Update App.java

This commit is contained in:
GH
2025-10-11 16:21:32 +08:00
committed by GitHub
parent f5ea01bfda
commit 3d860e6ace

View File

@@ -2,68 +2,263 @@ package org.example;
import ai.onnxruntime.OrtException;
import javax.sound.sampled.*;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
* Silero VAD Java Example
* Voice Activity Detection using ONNX model
*
* @author VvvvvGH
*/
public class App {
private static final String MODEL_PATH = "src/main/resources/silero_vad.onnx";
// ONNX model path - using the model file from the project
private static final String MODEL_PATH = "../../src/silero_vad/data/silero_vad.onnx";
// Test audio file path
private static final String AUDIO_FILE_PATH = "../../en_example.wav";
// Sampling rate
private static final int SAMPLE_RATE = 16000;
private static final float START_THRESHOLD = 0.6f;
private static final float END_THRESHOLD = 0.45f;
private static final int MIN_SILENCE_DURATION_MS = 600;
private static final int SPEECH_PAD_MS = 500;
private static final int WINDOW_SIZE_SAMPLES = 2048;
// Speech threshold (consistent with Python default)
private static final float THRESHOLD = 0.5f;
// Negative threshold (used to determine speech end)
private static final float NEG_THRESHOLD = 0.35f; // threshold - 0.15
// Minimum speech duration (milliseconds)
private static final int MIN_SPEECH_DURATION_MS = 250;
// Minimum silence duration (milliseconds)
private static final int MIN_SILENCE_DURATION_MS = 100;
// Speech padding (milliseconds)
private static final int SPEECH_PAD_MS = 30;
// Window size (samples) - 512 samples for 16kHz
private static final int WINDOW_SIZE_SAMPLES = 512;
public static void main(String[] args) {
// Initialize the Voice Activity Detector
SlieroVadDetector vadDetector;
System.out.println("=".repeat(60));
System.out.println("Silero VAD Java ONNX Example");
System.out.println("=".repeat(60));
// Load ONNX model
SlieroVadOnnxModel model;
try {
vadDetector = new SlieroVadDetector(MODEL_PATH, START_THRESHOLD, END_THRESHOLD, SAMPLE_RATE, MIN_SILENCE_DURATION_MS, SPEECH_PAD_MS);
System.out.println("Loading ONNX model: " + MODEL_PATH);
model = new SlieroVadOnnxModel(MODEL_PATH);
System.out.println("Model loaded successfully!");
} catch (OrtException e) {
System.err.println("Error initializing the VAD detector: " + e.getMessage());
System.err.println("Failed to load model: " + e.getMessage());
e.printStackTrace();
return;
}
// Set audio format
AudioFormat format = new AudioFormat(SAMPLE_RATE, 16, 1, true, false);
DataLine.Info info = new DataLine.Info(TargetDataLine.class, format);
// Get the target data line and open it with the specified format
TargetDataLine targetDataLine;
// Read WAV file
float[] audioData;
try {
targetDataLine = (TargetDataLine) AudioSystem.getLine(info);
targetDataLine.open(format);
targetDataLine.start();
} catch (LineUnavailableException e) {
System.err.println("Error opening target data line: " + e.getMessage());
System.out.println("\nReading audio file: " + AUDIO_FILE_PATH);
audioData = readWavFileAsFloatArray(AUDIO_FILE_PATH);
System.out.println("Audio file read successfully, samples: " + audioData.length);
System.out.println("Audio duration: " + String.format("%.2f", (audioData.length / (float) SAMPLE_RATE)) + " seconds");
} catch (Exception e) {
System.err.println("Failed to read audio file: " + e.getMessage());
e.printStackTrace();
return;
}
// Main loop to continuously read data and apply Voice Activity Detection
while (targetDataLine.isOpen()) {
byte[] data = new byte[WINDOW_SIZE_SAMPLES];
int numBytesRead = targetDataLine.read(data, 0, data.length);
if (numBytesRead <= 0) {
System.err.println("Error reading data from target data line.");
continue;
}
// Apply the Voice Activity Detector to the data and get the result
Map<String, Double> detectResult;
try {
detectResult = vadDetector.apply(data, true);
} catch (Exception e) {
System.err.println("Error applying VAD detector: " + e.getMessage());
continue;
}
if (!detectResult.isEmpty()) {
System.out.println(detectResult);
}
// Get speech timestamps (batch mode, consistent with Python's get_speech_timestamps)
System.out.println("\nDetecting speech segments...");
List<Map<String, Integer>> speechTimestamps;
try {
speechTimestamps = getSpeechTimestamps(
audioData,
model,
THRESHOLD,
SAMPLE_RATE,
MIN_SPEECH_DURATION_MS,
MIN_SILENCE_DURATION_MS,
SPEECH_PAD_MS,
NEG_THRESHOLD
);
} catch (OrtException e) {
System.err.println("Failed to detect speech timestamps: " + e.getMessage());
e.printStackTrace();
return;
}
// Close the target data line to release audio resources
targetDataLine.close();
// Output detection results
System.out.println("\nDetected speech timestamps (in samples):");
for (Map<String, Integer> timestamp : speechTimestamps) {
System.out.println(timestamp);
}
// Output summary
System.out.println("\n" + "=".repeat(60));
System.out.println("Detection completed!");
System.out.println("Total detected " + speechTimestamps.size() + " speech segments");
System.out.println("=".repeat(60));
// Close model
try {
model.close();
} catch (OrtException e) {
System.err.println("Error closing model: " + e.getMessage());
}
}
/**
* Get speech timestamps
* Implements the same logic as Python's get_speech_timestamps
*
* @param audio Audio data (float array)
* @param model ONNX model
* @param threshold Speech threshold
* @param samplingRate Sampling rate
* @param minSpeechDurationMs Minimum speech duration (milliseconds)
* @param minSilenceDurationMs Minimum silence duration (milliseconds)
* @param speechPadMs Speech padding (milliseconds)
* @param negThreshold Negative threshold (used to determine speech end)
* @return List of speech timestamps
*/
private static List<Map<String, Integer>> getSpeechTimestamps(
float[] audio,
SlieroVadOnnxModel model,
float threshold,
int samplingRate,
int minSpeechDurationMs,
int minSilenceDurationMs,
int speechPadMs,
float negThreshold) throws OrtException {
// Reset model states
model.resetStates();
// Calculate parameters
int minSpeechSamples = samplingRate * minSpeechDurationMs / 1000;
int speechPadSamples = samplingRate * speechPadMs / 1000;
int minSilenceSamples = samplingRate * minSilenceDurationMs / 1000;
int windowSizeSamples = samplingRate == 16000 ? 512 : 256;
int audioLengthSamples = audio.length;
// Calculate speech probabilities for all audio chunks
List<Float> speechProbs = new ArrayList<>();
for (int currentStart = 0; currentStart < audioLengthSamples; currentStart += windowSizeSamples) {
float[] chunk = new float[windowSizeSamples];
int chunkLength = Math.min(windowSizeSamples, audioLengthSamples - currentStart);
System.arraycopy(audio, currentStart, chunk, 0, chunkLength);
// Pad with zeros if chunk is shorter than window size
if (chunkLength < windowSizeSamples) {
for (int i = chunkLength; i < windowSizeSamples; i++) {
chunk[i] = 0.0f;
}
}
float speechProb = model.call(new float[][]{chunk}, samplingRate)[0];
speechProbs.add(speechProb);
}
// Detect speech segments using the same algorithm as Python
boolean triggered = false;
List<Map<String, Integer>> speeches = new ArrayList<>();
Map<String, Integer> currentSpeech = null;
int tempEnd = 0;
for (int i = 0; i < speechProbs.size(); i++) {
float speechProb = speechProbs.get(i);
// Reset temporary end if speech probability exceeds threshold
if (speechProb >= threshold && tempEnd != 0) {
tempEnd = 0;
}
// Detect speech start
if (speechProb >= threshold && !triggered) {
triggered = true;
currentSpeech = new HashMap<>();
currentSpeech.put("start", windowSizeSamples * i);
continue;
}
// Detect speech end
if (speechProb < negThreshold && triggered) {
if (tempEnd == 0) {
tempEnd = windowSizeSamples * i;
}
if (windowSizeSamples * i - tempEnd < minSilenceSamples) {
continue;
} else {
currentSpeech.put("end", tempEnd);
if (currentSpeech.get("end") - currentSpeech.get("start") > minSpeechSamples) {
speeches.add(currentSpeech);
}
currentSpeech = null;
tempEnd = 0;
triggered = false;
}
}
}
// Handle the last speech segment
if (currentSpeech != null &&
(audioLengthSamples - currentSpeech.get("start")) > minSpeechSamples) {
currentSpeech.put("end", audioLengthSamples);
speeches.add(currentSpeech);
}
// Add speech padding - same logic as Python
for (int i = 0; i < speeches.size(); i++) {
Map<String, Integer> speech = speeches.get(i);
if (i == 0) {
speech.put("start", Math.max(0, speech.get("start") - speechPadSamples));
}
if (i != speeches.size() - 1) {
int silenceDuration = speeches.get(i + 1).get("start") - speech.get("end");
if (silenceDuration < 2 * speechPadSamples) {
speech.put("end", speech.get("end") + silenceDuration / 2);
speeches.get(i + 1).put("start",
Math.max(0, speeches.get(i + 1).get("start") - silenceDuration / 2));
} else {
speech.put("end", Math.min(audioLengthSamples, speech.get("end") + speechPadSamples));
speeches.get(i + 1).put("start",
Math.max(0, speeches.get(i + 1).get("start") - speechPadSamples));
}
} else {
speech.put("end", Math.min(audioLengthSamples, speech.get("end") + speechPadSamples));
}
}
return speeches;
}
/**
* Read WAV file and return as float array
*
* @param filePath WAV file path
* @return Audio data as float array (normalized to -1.0 to 1.0)
*/
private static float[] readWavFileAsFloatArray(String filePath)
throws UnsupportedAudioFileException, IOException {
File audioFile = new File(filePath);
AudioInputStream audioStream = AudioSystem.getAudioInputStream(audioFile);
// Get audio format information
AudioFormat format = audioStream.getFormat();
System.out.println("Audio format: " + format);
// Read all audio data
byte[] audioBytes = audioStream.readAllBytes();
audioStream.close();
// Convert to float array
float[] audioData = new float[audioBytes.length / 2];
for (int i = 0; i < audioData.length; i++) {
// 16-bit PCM: two bytes per sample (little-endian)
short sample = (short) ((audioBytes[i * 2] & 0xff) | (audioBytes[i * 2 + 1] << 8));
audioData[i] = sample / 32768.0f; // Normalize to -1.0 to 1.0
}
return audioData;
}
}