mirror of
https://github.com/HumanAIGC-Engineering/gradio-webrtc.git
synced 2026-02-04 17:39:23 +08:00
* Add code * add code * add code * Rename messages * rename * add code * Add demo * docs + demos + bug fixes * add code * styles * user guide * Styles * Add code * misc docs updates * print nit * whisper + pr * url for images * whsiper update * Fix bugs * remove demo files * version number * Fix pypi readme * Fix * demos * Add llama code editor * Update llama code editor and object detection cookbook * Add more cookbook demos * add code * Fix links for PR deploys * add code * Fix the install * add tts * TTS docs * Typo * Pending bubbles for reply on pause * Stream redesign (#63) * better error handling * Websocket error handling * add code --------- Co-authored-by: Freddy Boulton <freddyboulton@hf-freddy.local> * remove docs from dist * Some docs typos * more typos * upload changes + docs * docs * better phone * update docs * add code * Make demos better * fix docs + websocket start_up * remove mention of FastAPI app * fastphone tweaks * add code * ReplyOnStopWord fixes * Fix cookbook * Fix pypi readme * add code * bump versions * sambanova cookbook * Fix tags * Llm voice chat * kyutai tag * Add error message to all index.html * STT module uses Moonshine * Not required from typing extensions * fix llm voice chat * Add vpn warning * demo fixes * demos * Add more ui args and gemini audio-video * update cookbook * version 9 --------- Co-authored-by: Freddy Boulton <freddyboulton@hf-freddy.local>
209 lines
6.6 KiB
Markdown
209 lines
6.6 KiB
Markdown
<div style='text-align: center; margin-bottom: 1rem; display: flex; justify-content: center; align-items: center;'>
|
|
<h1 style='color: white; margin: 0;'>FastRTC</h1>
|
|
<img src="/fastrtc_logo.png"
|
|
onerror="this.onerror=null; this.src='https://huggingface.co/datasets/freddyaboulton/bucket/resolve/main/fastrtc_logo.png';"
|
|
alt="FastRTC Logo"
|
|
style="height: 40px; margin-right: 10px;">
|
|
</div>
|
|
|
|
<div style="display: flex; flex-direction: row; justify-content: center">
|
|
<img style="display: block; padding-right: 5px; height: 20px;" alt="Static Badge" src="https://img.shields.io/pypi/v/fastrtc">
|
|
<a href="https://github.com/freddyaboulton/fastrtc" target="_blank"><img alt="Static Badge" src="https://img.shields.io/badge/github-white?logo=github&logoColor=black"></a>
|
|
</div>
|
|
|
|
<h3 style='text-align: center'>
|
|
The Real-Time Communication Library for Python.
|
|
</h3>
|
|
|
|
Turn any python function into a real-time audio and video stream over WebRTC or WebSockets.
|
|
## Installation
|
|
|
|
```bash
|
|
pip install fastrtc
|
|
```
|
|
|
|
to use built-in pause detection (see [ReplyOnPause](userguide/audio/#reply-on-pause)), and text to speech (see [Text To Speech](userguide/audio/#text-to-speech)), install the `vad` and `tts` extras:
|
|
|
|
```bash
|
|
pip install fastrtc[vad, tts]
|
|
```
|
|
|
|
## Quickstart
|
|
|
|
Import the [Stream](userguide/streams) class and pass in a [handler](userguide/streams/#handlers).
|
|
The `Stream` has three main methods:
|
|
|
|
- `.ui.launch()`: Launch a built-in UI for easily testing and sharing your stream. Built with [Gradio](https://www.gradio.app/).
|
|
- `.fastphone()`: Get a free temporary phone number to call into your stream. Hugging Face token required.
|
|
- `.mount(app)`: Mount the stream on a [FastAPI](https://fastapi.tiangolo.com/) app. Perfect for integrating with your already existing production system.
|
|
|
|
|
|
=== "Echo Audio"
|
|
|
|
```python
|
|
from fastrtc import Stream, ReplyOnPause
|
|
import numpy as np
|
|
|
|
def echo(audio: tuple[int, np.ndarray]):
|
|
# The function will be passed the audio until the user pauses
|
|
# Implement any iterator that yields audio
|
|
# See "LLM Voice Chat" for a more complete example
|
|
yield audio
|
|
|
|
stream = Stream(
|
|
handler=ReplyOnPause(detection),
|
|
modality="audio",
|
|
mode="send-receive",
|
|
)
|
|
```
|
|
|
|
=== "LLM Voice Chat"
|
|
|
|
```py
|
|
from fastrtc import (
|
|
ReplyOnPause, AdditionalOutputs, Stream,
|
|
audio_to_bytes, aggregate_bytes_to_16bit
|
|
)
|
|
import gradio as gr
|
|
from groq import Groq
|
|
import anthropic
|
|
from elevenlabs import ElevenLabs
|
|
|
|
groq_client = Groq()
|
|
claude_client = anthropic.Anthropic()
|
|
tts_client = ElevenLabs()
|
|
|
|
|
|
# See "Talk to Claude" in Cookbook for an example of how to keep
|
|
# track of the chat history.
|
|
def response(
|
|
audio: tuple[int, np.ndarray],
|
|
):
|
|
prompt = groq_client.audio.transcriptions.create(
|
|
file=("audio-file.mp3", audio_to_bytes(audio)),
|
|
model="whisper-large-v3-turbo",
|
|
response_format="verbose_json",
|
|
).text
|
|
response = claude_client.messages.create(
|
|
model="claude-3-5-haiku-20241022",
|
|
max_tokens=512,
|
|
messages=[{"role": "user", "content": prompt}],
|
|
)
|
|
response_text = " ".join(
|
|
block.text
|
|
for block in response.content
|
|
if getattr(block, "type", None) == "text"
|
|
)
|
|
iterator = tts_client.text_to_speech.convert_as_stream(
|
|
text=response_text,
|
|
voice_id="JBFqnCBsd6RMkjVDRZzb",
|
|
model_id="eleven_multilingual_v2",
|
|
output_format="pcm_24000"
|
|
|
|
)
|
|
for chunk in aggregate_bytes_to_16bit(iterator):
|
|
audio_array = np.frombuffer(chunk, dtype=np.int16).reshape(1, -1)
|
|
yield (24000, audio_array)
|
|
|
|
stream = Stream(
|
|
modality="audio",
|
|
mode="send-receive",
|
|
handler=ReplyOnPause(response),
|
|
)
|
|
```
|
|
|
|
=== "Webcam Stream"
|
|
|
|
```python
|
|
from fastrtc import Stream
|
|
import numpy as np
|
|
|
|
|
|
def flip_vertically(image):
|
|
return np.flip(image, axis=0)
|
|
|
|
|
|
stream = Stream(
|
|
handler=flip_vertically,
|
|
modality="video",
|
|
mode="send-receive",
|
|
)
|
|
```
|
|
|
|
=== "Object Detection"
|
|
|
|
```python
|
|
from fastrtc import Stream
|
|
import gradio as gr
|
|
import cv2
|
|
from huggingface_hub import hf_hub_download
|
|
from .inference import YOLOv10
|
|
|
|
model_file = hf_hub_download(
|
|
repo_id="onnx-community/yolov10n", filename="onnx/model.onnx"
|
|
)
|
|
|
|
# git clone https://huggingface.co/spaces/fastrtc/object-detection
|
|
# for YOLOv10 implementation
|
|
model = YOLOv10(model_file)
|
|
|
|
def detection(image, conf_threshold=0.3):
|
|
image = cv2.resize(image, (model.input_width, model.input_height))
|
|
new_image = model.detect_objects(image, conf_threshold)
|
|
return cv2.resize(new_image, (500, 500))
|
|
|
|
stream = Stream(
|
|
handler=detection,
|
|
modality="video",
|
|
mode="send-receive",
|
|
additional_inputs=[
|
|
gr.Slider(minimum=0, maximum=1, step=0.01, value=0.3)
|
|
]
|
|
)
|
|
```
|
|
|
|
Run:
|
|
=== "UI"
|
|
|
|
```py
|
|
stream.ui.launch()
|
|
```
|
|
|
|
=== "Telephone"
|
|
|
|
```py
|
|
stream.fastphone()
|
|
```
|
|
|
|
=== "FastAPI"
|
|
|
|
```py
|
|
app = FastAPI()
|
|
stream.mount(app)
|
|
|
|
# Optional: Add routes
|
|
@app.get("/")
|
|
async def _():
|
|
return HTMLResponse(content=open("index.html").read())
|
|
|
|
# uvicorn app:app --host 0.0.0.0 --port 8000
|
|
```
|
|
|
|
Learn more about the [Stream](userguide/streams) in the user guide.
|
|
## Key Features
|
|
|
|
:speaking_head:{ .lg } Automatic Voice Detection and Turn Taking built-in, only worry about the logic for responding to the user.
|
|
|
|
:material-laptop:{ .lg } Automatic UI - Use the `.ui.launch()` method to launch the webRTC-enabled built-in Gradio UI.
|
|
|
|
:material-lightning-bolt:{ .lg } Automatic WebRTC Support - Use the `.mount(app)` method to mount the stream on a FastAPI app and get a webRTC endpoint for your own frontend!
|
|
|
|
:simple-webstorm:{ .lg } Websocket Support - Use the `.mount(app)` method to mount the stream on a FastAPI app and get a websocket endpoint for your own frontend!
|
|
|
|
:telephone:{ .lg } Automatic Telephone Support - Use the `fastphone()` method of the stream to launch the application and get a free temporary phone number!
|
|
|
|
:robot:{ .lg } Completely customizable backend - A `Stream` can easily be mounted on a FastAPI app so you can easily extend it to fit your production application. See the [Talk To Claude](https://huggingface.co/spaces/fastrtc/talk-to-claude) demo for an example on how to serve a custom JS frontend.
|
|
|
|
|
|
## Examples
|
|
See the [cookbook](/cookbook). |