mirror of
https://github.com/snakers4/silero-vad.git
synced 2026-02-04 17:39:22 +08:00
Fx
This commit is contained in:
@@ -301,7 +301,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.3"
|
||||
"version": "3.7.7"
|
||||
},
|
||||
"toc": {
|
||||
"base_numbering": 1,
|
||||
|
||||
41
utils.py
41
utils.py
@@ -73,11 +73,15 @@ def init_jit_model(model_path,
|
||||
return model
|
||||
|
||||
|
||||
def get_speech_ts(wav, model, extractor, trig_sum=0.25, neg_trig_sum=0.01, num_steps=8, batch_size=200):
|
||||
def get_speech_ts(wav, model, extractor,
|
||||
trig_sum=0.25, neg_trig_sum=0.01,
|
||||
num_steps=8, batch_size=200):
|
||||
|
||||
assert 4000 % num_steps == 0
|
||||
step = int(4000 / num_steps)
|
||||
step = int(4000 / num_steps) # stride / hop
|
||||
outs = []
|
||||
to_concat = []
|
||||
|
||||
for i in range(0, len(wav), step):
|
||||
chunk = wav[i: i+4000]
|
||||
if len(chunk) < 4000:
|
||||
@@ -89,20 +93,21 @@ def get_speech_ts(wav, model, extractor, trig_sum=0.25, neg_trig_sum=0.01, num_s
|
||||
out = model(extractor(chunks))[-2]
|
||||
outs.append(out)
|
||||
to_concat = []
|
||||
|
||||
|
||||
if to_concat:
|
||||
chunks = torch.Tensor(torch.vstack(to_concat))
|
||||
with torch.no_grad():
|
||||
out = model(extractor(chunks))[-2]
|
||||
outs.append(out)
|
||||
|
||||
|
||||
outs = torch.cat(outs, dim=0)
|
||||
|
||||
buffer = deque(maxlen=num_steps)
|
||||
|
||||
buffer = deque(maxlen=num_steps) # when max queue len is reach, first element is dropped
|
||||
triggered = False
|
||||
speeches = []
|
||||
current_speech = {}
|
||||
for i, predict in enumerate(outs[:, 1]):
|
||||
|
||||
for i, predict in enumerate(outs[:, 1]): # add name
|
||||
buffer.append(predict)
|
||||
if (np.mean(buffer) >= trig_sum) and not triggered:
|
||||
triggered = True
|
||||
@@ -150,7 +155,9 @@ class STFTExtractor(nn.Module):
|
||||
|
||||
|
||||
class VADiterator:
|
||||
def __init__(self, trig_sum=0.26, neg_trig_sum=0.01, num_steps=8):
|
||||
def __init__(self,
|
||||
trig_sum=0.26, neg_trig_sum=0.01,
|
||||
num_steps=8):
|
||||
self.num_steps = num_steps
|
||||
assert 4000 % num_steps == 0
|
||||
self.step = int(4000 / num_steps)
|
||||
@@ -162,14 +169,14 @@ class VADiterator:
|
||||
self.trig_sum = trig_sum
|
||||
self.neg_trig_sum = neg_trig_sum
|
||||
self.current_name = ''
|
||||
|
||||
|
||||
def refresh(self):
|
||||
self.prev = torch.zeros(4000)
|
||||
self.last = False
|
||||
self.triggered = False
|
||||
self.buffer = deque(maxlen=8)
|
||||
self.num_frames = 0
|
||||
|
||||
|
||||
def prepare_batch(self, wav_chunk, name=None):
|
||||
if (name is not None) and (name != self.current_name):
|
||||
self.refresh()
|
||||
@@ -177,15 +184,15 @@ class VADiterator:
|
||||
assert len(wav_chunk) <= 4000
|
||||
self.num_frames += len(wav_chunk)
|
||||
if len(wav_chunk) < 4000:
|
||||
wav_chunk = F.pad(wav_chunk, (0, 4000 - len(wav_chunk))) # assume that short chunk means end of the audio
|
||||
wav_chunk = F.pad(wav_chunk, (0, 4000 - len(wav_chunk))) # assume that short chunk means end of the audio
|
||||
self.last = True
|
||||
|
||||
|
||||
stacked = torch.hstack([self.prev, wav_chunk])
|
||||
self.prev = wav_chunk
|
||||
|
||||
overlap_chunks = [stacked[i:i+4000] for i in range(500, 4001, self.step)] # 500 step is good enough
|
||||
|
||||
overlap_chunks = [stacked[i:i+4000] for i in range(500, 4001, self.step)] # 500 step is good enough
|
||||
return torch.vstack(overlap_chunks)
|
||||
|
||||
|
||||
def state(self, model_out):
|
||||
current_speech = {}
|
||||
for i, predict in enumerate(model_out[:, 1]):
|
||||
@@ -203,7 +210,6 @@ class VADiterator:
|
||||
return current_speech, self.current_name
|
||||
|
||||
|
||||
|
||||
def state_generator(model, audios, extractor, onnx=False, trig_sum=0.26, neg_trig_sum=0.01, num_steps=8, audios_in_stream=5):
|
||||
VADiters = [VADiterator(trig_sum, neg_trig_sum, num_steps) for i in range(audios_in_stream)]
|
||||
for i, current_pieces in enumerate(stream_imitator(audios, audios_in_stream)):
|
||||
@@ -218,7 +224,7 @@ def state_generator(model, audios, extractor, onnx=False, trig_sum=0.26, neg_tri
|
||||
else:
|
||||
outs = model(extractor(batch))
|
||||
vad_outs = np.split(outs[-2].numpy(), audios_in_stream)
|
||||
|
||||
|
||||
states = []
|
||||
for x, y in zip(VADiters, vad_outs):
|
||||
cur_st = x.state(y)
|
||||
@@ -259,4 +265,3 @@ def stream_imitator(stereo, audios_in_stream):
|
||||
values.append((out, wav_name))
|
||||
yield values
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user