Remove old unused utils

This commit is contained in:
Alexander Veysov
2024-06-27 22:08:15 +03:00
committed by GitHub
parent d77d0fd42c
commit 74c3f7f3fb

View File

@@ -379,72 +379,6 @@ def get_speech_timestamps(audio: torch.Tensor,
return speeches
def get_number_ts(wav: torch.Tensor,
model,
model_stride=8,
hop_length=160,
sample_rate=16000):
wav = torch.unsqueeze(wav, dim=0)
perframe_logits = model(wav)[0]
perframe_preds = torch.argmax(torch.softmax(perframe_logits, dim=1), dim=1).squeeze() # (1, num_frames_strided)
extended_preds = []
for i in perframe_preds:
extended_preds.extend([i.item()] * model_stride)
# len(extended_preds) is *num_frames_real*; for each frame of audio we know if it has a number in it.
triggered = False
timings = []
cur_timing = {}
for i, pred in enumerate(extended_preds):
if pred == 1:
if not triggered:
cur_timing['start'] = int((i * hop_length) / (sample_rate / 1000))
triggered = True
elif pred == 0:
if triggered:
cur_timing['end'] = int((i * hop_length) / (sample_rate / 1000))
timings.append(cur_timing)
cur_timing = {}
triggered = False
if cur_timing:
cur_timing['end'] = int(len(wav) / (sample_rate / 1000))
timings.append(cur_timing)
return timings
def get_language(wav: torch.Tensor,
model):
wav = torch.unsqueeze(wav, dim=0)
lang_logits = model(wav)[2]
lang_pred = torch.argmax(torch.softmax(lang_logits, dim=1), dim=1).item() # from 0 to len(languages) - 1
assert lang_pred < len(languages)
return languages[lang_pred]
def get_language_and_group(wav: torch.Tensor,
model,
lang_dict: dict,
lang_group_dict: dict,
top_n=1):
wav = torch.unsqueeze(wav, dim=0)
lang_logits, lang_group_logits = model(wav)
softm = torch.softmax(lang_logits, dim=1).squeeze()
softm_group = torch.softmax(lang_group_logits, dim=1).squeeze()
srtd = torch.argsort(softm, descending=True)
srtd_group = torch.argsort(softm_group, descending=True)
outs = []
outs_group = []
for i in range(top_n):
prob = round(softm[srtd[i]].item(), 2)
prob_group = round(softm_group[srtd_group[i]].item(), 2)
outs.append((lang_dict[str(srtd[i].item())], prob))
outs_group.append((lang_group_dict[str(srtd_group[i].item())], prob_group))
return outs, outs_group
class VADIterator:
def __init__(self,
model,