added audio concatenation for collect_chunks and drop_chunks based on second coordinates

This commit is contained in:
Antonio Bevilacqua
2025-03-21 13:06:59 +01:00
parent cd92290a15
commit d5625d5c38

View File

@@ -483,18 +483,104 @@ class VADIterator:
def collect_chunks(tss: List[dict],
wav: torch.Tensor):
chunks = []
for i in tss:
chunks.append(wav[i['start']: i['end']])
wav: torch.Tensor,
seconds: bool = False,
sampling_rate: int = None) -> torch.Tensor:
"""Collect audio chunks from a longer audio clip
This method extracts audio chunks from an audio clip, using a list of
provided coordinates, and concatenates them together. Coordinates can be
passed either as sample numbers or in seconds, in which case the audio
sampling rate is also needed.
Parameters
----------
tss: List[dict]
Coordinate list of the clips to collect from the audio.
wav: torch.Tensor, one dimensional
One dimensional float torch.Tensor, containing the audio to clip.
seconds: bool (default - False)
Whether input coordinates are passed as seconds or samples.
sampling_rate: int (default - None)
Input audio sampling rate. Required if seconds is True.
Returns
-------
torch.Tensor, one dimensional
One dimensional float torch.Tensor of the concatenated clipped audio
chunks.
Raises
------
ValueError
Raised if sampling_rate is not provided when seconds is True.
"""
if seconds and not sampling_rate:
raise ValueError('sampling_rate must be provided when seconds is True')
chunks = list()
_tss = _seconds_to_samples_tss(tss, sampling_rate) if seconds else tss
for i in _tss:
chunks.append(wav[i['start']:i['end']])
return torch.cat(chunks)
def drop_chunks(tss: List[dict],
wav: torch.Tensor):
chunks = []
wav: torch.Tensor,
seconds: bool = False,
sampling_rate: int = None) -> torch.Tensor:
"""Drop audio chunks from a longer audio clip
This method extracts audio chunks from an audio clip, using a list of
provided coordinates, and drops them. Coordinates can be passed either as
sample numbers or in seconds, in which case the audio sampling rate is also
needed.
Parameters
----------
tss: List[dict]
Coordinate list of the clips to drop from from the audio.
wav: torch.Tensor, one dimensional
One dimensional float torch.Tensor, containing the audio to clip.
seconds: bool (default - False)
Whether input coordinates are passed as seconds or samples.
sampling_rate: int (default - None)
Input audio sampling rate. Required if seconds is True.
Returns
-------
torch.Tensor, one dimensional
One dimensional float torch.Tensor of the input audio minus the dropped
chunks.
Raises
------
ValueError
Raised if sampling_rate is not provided when seconds is True.
"""
if seconds and not sampling_rate:
raise ValueError('sampling_rate must be provided when seconds is True')
chunks = list()
cur_start = 0
for i in tss:
_tss = _seconds_to_samples_tss(tss, sampling_rate) if seconds else tss
for i in _tss:
chunks.append((wav[cur_start: i['start']]))
cur_start = i['end']
return torch.cat(chunks)
def _seconds_to_samples_tss(tss: List[dict], sampling_rate: int) -> List[dict]:
"""Convert coordinates expressed in seconds to sample coordinates.
"""
return [{
'start': round(crd['start']) * sampling_rate,
'end': round(crd['end']) * sampling_rate
} for crd in tss]