Add type annotations, clean-up code

This commit is contained in:
snakers41
2020-12-15 12:30:47 +00:00
parent 557a32ed1b
commit 95111b9535

View File

@@ -1,17 +1,22 @@
import torch
import torchaudio
import numpy as np
from typing import List
from itertools import repeat
from collections import deque
import torch.nn.functional as F
torchaudio.set_audio_backend("soundfile") # switch backend
def validate(model, inputs):
def validate(model,
inputs: torch.Tensor):
with torch.no_grad():
outs = model(inputs)
return outs
def read_audio(path: str,
target_sr: int = 16000):
@@ -44,9 +49,14 @@ def init_jit_model(model_path: str,
model.eval()
return model
def get_speech_ts(wav, model,
trig_sum=0.25, neg_trig_sum=0.02,
num_steps=8, batch_size=200, run_function=validate):
def get_speech_ts(wav: torch.Tensor,
model,
trig_sum: float = 0.25,
neg_trig_sum: float = 0.02,
num_steps: int = 8,
batch_size: int = 200,
run_function=validate):
num_samples = 4000
assert num_samples % num_steps == 0
@@ -97,8 +107,9 @@ def get_speech_ts(wav, model,
class VADiterator:
def __init__(self,
trig_sum=0.26, neg_trig_sum=0.02,
num_steps=8):
trig_sum: float = 0.26,
neg_trig_sum: float = 0.02,
num_steps: int = 8):
self.num_samples = 4000
self.num_steps = num_steps
assert self.num_samples % num_steps == 0
@@ -126,19 +137,20 @@ class VADiterator:
assert len(wav_chunk) <= self.num_samples
self.num_frames += len(wav_chunk)
if len(wav_chunk) < self.num_samples:
wav_chunk = F.pad(wav_chunk, (0, self.num_samples - len(wav_chunk))) # assume that short chunk means end of audio
wav_chunk = F.pad(wav_chunk, (0, self.num_samples - len(wav_chunk))) # short chunk => eof audio
self.last = True
stacked = torch.cat([self.prev, wav_chunk])
self.prev = wav_chunk
overlap_chunks = [stacked[i:i+self.num_samples].unsqueeze(0) for i in range(self.step, self.num_samples+1, self.step)] # 500 step is good enough
overlap_chunks = [stacked[i:i+self.num_samples].unsqueeze(0)
for i in range(self.step, self.num_samples+1, self.step)] # 500 sample step is good enough
return torch.cat(overlap_chunks, dim=0)
def state(self, model_out):
current_speech = {}
speech_probs = model_out[:, 1] # this is very misleading
for i, predict in enumerate(speech_probs): # add name
for i, predict in enumerate(speech_probs):
self.buffer.append(predict)
if (np.mean(self.buffer) >= self.trig_sum) and not self.triggered:
self.triggered = True
@@ -153,10 +165,14 @@ class VADiterator:
return current_speech, self.current_name
def state_generator(model, audios,
onnx=False,
trig_sum=0.26, neg_trig_sum=0.02,
num_steps=8, audios_in_stream=5, run_function=validate):
def state_generator(model,
audios: List[str],
onnx: bool = False,
trig_sum: float = 0.26,
neg_trig_sum: float = 0.02,
num_steps: int = 8,
audios_in_stream: int = 5,
run_function=validate):
VADiters = [VADiterator(trig_sum, neg_trig_sum, num_steps) for i in range(audios_in_stream)]
for i, current_pieces in enumerate(stream_imitator(audios, audios_in_stream)):
for_batch = [x.prepare_batch(*y) for x, y in zip(VADiters, current_pieces)]
@@ -173,7 +189,8 @@ def state_generator(model, audios,
yield states
def stream_imitator(audios, audios_in_stream):
def stream_imitator(audios: List[str],
audios_in_stream: int):
audio_iter = iter(audios)
iterators = []
num_samples = 4000
@@ -207,8 +224,13 @@ def stream_imitator(audios, audios_in_stream):
yield values
def single_audio_stream(model, audio, onnx=False, trig_sum=0.26,
neg_trig_sum=0.02, num_steps=8, run_function=validate):
def single_audio_stream(model,
audio: str,
onnx: bool = False,
trig_sum: float = 0.26,
neg_trig_sum: float = 0.02,
num_steps: int = 8,
run_function=validate):
num_samples = 4000
VADiter = VADiterator(trig_sum, neg_trig_sum, num_steps)
wav = read_audio(audio)