import torch from torch import nn from torch.nn import functional as F from .conv import Conv2d logloss = nn.BCELoss(reduction="none") def cosine_loss(a, v, y): d = nn.functional.cosine_similarity(a, v) d = d.clamp(0,1) # cosine_similarity的取值范围是【-1,1】,BCE如果输入负数会报错RuntimeError: CUDA error: device-side assert triggered loss = logloss(d.unsqueeze(1), y).squeeze() loss = loss.mean() return loss, d def get_sync_loss( audio_embed, gt_frames, pred_frames, syncnet, adapted_weight, frames_left_index=0, frames_right_index=16, ): # 跟gt_frames做随机的插入交换,节省显存开销 assert pred_frames.shape[1] == (frames_right_index - frames_left_index) * 3 # 3通道图像 frames_sync_loss = torch.cat( [gt_frames[:, :3 * frames_left_index, ...], pred_frames, gt_frames[:, 3 * frames_right_index:, ...]], axis=1 ) vision_embed = syncnet.get_image_embed(frames_sync_loss) y = torch.ones(frames_sync_loss.size(0), 1).float().to(audio_embed.device) loss, score = cosine_loss(audio_embed, vision_embed, y) return loss, score class SyncNet_color(nn.Module): def __init__(self): super(SyncNet_color, self).__init__() self.face_encoder = nn.Sequential( Conv2d(15, 32, kernel_size=(7, 7), stride=1, padding=3), Conv2d(32, 64, kernel_size=5, stride=(1, 2), padding=1), Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(64, 128, kernel_size=3, stride=2, padding=1), Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(128, 256, kernel_size=3, stride=2, padding=1), Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(256, 512, kernel_size=3, stride=2, padding=1), Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(512, 512, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(512, 512, kernel_size=3, stride=2, padding=1), Conv2d(512, 512, kernel_size=3, stride=1, padding=0), Conv2d(512, 512, kernel_size=1, stride=1, padding=0),) self.audio_encoder = nn.Sequential( Conv2d(1, 32, kernel_size=3, stride=1, padding=1), Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1), Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(64, 128, kernel_size=3, stride=3, padding=1), Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1), Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True), Conv2d(256, 512, kernel_size=3, stride=1, padding=0), Conv2d(512, 512, kernel_size=1, stride=1, padding=0),) def forward(self, audio_sequences, face_sequences): # audio_sequences := (B, dim, T) face_embedding = self.face_encoder(face_sequences) audio_embedding = self.audio_encoder(audio_sequences) audio_embedding = audio_embedding.view(audio_embedding.size(0), -1) face_embedding = face_embedding.view(face_embedding.size(0), -1) audio_embedding = F.normalize(audio_embedding, p=2, dim=1) face_embedding = F.normalize(face_embedding, p=2, dim=1) return audio_embedding, face_embedding