Files
MuseTalk/musetalk/loss/syncnet.py
Zhizhou Zhong 1ab53a626b feat: data preprocessing and training (#294)
* docs: update readme

* docs: update readme

* feat: training codes

* feat: data preprocess

* docs: release training
2025-04-04 22:10:03 +08:00

95 lines
4.1 KiB
Python
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import torch
from torch import nn
from torch.nn import functional as F
from .conv import Conv2d
logloss = nn.BCELoss(reduction="none")
def cosine_loss(a, v, y):
d = nn.functional.cosine_similarity(a, v)
d = d.clamp(0,1) # cosine_similarity的取值范围是【-11】BCE如果输入负数会报错RuntimeError: CUDA error: device-side assert triggered
loss = logloss(d.unsqueeze(1), y).squeeze()
loss = loss.mean()
return loss, d
def get_sync_loss(
audio_embed,
gt_frames,
pred_frames,
syncnet,
adapted_weight,
frames_left_index=0,
frames_right_index=16,
):
# 跟gt_frames做随机的插入交换节省显存开销
assert pred_frames.shape[1] == (frames_right_index - frames_left_index) * 3
# 3通道图像
frames_sync_loss = torch.cat(
[gt_frames[:, :3 * frames_left_index, ...], pred_frames, gt_frames[:, 3 * frames_right_index:, ...]],
axis=1
)
vision_embed = syncnet.get_image_embed(frames_sync_loss)
y = torch.ones(frames_sync_loss.size(0), 1).float().to(audio_embed.device)
loss, score = cosine_loss(audio_embed, vision_embed, y)
return loss, score
class SyncNet_color(nn.Module):
def __init__(self):
super(SyncNet_color, self).__init__()
self.face_encoder = nn.Sequential(
Conv2d(15, 32, kernel_size=(7, 7), stride=1, padding=3),
Conv2d(32, 64, kernel_size=5, stride=(1, 2), padding=1),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 128, kernel_size=3, stride=2, padding=1),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 256, kernel_size=3, stride=2, padding=1),
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(256, 512, kernel_size=3, stride=2, padding=1),
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(512, 512, kernel_size=3, stride=2, padding=1),
Conv2d(512, 512, kernel_size=3, stride=1, padding=0),
Conv2d(512, 512, kernel_size=1, stride=1, padding=0),)
self.audio_encoder = nn.Sequential(
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
Conv2d(512, 512, kernel_size=1, stride=1, padding=0),)
def forward(self, audio_sequences, face_sequences): # audio_sequences := (B, dim, T)
face_embedding = self.face_encoder(face_sequences)
audio_embedding = self.audio_encoder(audio_sequences)
audio_embedding = audio_embedding.view(audio_embedding.size(0), -1)
face_embedding = face_embedding.view(face_embedding.size(0), -1)
audio_embedding = F.normalize(audio_embedding, p=2, dim=1)
face_embedding = F.normalize(face_embedding, p=2, dim=1)
return audio_embedding, face_embedding