||||
|
|
||||||
if (speech_prob >= threshold) and not triggered:
|
|
||||||
triggered = True
|
|
||||||
current_speech['start'] = window_size_samples * i
|
|
||||||
continue
|
|
||||||
|
|
||||||
if (speech_prob < neg_threshold) and triggered:
|
|
||||||
if not temp_end:
|
|
||||||
temp_end = window_size_samples * i
|
|
||||||
if (window_size_samples * i) - temp_end < min_silence_samples:
|
|
||||||
continue
|
|
||||||
else:
|
|
||||||
current_speech['end'] = temp_end
|
|
||||||
if (current_speech['end'] - current_speech['start']) > min_speech_samples:
|
|
||||||
speeches.append(current_speech)
|
|
||||||
temp_end = 0
|
|
||||||
current_speech = {}
|
|
||||||
triggered = False
|
|
||||||
continue
|
|
||||||
|
|
||||||
if current_speech:
|
|
||||||
current_speech['end'] = audio_length_samples
|
|
||||||
speeches.append(current_speech)
|
|
||||||
|
|
||||||
for i, speech in enumerate(speeches):
|
|
||||||
if i == 0:
|
|
||||||
speech['start'] = int(max(0, speech['start'] - speech_pad_samples))
|
|
||||||
if i != len(speeches) - 1:
|
|
||||||
silence_duration = speeches[i+1]['start'] - speech['end']
|
|
||||||
if silence_duration < 2 * speech_pad_samples:
|
|
||||||
speech['end'] += int(silence_duration // 2)
|
|
||||||
speeches[i+1]['start'] = int(max(0, speeches[i+1]['start'] - silence_duration // 2))
|
|
||||||
else:
|
|
||||||
speech['end'] += int(speech_pad_samples)
|
|
||||||
else:
|
|
||||||
speech['end'] = int(min(audio_length_samples, speech['end'] + speech_pad_samples))
|
|
||||||
|
|
||||||
if return_seconds:
|
|
||||||
for speech_dict in speeches:
|
|
||||||
speech_dict['start'] = round(speech_dict['start'] / sampling_rate, 1)
|
|
||||||
speech_dict['end'] = round(speech_dict['end'] / sampling_rate, 1)
|
|
||||||
|
|
||||||
if visualize_probs:
|
|
||||||
make_visualization(speech_probs, window_size_samples / sampling_rate)
|
|
||||||
|
|
||||||
return speeches
|
|
||||||
|
|
||||||
|
|
||||||
def get_number_ts(wav: torch.Tensor,
|
|
||||||
model,
|
|
||||||
model_stride=8,
|
|
||||||
hop_length=160,
|
|
||||||
sample_rate=16000,
|
|
||||||
run_function=validate):
|
|
||||||
wav = torch.unsqueeze(wav, dim=0)
|
|
||||||
perframe_logits = run_function(model, wav)[0]
|
|
||||||
perframe_preds = torch.argmax(torch.softmax(perframe_logits, dim=1), dim=1).squeeze() # (1, num_frames_strided)
|
|
||||||
extended_preds = []
|
|
||||||
for i in perframe_preds:
|
|
||||||
extended_preds.extend([i.item()] * model_stride)
|
|
||||||
# len(extended_preds) is *num_frames_real*; for each frame of audio we know if it has a number in it.
|
|
||||||
triggered = False
|
|
||||||
timings = []
|
|
||||||
cur_timing = {}
|
|
||||||
for i, pred in enumerate(extended_preds):
|
|
||||||
if pred == 1:
|
|
||||||
if not triggered:
|
|
||||||
cur_timing['start'] = int((i * hop_length) / (sample_rate / 1000))
|
|
||||||
triggered = True
|
|
||||||
elif pred == 0:
|
|
||||||
if triggered:
|
|
||||||
cur_timing['end'] = int((i * hop_length) / (sample_rate / 1000))
|
|
||||||
timings.append(cur_timing)
|
|
||||||
cur_timing = {}
|
|
||||||
triggered = False
|
|
||||||
if cur_timing:
|
|
||||||
cur_timing['end'] = int(len(wav) / (sample_rate / 1000))
|
|
||||||
timings.append(cur_timing)
|
|
||||||
return timings
|
|
||||||
|
|
||||||
|
|
||||||
def get_language(wav: torch.Tensor,
|
|
||||||
model,
|
|
||||||
run_function=validate):
|
|
||||||
wav = torch.unsqueeze(wav, dim=0)
|
|
||||||
lang_logits = run_function(model, wav)[2]
|
|
||||||
lang_pred = torch.argmax(torch.softmax(lang_logits, dim=1), dim=1).item() # from 0 to len(languages) - 1
|
|
||||||
assert lang_pred < len(languages)
|
|
||||||
return languages[lang_pred]
|
|
||||||
|
|
||||||
|
|
||||||
def get_language_and_group(wav: torch.Tensor,
|
|
||||||
model,
|
|
||||||
lang_dict: dict,
|
|
||||||
lang_group_dict: dict,
|
|
||||||
top_n=1,
|
|
||||||
run_function=validate):
|
|
||||||
wav = torch.unsqueeze(wav, dim=0)
|
|
||||||
lang_logits, lang_group_logits = run_function(model, wav)
|
|
||||||
|
|
||||||
softm = torch.softmax(lang_logits, dim=1).squeeze()
|
|
||||||
softm_group = torch.softmax(lang_group_logits, dim=1).squeeze()
|
|
||||||
|
|
||||||
srtd = torch.argsort(softm, descending=True)
|
|
||||||
srtd_group = torch.argsort(softm_group, descending=True)
|
|
||||||
|
|
||||||
outs = []
|
|
||||||
outs_group = []
|
|
||||||
for i in range(top_n):
|
|
||||||
prob = round(softm[srtd[i]].item(), 2)
|
|
||||||
prob_group = round(softm_group[srtd_group[i]].item(), 2)
|
|
||||||
outs.append((lang_dict[str(srtd[i].item())], prob))
|
|
||||||
outs_group.append((lang_group_dict[str(srtd_group[i].item())], prob_group))
|
|
||||||
|
|
||||||
return outs, outs_group
|
|
||||||
|
|
||||||
|
|
||||||
class VADIterator:
|
|
||||||
def __init__(self,
|
|
||||||
model,
|
|
||||||
threshold: float = 0.5,
|
|
||||||
sampling_rate: int = 16000,
|
|
||||||
min_silence_duration_ms: int = 100,
|
|
||||||
speech_pad_ms: int = 30
|
|
||||||
):
|
|
||||||
|
|
||||||
"""
|
|
||||||
Class for stream imitation
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
model: preloaded .jit silero VAD model
|
|
||||||
|
|
||||||
threshold: float (default - 0.5)
|
|
||||||
Speech threshold. Silero VAD outputs speech probabilities for each audio chunk, probabilities ABOVE this value are considered as SPEECH.
|
|
||||||
It is better to tune this parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets.
|
|
||||||
|
|
||||||
sampling_rate: int (default - 16000)
|
|
||||||
Currently silero VAD models support 8000 and 16000 sample rates
|
|
||||||
|
|
||||||
min_silence_duration_ms: int (default - 100 milliseconds)
|
|
||||||
In the end of each speech chunk wait for min_silence_duration_ms before separating it
|
|
||||||
|
|
||||||
speech_pad_ms: int (default - 30 milliseconds)
|
|
||||||
Final speech chunks are padded by speech_pad_ms each side
|
|
||||||
"""
|
|
||||||
|
|
||||||
self.model = model
|
|
||||||
self.threshold = threshold
|
|
||||||
self.sampling_rate = sampling_rate
|
|
||||||
self.min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
|
|
||||||
self.speech_pad_samples = sampling_rate * speech_pad_ms / 1000
|
|
||||||
self.reset_states()
|
|
||||||
|
|
||||||
def reset_states(self):
|
|
||||||
|
|
||||||
self.model.reset_states()
|
|
||||||
self.triggered = False
|
|
||||||
self.temp_end = 0
|
|
||||||
self.current_sample = 0
|
|
||||||
|
|
||||||
def __call__(self, x, return_seconds=False):
|
|
||||||
"""
|
|
||||||
x: torch.Tensor
|
|
||||||
audio chunk (see examples in repo)
|
|
||||||
|
|
||||||
return_seconds: bool (default - False)
|
|
||||||
whether return timestamps in seconds (default - samples)
|
|
||||||
"""
|
|
||||||
window_size_samples = len(x[0]) if x.dim() == 2 else len(x)
|
|
||||||
self.current_sample += window_size_samples
|
|
||||||
|
|
||||||
speech_prob = self.model(x, self.sampling_rate).item()
|
|
||||||
|
|
||||||
if (speech_prob >= self.threshold) and self.temp_end:
|
|
||||||
self.temp_end = 0
|
|
||||||
|
|
||||||
if (speech_prob >= self.threshold) and not self.triggered:
|
|
||||||
self.triggered = True
|
|
||||||
speech_start = self.current_sample - self.speech_pad_samples
|
|
||||||
return {'start': int(speech_start) if not return_seconds else round(speech_start / self.sampling_rate, 1)}
|
|
||||||
|
|
||||||
if (speech_prob < self.threshold - 0.15) and self.triggered:
|
|
||||||
if not self.temp_end:
|
|
||||||
self.temp_end = self.current_sample
|
|
||||||
if self.current_sample - self.temp_end < self.min_silence_samples:
|
|
||||||
return None
|
|
||||||
else:
|
|
||||||
speech_end = self.temp_end + self.speech_pad_samples
|
|
||||||
self.temp_end = 0
|
|
||||||
self.triggered = False
|
|
||||||
return {'end': int(speech_end) if not return_seconds else round(speech_end / self.sampling_rate, 1)}
|
|
||||||
|
|
||||||
return None
|
|
||||||
|
|
||||||
|
|
||||||
def collect_chunks(tss: List[dict],
|
|
||||||
wav: torch.Tensor):
|
|
||||||
chunks = []
|
|
||||||
for i in tss:
|
|
||||||
chunks.append(wav[i['start']: i['end']])
|
|
||||||
return torch.cat(chunks)
|
|
||||||
|
|
||||||
|
|
||||||
def drop_chunks(tss: List[dict],
|
|
||||||
wav: torch.Tensor):
|
|
||||||
chunks = []
|
|
||||||
cur_start = 0
|
|
||||||
for i in tss:
|
|
||||||
chunks.append((wav[cur_start: i['start']]))
|
|
||||||
cur_start = i['end']
|
|
||||||
return torch.cat(chunks)
|
|
||||||
Reference in New Issue
Block a user