add single stream example

This commit is contained in:
adamnsandle
2020-12-11 15:11:26 +00:00
parent 70047a62bd
commit 23bcad96e5
2 changed files with 332 additions and 98 deletions

File diff suppressed because one or more lines are too long

View File

@@ -77,15 +77,16 @@ def get_speech_ts(wav, model, extractor,
trig_sum=0.25, neg_trig_sum=0.01,
num_steps=8, batch_size=200):
assert 4000 % num_steps == 0
step = int(4000 / num_steps) # stride / hop
num_samples = 4000
assert num_samples % num_steps == 0
step = int(num_samples / num_steps) # stride / hop
outs = []
to_concat = []
for i in range(0, len(wav), step):
chunk = wav[i: i+4000]
if len(chunk) < 4000:
chunk = F.pad(chunk, (0, 4000 - len(chunk)))
chunk = wav[i: i+num_samples]
if len(chunk) < num_samples:
chunk = F.pad(chunk, (0, num_samples - len(chunk)))
to_concat.append(chunk)
if len(to_concat) >= batch_size:
chunks = torch.Tensor(torch.vstack(to_concat))
@@ -107,7 +108,8 @@ def get_speech_ts(wav, model, extractor,
speeches = []
current_speech = {}
for i, predict in enumerate(outs[:, 1]): # add name
speech_probs = outs[:, 1]
for i, predict in enumerate(speech_probs): # add name
buffer.append(predict)
if (np.mean(buffer) >= trig_sum) and not triggered:
triggered = True
@@ -158,44 +160,46 @@ class VADiterator:
def __init__(self,
trig_sum=0.26, neg_trig_sum=0.01,
num_steps=8):
self.num_samples = 4000
self.num_steps = num_steps
assert 4000 % num_steps == 0
self.step = int(4000 / num_steps)
self.prev = torch.zeros(4000)
assert self.num_samples % num_steps == 0
self.step = int(self.num_samples / num_steps)
self.prev = torch.zeros(self.num_samples)
self.last = False
self.triggered = False
self.buffer = deque(maxlen=8)
self.buffer = deque(maxlen=num_steps)
self.num_frames = 0
self.trig_sum = trig_sum
self.neg_trig_sum = neg_trig_sum
self.current_name = ''
def refresh(self):
self.prev = torch.zeros(4000)
self.prev = torch.zeros(self.num_samples)
self.last = False
self.triggered = False
self.buffer = deque(maxlen=8)
self.buffer = deque(maxlen=self.num_steps)
self.num_frames = 0
def prepare_batch(self, wav_chunk, name=None):
if (name is not None) and (name != self.current_name):
self.refresh()
self.current_name = name
assert len(wav_chunk) <= 4000
assert len(wav_chunk) <= self.num_samples
self.num_frames += len(wav_chunk)
if len(wav_chunk) < 4000:
wav_chunk = F.pad(wav_chunk, (0, 4000 - len(wav_chunk))) # assume that short chunk means end of the audio
if len(wav_chunk) < self.num_samples:
wav_chunk = F.pad(wav_chunk, (0, self.num_samples - len(wav_chunk))) # assume that short chunk means end of the audio
self.last = True
stacked = torch.hstack([self.prev, wav_chunk])
self.prev = wav_chunk
overlap_chunks = [stacked[i:i+4000] for i in range(self.step, 4001, self.step)] # 500 step is good enough
overlap_chunks = [stacked[i:i+self.num_samples] for i in range(self.step, self.num_samples+1, self.step)] # 500 step is good enough
return torch.vstack(overlap_chunks)
def state(self, model_out):
current_speech = {}
for i, predict in enumerate(model_out[:, 1]): # add name
speech_probs = model_out[:, 1]
for i, predict in enumerate(speech_probs): # add name
self.buffer.append(predict)
if (np.mean(self.buffer) >= self.trig_sum) and not self.triggered:
self.triggered = True
@@ -236,14 +240,15 @@ def state_generator(model, audios, extractor,
yield states
def stream_imitator(stereo, audios_in_stream):
stereo_iter = iter(stereo)
def stream_imitator(audios, audios_in_stream):
audio_iter = iter(audios)
iterators = []
num_samples = 4000
# initial wavs
for i in range(audios_in_stream):
next_wav = next(stereo_iter)
next_wav = next(audio_iter)
wav = read_audio(next_wav)
wav_chunks = iter([(wav[i:i+4000], next_wav) for i in range(0, len(wav), 4000)])
wav_chunks = iter([(wav[i:i+num_samples], next_wav) for i in range(0, len(wav), num_samples)])
iterators.append(wav_chunks)
print('Done initial Loading')
good_iters = audios_in_stream
@@ -254,16 +259,40 @@ def stream_imitator(stereo, audios_in_stream):
out, wav_name = next(it)
except StopIteration:
try:
next_wav = next(stereo_iter)
next_wav = next(audio_iter)
print('Loading next wav: ', next_wav)
wav = read_audio(next_wav)
iterators[i] = iter([(wav[i:i+4000], next_wav) for i in range(0, len(wav), 4000)])
iterators[i] = iter([(wav[i:i+num_samples], next_wav) for i in range(0, len(wav), num_samples)])
out, wav_name = next(iterators[i])
except StopIteration:
good_iters -= 1
iterators[i] = repeat((torch.zeros(4000), 'junk'))
iterators[i] = repeat((torch.zeros(num_samples), 'junk'))
out, wav_name = next(iterators[i])
if good_iters == 0:
return
values.append((out, wav_name))
yield values
def single_audio_stream(model, audio, extractor, onnx=False, trig_sum=0.26,
neg_trig_sum=0.01, num_steps=8):
num_samples = 4000
VADiter = VADiterator(trig_sum, neg_trig_sum, num_steps)
wav = read_audio(audio)
wav_chunks = iter([wav[i:i+num_samples] for i in range(0, len(wav), num_samples)])
for chunk in wav_chunks:
batch = VADiter.prepare_batch(chunk)
with torch.no_grad():
if onnx:
ort_inputs = {'input': to_numpy(extractor(batch))}
ort_outs = model.run(None, ort_inputs)
vad_outs = ort_outs[-2]
else:
outs = model(extractor(batch))
vad_outs = outs[-2]
states = []
state = VADiter.state(vad_outs)
if state[0]:
states.append(state[0])
yield states