mirror of
https://github.com/HumanAIGC-Engineering/gradio-webrtc.git
synced 2026-02-04 17:39:23 +08:00
first cut
This commit is contained in:
@@ -1,3 +1,4 @@
|
||||
from .webrtc import StreamHandler, WebRTC
|
||||
from .reply_on_pause import ReplyOnPause
|
||||
|
||||
__all__ = ["StreamHandler", "WebRTC"]
|
||||
__all__ = ["ReplyOnPause", "StreamHandler", "WebRTC"]
|
||||
|
||||
4
backend/gradio_webrtc/pause_detection/__init__.py
Normal file
4
backend/gradio_webrtc/pause_detection/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from .vad import SileroVADModel, SileroVadOptions
|
||||
|
||||
|
||||
__all__ = ["SileroVADModel", "SileroVadOptions"]
|
||||
294
backend/gradio_webrtc/pause_detection/vad.py
Normal file
294
backend/gradio_webrtc/pause_detection/vad.py
Normal file
@@ -0,0 +1,294 @@
|
||||
import logging
|
||||
import warnings
|
||||
from dataclasses import dataclass
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class SileroVadOptions:
|
||||
"""VAD options.
|
||||
|
||||
Attributes:
|
||||
threshold: Speech threshold. Silero VAD outputs speech probabilities for each audio chunk,
|
||||
probabilities ABOVE this value are considered as SPEECH. It is better to tune this
|
||||
parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets.
|
||||
min_speech_duration_ms: Final speech chunks shorter min_speech_duration_ms are thrown out.
|
||||
max_speech_duration_s: Maximum duration of speech chunks in seconds. Chunks longer
|
||||
than max_speech_duration_s will be split at the timestamp of the last silence that
|
||||
lasts more than 100ms (if any), to prevent aggressive cutting. Otherwise, they will be
|
||||
split aggressively just before max_speech_duration_s.
|
||||
min_silence_duration_ms: In the end of each speech chunk wait for min_silence_duration_ms
|
||||
before separating it
|
||||
window_size_samples: Audio chunks of window_size_samples size are fed to the silero VAD model.
|
||||
WARNING! Silero VAD models were trained using 512, 1024, 1536 samples for 16000 sample rate.
|
||||
Values other than these may affect model performance!!
|
||||
speech_pad_ms: Final speech chunks are padded by speech_pad_ms each side
|
||||
speech_duration: If the length of the speech is less than this value, a pause will be detected.
|
||||
"""
|
||||
|
||||
threshold: float = 0.5
|
||||
min_speech_duration_ms: int = 250
|
||||
max_speech_duration_s: float = float("inf")
|
||||
min_silence_duration_ms: int = 2000
|
||||
window_size_samples: int = 1024
|
||||
speech_pad_ms: int = 400
|
||||
|
||||
|
||||
class SileroVADModel:
|
||||
@staticmethod
|
||||
def download_model() -> str:
|
||||
return hf_hub_download(
|
||||
repo_id="freddyaboulton/silero-vad", filename="silero_vad.onnx"
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
try:
|
||||
import onnxruntime
|
||||
except ImportError as e:
|
||||
raise RuntimeError(
|
||||
"Applying the VAD filter requires the onnxruntime package"
|
||||
) from e
|
||||
|
||||
path = self.download_model()
|
||||
|
||||
opts = onnxruntime.SessionOptions()
|
||||
opts.inter_op_num_threads = 1
|
||||
opts.intra_op_num_threads = 1
|
||||
opts.log_severity_level = 4
|
||||
|
||||
self.session = onnxruntime.InferenceSession(
|
||||
path,
|
||||
providers=["CPUExecutionProvider"],
|
||||
sess_options=opts,
|
||||
)
|
||||
|
||||
def get_initial_state(self, batch_size: int):
|
||||
h = np.zeros((2, batch_size, 64), dtype=np.float32)
|
||||
c = np.zeros((2, batch_size, 64), dtype=np.float32)
|
||||
return h, c
|
||||
|
||||
@staticmethod
|
||||
def collect_chunks(audio: np.ndarray, chunks: List[dict]) -> np.ndarray:
|
||||
"""Collects and concatenates audio chunks."""
|
||||
if not chunks:
|
||||
return np.array([], dtype=np.float32)
|
||||
|
||||
return np.concatenate(
|
||||
[audio[chunk["start"] : chunk["end"]] for chunk in chunks]
|
||||
)
|
||||
|
||||
def get_speech_timestamps(
|
||||
self,
|
||||
audio: np.ndarray,
|
||||
vad_options: SileroVadOptions,
|
||||
**kwargs,
|
||||
) -> List[dict]:
|
||||
"""This method is used for splitting long audios into speech chunks using silero VAD.
|
||||
|
||||
Args:
|
||||
audio: One dimensional float array.
|
||||
vad_options: Options for VAD processing.
|
||||
kwargs: VAD options passed as keyword arguments for backward compatibility.
|
||||
|
||||
Returns:
|
||||
List of dicts containing begin and end samples of each speech chunk.
|
||||
"""
|
||||
|
||||
threshold = vad_options.threshold
|
||||
min_speech_duration_ms = vad_options.min_speech_duration_ms
|
||||
max_speech_duration_s = vad_options.max_speech_duration_s
|
||||
min_silence_duration_ms = vad_options.min_silence_duration_ms
|
||||
window_size_samples = vad_options.window_size_samples
|
||||
speech_pad_ms = vad_options.speech_pad_ms
|
||||
|
||||
if window_size_samples not in [512, 1024, 1536]:
|
||||
warnings.warn(
|
||||
"Unusual window_size_samples! Supported window_size_samples:\n"
|
||||
" - [512, 1024, 1536] for 16000 sampling_rate"
|
||||
)
|
||||
|
||||
sampling_rate = 16000
|
||||
min_speech_samples = sampling_rate * min_speech_duration_ms / 1000
|
||||
speech_pad_samples = sampling_rate * speech_pad_ms / 1000
|
||||
max_speech_samples = (
|
||||
sampling_rate * max_speech_duration_s
|
||||
- window_size_samples
|
||||
- 2 * speech_pad_samples
|
||||
)
|
||||
min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
|
||||
min_silence_samples_at_max_speech = sampling_rate * 98 / 1000
|
||||
|
||||
audio_length_samples = len(audio)
|
||||
|
||||
state = self.get_initial_state(batch_size=1)
|
||||
|
||||
speech_probs = []
|
||||
for current_start_sample in range(0, audio_length_samples, window_size_samples):
|
||||
chunk = audio[
|
||||
current_start_sample : current_start_sample + window_size_samples
|
||||
]
|
||||
if len(chunk) < window_size_samples:
|
||||
chunk = np.pad(chunk, (0, int(window_size_samples - len(chunk))))
|
||||
speech_prob, state = self(chunk, state, sampling_rate)
|
||||
speech_probs.append(speech_prob)
|
||||
|
||||
triggered = False
|
||||
speeches = []
|
||||
current_speech = {}
|
||||
neg_threshold = threshold - 0.15
|
||||
|
||||
# to save potential segment end (and tolerate some silence)
|
||||
temp_end = 0
|
||||
# to save potential segment limits in case of maximum segment size reached
|
||||
prev_end = next_start = 0
|
||||
|
||||
for i, speech_prob in enumerate(speech_probs):
|
||||
if (speech_prob >= threshold) and temp_end:
|
||||
temp_end = 0
|
||||
if next_start < prev_end:
|
||||
next_start = window_size_samples * i
|
||||
|
||||
if (speech_prob >= threshold) and not triggered:
|
||||
triggered = True
|
||||
current_speech["start"] = window_size_samples * i
|
||||
continue
|
||||
|
||||
if (
|
||||
triggered
|
||||
and (window_size_samples * i) - current_speech["start"]
|
||||
> max_speech_samples
|
||||
):
|
||||
if prev_end:
|
||||
current_speech["end"] = prev_end
|
||||
speeches.append(current_speech)
|
||||
current_speech = {}
|
||||
# previously reached silence (< neg_thres) and is still not speech (< thres)
|
||||
if next_start < prev_end:
|
||||
triggered = False
|
||||
else:
|
||||
current_speech["start"] = next_start
|
||||
prev_end = next_start = temp_end = 0
|
||||
else:
|
||||
current_speech["end"] = window_size_samples * i
|
||||
speeches.append(current_speech)
|
||||
current_speech = {}
|
||||
prev_end = next_start = temp_end = 0
|
||||
triggered = False
|
||||
continue
|
||||
|
||||
if (speech_prob < neg_threshold) and triggered:
|
||||
if not temp_end:
|
||||
temp_end = window_size_samples * i
|
||||
# condition to avoid cutting in very short silence
|
||||
if (
|
||||
window_size_samples * i
|
||||
) - temp_end > min_silence_samples_at_max_speech:
|
||||
prev_end = temp_end
|
||||
if (window_size_samples * i) - temp_end < min_silence_samples:
|
||||
continue
|
||||
else:
|
||||
current_speech["end"] = temp_end
|
||||
if (
|
||||
current_speech["end"] - current_speech["start"]
|
||||
) > min_speech_samples:
|
||||
speeches.append(current_speech)
|
||||
current_speech = {}
|
||||
prev_end = next_start = temp_end = 0
|
||||
triggered = False
|
||||
continue
|
||||
|
||||
if (
|
||||
current_speech
|
||||
and (audio_length_samples - current_speech["start"]) > min_speech_samples
|
||||
):
|
||||
current_speech["end"] = audio_length_samples
|
||||
speeches.append(current_speech)
|
||||
|
||||
for i, speech in enumerate(speeches):
|
||||
if i == 0:
|
||||
speech["start"] = int(max(0, speech["start"] - speech_pad_samples))
|
||||
if i != len(speeches) - 1:
|
||||
silence_duration = speeches[i + 1]["start"] - speech["end"]
|
||||
if silence_duration < 2 * speech_pad_samples:
|
||||
speech["end"] += int(silence_duration // 2)
|
||||
speeches[i + 1]["start"] = int(
|
||||
max(0, speeches[i + 1]["start"] - silence_duration // 2)
|
||||
)
|
||||
else:
|
||||
speech["end"] = int(
|
||||
min(audio_length_samples, speech["end"] + speech_pad_samples)
|
||||
)
|
||||
speeches[i + 1]["start"] = int(
|
||||
max(0, speeches[i + 1]["start"] - speech_pad_samples)
|
||||
)
|
||||
else:
|
||||
speech["end"] = int(
|
||||
min(audio_length_samples, speech["end"] + speech_pad_samples)
|
||||
)
|
||||
|
||||
return speeches
|
||||
|
||||
def vad(
|
||||
self, audio_tuple: tuple[int, np.ndarray], vad_parameters: None | SileroVadOptions
|
||||
) -> float:
|
||||
|
||||
sampling_rate, audio = audio_tuple
|
||||
logger.debug("VAD audio shape input: %s", audio.shape)
|
||||
try:
|
||||
audio = audio.astype(np.float32) / 32768.0
|
||||
sr = 16000
|
||||
if sr != sampling_rate:
|
||||
try:
|
||||
import librosa # type: ignore
|
||||
except ImportError as e:
|
||||
raise RuntimeError(
|
||||
"Applying the VAD filter requires the librosa if the input sampling rate is not 16000hz"
|
||||
) from e
|
||||
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=sr)
|
||||
|
||||
if not vad_parameters:
|
||||
vad_parameters = SileroVadOptions()
|
||||
speech_chunks = self.get_speech_timestamps(audio, vad_parameters)
|
||||
logger.debug("VAD speech chunks: %s", speech_chunks)
|
||||
audio = self.collect_chunks(audio, speech_chunks)
|
||||
logger.debug("VAD audio shape: %s", audio.shape)
|
||||
duration_after_vad = audio.shape[0] / sr
|
||||
|
||||
return duration_after_vad
|
||||
except Exception as e:
|
||||
import math
|
||||
import traceback
|
||||
logger.debug("VAD Exception: %s", str(e))
|
||||
exec = traceback.format_exc()
|
||||
logger.debug("traceback %s", exec)
|
||||
return math.inf
|
||||
|
||||
def __call__(self, x, state, sr: int):
|
||||
if len(x.shape) == 1:
|
||||
x = np.expand_dims(x, 0)
|
||||
if len(x.shape) > 2:
|
||||
raise ValueError(
|
||||
f"Too many dimensions for input audio chunk {len(x.shape)}"
|
||||
)
|
||||
if sr / x.shape[1] > 31.25:
|
||||
raise ValueError("Input audio chunk is too short")
|
||||
|
||||
h, c = state
|
||||
|
||||
ort_inputs = {
|
||||
"input": x,
|
||||
"h": h,
|
||||
"c": c,
|
||||
"sr": np.array(sr, dtype="int64"),
|
||||
}
|
||||
|
||||
out, h, c = self.session.run(None, ort_inputs)
|
||||
state = (h, c)
|
||||
|
||||
return out, state
|
||||
128
backend/gradio_webrtc/reply_on_pause.py
Normal file
128
backend/gradio_webrtc/reply_on_pause.py
Normal file
@@ -0,0 +1,128 @@
|
||||
from typing import Callable, Literal, Generator, cast
|
||||
from functools import lru_cache
|
||||
from dataclasses import dataclass
|
||||
from threading import Event
|
||||
from logging import getLogger
|
||||
|
||||
import numpy as np
|
||||
|
||||
from gradio_webrtc.pause_detection import SileroVADModel, SileroVadOptions
|
||||
from gradio_webrtc.webrtc import StreamHandler
|
||||
|
||||
logger = getLogger(__name__)
|
||||
|
||||
counter = 0
|
||||
|
||||
@lru_cache
|
||||
def get_vad_model() -> SileroVADModel:
|
||||
"""Returns the VAD model instance."""
|
||||
return SileroVADModel()
|
||||
|
||||
|
||||
@dataclass
|
||||
class AlgoOptions:
|
||||
"""Algorithm options."""
|
||||
audio_chunk_duration: float = 0.6
|
||||
started_talking_threshold: float = 0.2
|
||||
speech_threshold: float = 0.1
|
||||
|
||||
|
||||
@dataclass
|
||||
class AppState:
|
||||
stream: np.ndarray | None = None
|
||||
sampling_rate: int = 0
|
||||
pause_detected: bool = False
|
||||
started_talking: bool = False
|
||||
responding: bool = False
|
||||
stopped: bool = False
|
||||
buffer: np.ndarray | None = None
|
||||
|
||||
|
||||
ReplyFnGenerator = Callable[[tuple[int, np.ndarray]], Generator[tuple[int, np.ndarray] | tuple[int, np.ndarray, Literal["mono", "stereo"]], None, None]]
|
||||
|
||||
class ReplyOnPause(StreamHandler):
|
||||
def __init__(self, fn: ReplyFnGenerator,
|
||||
algo_options: AlgoOptions | None = None,
|
||||
model_options: SileroVadOptions | None = None,
|
||||
expected_layout: Literal["mono", "stereo"] = "mono",
|
||||
output_sample_rate: int = 24000,
|
||||
output_frame_size: int = 960,):
|
||||
super().__init__(expected_layout,
|
||||
output_sample_rate, output_frame_size)
|
||||
self.expected_layout: Literal["mono", "stereo"] = expected_layout
|
||||
self.output_sample_rate = output_sample_rate
|
||||
self.output_frame_size = output_frame_size
|
||||
self.model = get_vad_model()
|
||||
self.fn = fn
|
||||
self.event = Event()
|
||||
self.state = AppState()
|
||||
self.generator = None
|
||||
self.model_options = model_options
|
||||
self.algo_options = algo_options or AlgoOptions()
|
||||
|
||||
def copy(self):
|
||||
return ReplyOnPause(self.fn, self.algo_options, self.model_options,
|
||||
self.expected_layout, self.output_sample_rate, self.output_frame_size)
|
||||
|
||||
def determine_pause(self, audio: np.ndarray, sampling_rate: int, state: AppState) -> bool:
|
||||
"""Take in the stream, determine if a pause happened"""
|
||||
duration = len(audio) / sampling_rate
|
||||
|
||||
if duration >= self.algo_options.audio_chunk_duration:
|
||||
dur_vad = self.model.vad((sampling_rate, audio), self.model_options)
|
||||
logger.debug("VAD duration: %s", dur_vad)
|
||||
if dur_vad > self.algo_options.started_talking_threshold and not state.started_talking:
|
||||
state.started_talking = True
|
||||
logger.debug("Started talking")
|
||||
if state.started_talking:
|
||||
if state.stream is None:
|
||||
state.stream = audio
|
||||
else:
|
||||
state.stream = np.concatenate((state.stream, audio))
|
||||
state.buffer = None
|
||||
if dur_vad < self.algo_options.speech_threshold and state.started_talking:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def process_audio(self, audio: tuple[int, np.ndarray], state: AppState) -> None:
|
||||
frame_rate, array = audio
|
||||
array = np.squeeze(array)
|
||||
if not state.sampling_rate:
|
||||
state.sampling_rate = frame_rate
|
||||
if state.buffer is None:
|
||||
state.buffer = array
|
||||
else:
|
||||
state.buffer = np.concatenate((state.buffer, array))
|
||||
|
||||
pause_detected = self.determine_pause(state.buffer, state.sampling_rate, self.state)
|
||||
state.pause_detected = pause_detected
|
||||
|
||||
|
||||
def receive(self, frame: tuple[int, np.ndarray]) -> None:
|
||||
if self.state.responding:
|
||||
return
|
||||
self.process_audio(frame, self.state)
|
||||
if self.state.pause_detected:
|
||||
self.event.set()
|
||||
|
||||
def reset(self):
|
||||
self.generator = None
|
||||
self.event.clear()
|
||||
self.state = AppState()
|
||||
|
||||
def emit(self):
|
||||
if not self.event.is_set():
|
||||
return None
|
||||
else:
|
||||
if not self.generator:
|
||||
audio = cast(np.ndarray, self.state.stream).reshape(1, -1)
|
||||
self.generator = self.fn((self.state.sampling_rate, audio))
|
||||
self.state.responding = True
|
||||
try:
|
||||
return next(self.generator)
|
||||
except StopIteration:
|
||||
self.reset()
|
||||
|
||||
|
||||
|
||||
@@ -55,7 +55,7 @@ async def player_worker_decode(
|
||||
|
||||
# Convert to audio frame and resample
|
||||
# This runs in the same timeout context
|
||||
frame = av.AudioFrame.from_ndarray(
|
||||
frame = av.AudioFrame.from_ndarray( # type: ignore
|
||||
audio_array, format=format, layout=layout
|
||||
)
|
||||
frame.sample_rate = sample_rate
|
||||
|
||||
@@ -11,6 +11,7 @@ import traceback
|
||||
from abc import ABC, abstractmethod
|
||||
from collections.abc import Callable
|
||||
from typing import TYPE_CHECKING, Any, Generator, Literal, Sequence, cast
|
||||
from copy import deepcopy
|
||||
|
||||
import anyio.to_thread
|
||||
import av
|
||||
@@ -117,6 +118,12 @@ class StreamHandler(ABC):
|
||||
self.output_frame_size = output_frame_size
|
||||
self._resampler = None
|
||||
|
||||
def copy(self) -> "StreamHandler":
|
||||
try:
|
||||
return deepcopy(self)
|
||||
except Exception:
|
||||
raise ValueError("Current StreamHandler implementation cannot be deepcopied. Implement the copy method.")
|
||||
|
||||
def resample(self, frame: AudioFrame) -> Generator[AudioFrame, None, None]:
|
||||
if self._resampler is None:
|
||||
self._resampler = av.AudioResampler( # type: ignore
|
||||
@@ -622,7 +629,7 @@ class WebRTC(Component):
|
||||
elif self.modality == "audio":
|
||||
cb = AudioCallback(
|
||||
relay.subscribe(track),
|
||||
event_handler=cast(StreamHandler, self.event_handler),
|
||||
event_handler=cast(StreamHandler, self.event_handler).copy(),
|
||||
)
|
||||
self.connections[body["webrtc_id"]] = cb
|
||||
logger.debug("Adding track to peer connection %s", cb)
|
||||
|
||||
@@ -13,7 +13,7 @@ description = "Stream images in realtime with webrtc"
|
||||
readme = "README.md"
|
||||
license = "apache-2.0"
|
||||
requires-python = ">=3.10"
|
||||
authors = [{ name = "YOUR NAME", email = "YOUREMAIL@domain.com" }]
|
||||
authors = [{ name = "Freddy Boulton", email = "YOUREMAIL@domain.com" }]
|
||||
keywords = ["gradio-custom-component", "gradio-template-Video", "streaming", "webrtc", "realtime"]
|
||||
# Add dependencies here
|
||||
dependencies = ["gradio>=4.0,<6.0", "aiortc"]
|
||||
@@ -22,10 +22,10 @@ classifiers = [
|
||||
'Operating System :: OS Independent',
|
||||
'Programming Language :: Python :: 3',
|
||||
'Programming Language :: Python :: 3 :: Only',
|
||||
'Programming Language :: Python :: 3.8',
|
||||
'Programming Language :: Python :: 3.9',
|
||||
'Programming Language :: Python :: 3.10',
|
||||
'Programming Language :: Python :: 3.11',
|
||||
'Programming Language :: Python :: 3.12',
|
||||
'Topic :: Scientific/Engineering',
|
||||
'Topic :: Scientific/Engineering :: Artificial Intelligence',
|
||||
'Topic :: Scientific/Engineering :: Visualization',
|
||||
|
||||
Reference in New Issue
Block a user