Merge pull request #29 from snakers4/adamnsandle

Adamnsandle
This commit is contained in:
Alexander Veysov
2021-02-11 19:53:14 +03:00
committed by GitHub
5 changed files with 39 additions and 7 deletions

View File

@@ -25,7 +25,7 @@
# Silero VAD
![image](https://user-images.githubusercontent.com/12515440/106419932-a7d50a80-646a-11eb-8f2b-00b454ed9b98.png)
![image](https://user-images.githubusercontent.com/36505480/107667211-06cf2680-6c98-11eb-9ee5-37eb4596260f.png)
**Silero VAD: pre-trained enterprise-grade Voice Activity Detector (VAD), Number Detector and Language Classifier.**
Enterprise-grade Speech Products made refreshingly simple (see our [STT](https://github.com/snakers4/silero-models) models).
@@ -60,6 +60,7 @@ The models are small enough to be included directly into this repository. Newer
| model= | Params | Model type | Streaming | Languages | PyTorch | ONNX | Colab |
|--------------------------------|--------|---------------------|--------------------|----------------|---------|------|-------|
| `'silero_vad'` | 1.1M | VAD | Yes | `ru`, `en`, `de`, `es` (*) | :heavy_check_mark: | :heavy_check_mark: | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/snakers4/silero-vad/blob/master/silero-vad.ipynb) |
| `'silero_vad_micro'` | 10K | VAD | Yes | `ru`, `en`, `de`, `es` (*) | :heavy_check_mark: | :heavy_check_mark: | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/snakers4/silero-vad/blob/master/silero-vad.ipynb) |
| `'silero_number_detector'` | 1.1M | Number Detector | No | `ru`, `en`, `de`, `es` | :heavy_check_mark: | :heavy_check_mark: | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/snakers4/silero-vad/blob/master/silero-vad.ipynb) |
| `'silero_lang_detector'` | 1.1M | Language Classifier | No | `ru`, `en`, `de`, `es` | :heavy_check_mark: | :heavy_check_mark: | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/snakers4/silero-vad/blob/master/silero-vad.ipynb) |
@@ -79,6 +80,7 @@ What models do:
| `v1.1` | 2020-12-24 | better vad models compatible with chunks shorter than 250 ms
| `v1.2` | 2020-12-30 | Number Detector added
| `v2` | 2021-01-11 | Add Language Classifier heads (en, ru, de, es) |
| `v2.1` | 2021-02-11 | Add micro (10k params) VAD models |
### PyTorch
@@ -333,7 +335,7 @@ Since our VAD (only VAD, other networks are more flexible) was trained on chunks
[Auditok](https://github.com/amsehili/auditok) - logic same as Webrtc, but we use 50ms frames.
![image](https://user-images.githubusercontent.com/12515440/106419932-a7d50a80-646a-11eb-8f2b-00b454ed9b98.png)
![image](https://user-images.githubusercontent.com/36505480/107667211-06cf2680-6c98-11eb-9ee5-37eb4596260f.png)
## FAQ
@@ -346,6 +348,7 @@ Since our VAD (only VAD, other networks are more flexible) was trained on chunks
- `num_steps` - nubmer of overlapping windows to split audio chunk into (we recommend 4 or 8)
- `num_samples_per_window` - number of samples in each window, our models were trained using `4000` samples (250 ms) per window, so this is preferable value (lesser values reduce [quality](https://github.com/snakers4/silero-vad/issues/2#issuecomment-750840434));
- `min_speech_samples` - minimum speech chunk duration in samples
- `min_silence_samples` - minimum silence duration in samples between to separate speech chunks
Optimal parameters may vary per domain, but we provided a tiny tool to learn the best parameters. You can invoke `speech_timestamps` with visualize_probs=True (`pandas` required):

BIN
files/model_micro.jit Normal file

Binary file not shown.

BIN
files/model_micro.onnx Normal file

Binary file not shown.

View File

@@ -29,6 +29,23 @@ def silero_vad(**kwargs):
return model, utils
def silero_vad_micro(**kwargs):
"""Silero Voice Activity Detector
Returns a model with a set of utils
Please see https://github.com/snakers4/silero-vad for usage examples
"""
hub_dir = torch.hub.get_dir()
model = init_jit_model(model_path=f'{hub_dir}/snakers4_silero-vad_master/files/model_micro.jit')
utils = (get_speech_ts,
save_audio,
read_audio,
state_generator,
single_audio_stream,
collect_chunks)
return model, utils
def silero_number_detector(**kwargs):
"""Silero Number Detector
Returns a model with a set of utils

View File

@@ -60,6 +60,7 @@ def get_speech_ts(wav: torch.Tensor,
batch_size: int = 200,
num_samples_per_window: int = 4000,
min_speech_samples: int = 10000, #samples
min_silence_samples: int = 500,
run_function=validate,
visualize_probs=False):
@@ -95,20 +96,31 @@ def get_speech_ts(wav: torch.Tensor,
smoothed_probs = []
speech_probs = outs[:, 1] # this is very misleading
temp_end = 0
for i, predict in enumerate(speech_probs): # add name
buffer.append(predict)
smoothed_prob = (sum(buffer) / len(buffer))
if visualize_probs:
smoothed_probs.append(float(smoothed_prob))
if (smoothed_prob >= trig_sum) and temp_end:
temp_end=0
if (smoothed_prob >= trig_sum) and not triggered:
triggered = True
current_speech['start'] = step * max(0, i-num_steps)
continue
if (smoothed_prob < neg_trig_sum) and triggered:
current_speech['end'] = step * i
if (current_speech['end'] - current_speech['start']) > min_speech_samples:
speeches.append(current_speech)
current_speech = {}
triggered = False
if not temp_end:
temp_end = step * i
if step * i - temp_end < min_silence_samples:
continue
else:
current_speech['end'] = temp_end
if (current_speech['end'] - current_speech['start']) > min_speech_samples:
speeches.append(current_speech)
temp_end = 0
current_speech = {}
triggered = False
continue
if current_speech:
current_speech['end'] = len(wav)
speeches.append(current_speech)