initial_commit

This commit is contained in:
czk32611
2024-04-02 17:56:58 +08:00
commit d861498ae3
71 changed files with 107480 additions and 0 deletions

View File

@@ -0,0 +1 @@
The code for Face Detection in this folder has been taken from the wonderful [face_alignment](https://github.com/1adrianb/face-alignment) repository. This has been modified to take batches of faces at a time.

View File

@@ -0,0 +1,7 @@
# -*- coding: utf-8 -*-
__author__ = """Adrian Bulat"""
__email__ = 'adrian.bulat@nottingham.ac.uk'
__version__ = '1.0.1'
from .api import FaceAlignment, LandmarksType, NetworkSize, YOLOv8_face

View File

@@ -0,0 +1,240 @@
from __future__ import print_function
import os
import torch
from torch.utils.model_zoo import load_url
from enum import Enum
import numpy as np
import cv2
try:
import urllib.request as request_file
except BaseException:
import urllib as request_file
from .models import FAN, ResNetDepth
from .utils import *
class LandmarksType(Enum):
"""Enum class defining the type of landmarks to detect.
``_2D`` - the detected points ``(x,y)`` are detected in a 2D space and follow the visible contour of the face
``_2halfD`` - this points represent the projection of the 3D points into 3D
``_3D`` - detect the points ``(x,y,z)``` in a 3D space
"""
_2D = 1
_2halfD = 2
_3D = 3
class NetworkSize(Enum):
# TINY = 1
# SMALL = 2
# MEDIUM = 3
LARGE = 4
def __new__(cls, value):
member = object.__new__(cls)
member._value_ = value
return member
def __int__(self):
return self.value
class FaceAlignment:
def __init__(self, landmarks_type, network_size=NetworkSize.LARGE,
device='cuda', flip_input=False, face_detector='sfd', verbose=False):
self.device = device
self.flip_input = flip_input
self.landmarks_type = landmarks_type
self.verbose = verbose
network_size = int(network_size)
if 'cuda' in device:
torch.backends.cudnn.benchmark = True
# torch.backends.cuda.matmul.allow_tf32 = False
# torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = False
# torch.backends.cudnn.allow_tf32 = True
print('cuda start')
# Get the face detector
face_detector_module = __import__('face_detection.detection.' + face_detector,
globals(), locals(), [face_detector], 0)
self.face_detector = face_detector_module.FaceDetector(device=device, verbose=verbose)
def get_detections_for_batch(self, images):
images = images[..., ::-1]
detected_faces = self.face_detector.detect_from_batch(images.copy())
results = []
for i, d in enumerate(detected_faces):
if len(d) == 0:
results.append(None)
continue
d = d[0]
d = np.clip(d, 0, None)
x1, y1, x2, y2 = map(int, d[:-1])
results.append((x1, y1, x2, y2))
return results
class YOLOv8_face:
def __init__(self, path = 'face_detection/weights/yolov8n-face.onnx', conf_thres=0.2, iou_thres=0.5):
self.conf_threshold = conf_thres
self.iou_threshold = iou_thres
self.class_names = ['face']
self.num_classes = len(self.class_names)
# Initialize model
self.net = cv2.dnn.readNet(path)
self.input_height = 640
self.input_width = 640
self.reg_max = 16
self.project = np.arange(self.reg_max)
self.strides = (8, 16, 32)
self.feats_hw = [(math.ceil(self.input_height / self.strides[i]), math.ceil(self.input_width / self.strides[i])) for i in range(len(self.strides))]
self.anchors = self.make_anchors(self.feats_hw)
def make_anchors(self, feats_hw, grid_cell_offset=0.5):
"""Generate anchors from features."""
anchor_points = {}
for i, stride in enumerate(self.strides):
h,w = feats_hw[i]
x = np.arange(0, w) + grid_cell_offset # shift x
y = np.arange(0, h) + grid_cell_offset # shift y
sx, sy = np.meshgrid(x, y)
# sy, sx = np.meshgrid(y, x)
anchor_points[stride] = np.stack((sx, sy), axis=-1).reshape(-1, 2)
return anchor_points
def softmax(self, x, axis=1):
x_exp = np.exp(x)
# 如果是列向量则axis=0
x_sum = np.sum(x_exp, axis=axis, keepdims=True)
s = x_exp / x_sum
return s
def resize_image(self, srcimg, keep_ratio=True):
top, left, newh, neww = 0, 0, self.input_width, self.input_height
if keep_ratio and srcimg.shape[0] != srcimg.shape[1]:
hw_scale = srcimg.shape[0] / srcimg.shape[1]
if hw_scale > 1:
newh, neww = self.input_height, int(self.input_width / hw_scale)
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
left = int((self.input_width - neww) * 0.5)
img = cv2.copyMakeBorder(img, 0, 0, left, self.input_width - neww - left, cv2.BORDER_CONSTANT,
value=(0, 0, 0)) # add border
else:
newh, neww = int(self.input_height * hw_scale), self.input_width
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
top = int((self.input_height - newh) * 0.5)
img = cv2.copyMakeBorder(img, top, self.input_height - newh - top, 0, 0, cv2.BORDER_CONSTANT,
value=(0, 0, 0))
else:
img = cv2.resize(srcimg, (self.input_width, self.input_height), interpolation=cv2.INTER_AREA)
return img, newh, neww, top, left
def detect(self, srcimg):
input_img, newh, neww, padh, padw = self.resize_image(cv2.cvtColor(srcimg, cv2.COLOR_BGR2RGB))
scale_h, scale_w = srcimg.shape[0]/newh, srcimg.shape[1]/neww
input_img = input_img.astype(np.float32) / 255.0
blob = cv2.dnn.blobFromImage(input_img)
self.net.setInput(blob)
outputs = self.net.forward(self.net.getUnconnectedOutLayersNames())
# if isinstance(outputs, tuple):
# outputs = list(outputs)
# if float(cv2.__version__[:3])>=4.7:
# outputs = [outputs[2], outputs[0], outputs[1]] ###opencv4.7需要这一步opencv4.5不需要
# Perform inference on the image
det_bboxes, det_conf, det_classid, landmarks = self.post_process(outputs, scale_h, scale_w, padh, padw)
return det_bboxes, det_conf, det_classid, landmarks
def post_process(self, preds, scale_h, scale_w, padh, padw):
bboxes, scores, landmarks = [], [], []
for i, pred in enumerate(preds):
stride = int(self.input_height/pred.shape[2])
pred = pred.transpose((0, 2, 3, 1))
box = pred[..., :self.reg_max * 4]
cls = 1 / (1 + np.exp(-pred[..., self.reg_max * 4:-15])).reshape((-1,1))
kpts = pred[..., -15:].reshape((-1,15)) ### x1,y1,score1, ..., x5,y5,score5
# tmp = box.reshape(self.feats_hw[i][0], self.feats_hw[i][1], 4, self.reg_max)
tmp = box.reshape(-1, 4, self.reg_max)
bbox_pred = self.softmax(tmp, axis=-1)
bbox_pred = np.dot(bbox_pred, self.project).reshape((-1,4))
bbox = self.distance2bbox(self.anchors[stride], bbox_pred, max_shape=(self.input_height, self.input_width)) * stride
kpts[:, 0::3] = (kpts[:, 0::3] * 2.0 + (self.anchors[stride][:, 0].reshape((-1,1)) - 0.5)) * stride
kpts[:, 1::3] = (kpts[:, 1::3] * 2.0 + (self.anchors[stride][:, 1].reshape((-1,1)) - 0.5)) * stride
kpts[:, 2::3] = 1 / (1+np.exp(-kpts[:, 2::3]))
bbox -= np.array([[padw, padh, padw, padh]]) ###合理使用广播法则
bbox *= np.array([[scale_w, scale_h, scale_w, scale_h]])
kpts -= np.tile(np.array([padw, padh, 0]), 5).reshape((1,15))
kpts *= np.tile(np.array([scale_w, scale_h, 1]), 5).reshape((1,15))
bboxes.append(bbox)
scores.append(cls)
landmarks.append(kpts)
bboxes = np.concatenate(bboxes, axis=0)
scores = np.concatenate(scores, axis=0)
landmarks = np.concatenate(landmarks, axis=0)
bboxes_wh = bboxes.copy()
bboxes_wh[:, 2:4] = bboxes[:, 2:4] - bboxes[:, 0:2] ####xywh
classIds = np.argmax(scores, axis=1)
confidences = np.max(scores, axis=1) ####max_class_confidence
mask = confidences>self.conf_threshold
bboxes_wh = bboxes_wh[mask] ###合理使用广播法则
confidences = confidences[mask]
classIds = classIds[mask]
landmarks = landmarks[mask]
indices = cv2.dnn.NMSBoxes(bboxes_wh.tolist(), confidences.tolist(), self.conf_threshold,
self.iou_threshold).flatten()
if len(indices) > 0:
mlvl_bboxes = bboxes_wh[indices]
confidences = confidences[indices]
classIds = classIds[indices]
landmarks = landmarks[indices]
return mlvl_bboxes, confidences, classIds, landmarks
else:
print('nothing detect')
return np.array([]), np.array([]), np.array([]), np.array([])
def distance2bbox(self, points, distance, max_shape=None):
x1 = points[:, 0] - distance[:, 0]
y1 = points[:, 1] - distance[:, 1]
x2 = points[:, 0] + distance[:, 2]
y2 = points[:, 1] + distance[:, 3]
if max_shape is not None:
x1 = np.clip(x1, 0, max_shape[1])
y1 = np.clip(y1, 0, max_shape[0])
x2 = np.clip(x2, 0, max_shape[1])
y2 = np.clip(y2, 0, max_shape[0])
return np.stack([x1, y1, x2, y2], axis=-1)
def draw_detections(self, image, boxes, scores, kpts):
for box, score, kp in zip(boxes, scores, kpts):
x, y, w, h = box.astype(int)
# Draw rectangle
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), thickness=3)
cv2.putText(image, "face:"+str(round(score,2)), (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), thickness=2)
for i in range(5):
cv2.circle(image, (int(kp[i * 3]), int(kp[i * 3 + 1])), 4, (0, 255, 0), thickness=-1)
# cv2.putText(image, str(i), (int(kp[i * 3]), int(kp[i * 3 + 1]) - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), thickness=1)
return image
ROOT = os.path.dirname(os.path.abspath(__file__))

View File

@@ -0,0 +1 @@
from .core import FaceDetector

View File

@@ -0,0 +1,130 @@
import logging
import glob
from tqdm import tqdm
import numpy as np
import torch
import cv2
class FaceDetector(object):
"""An abstract class representing a face detector.
Any other face detection implementation must subclass it. All subclasses
must implement ``detect_from_image``, that return a list of detected
bounding boxes. Optionally, for speed considerations detect from path is
recommended.
"""
def __init__(self, device, verbose):
self.device = device
self.verbose = verbose
if verbose:
if 'cpu' in device:
logger = logging.getLogger(__name__)
logger.warning("Detection running on CPU, this may be potentially slow.")
if 'cpu' not in device and 'cuda' not in device:
if verbose:
logger.error("Expected values for device are: {cpu, cuda} but got: %s", device)
raise ValueError
def detect_from_image(self, tensor_or_path):
"""Detects faces in a given image.
This function detects the faces present in a provided BGR(usually)
image. The input can be either the image itself or the path to it.
Arguments:
tensor_or_path {numpy.ndarray, torch.tensor or string} -- the path
to an image or the image itself.
Example::
>>> path_to_image = 'data/image_01.jpg'
... detected_faces = detect_from_image(path_to_image)
[A list of bounding boxes (x1, y1, x2, y2)]
>>> image = cv2.imread(path_to_image)
... detected_faces = detect_from_image(image)
[A list of bounding boxes (x1, y1, x2, y2)]
"""
raise NotImplementedError
def detect_from_directory(self, path, extensions=['.jpg', '.png'], recursive=False, show_progress_bar=True):
"""Detects faces from all the images present in a given directory.
Arguments:
path {string} -- a string containing a path that points to the folder containing the images
Keyword Arguments:
extensions {list} -- list of string containing the extensions to be
consider in the following format: ``.extension_name`` (default:
{['.jpg', '.png']}) recursive {bool} -- option wherever to scan the
folder recursively (default: {False}) show_progress_bar {bool} --
display a progressbar (default: {True})
Example:
>>> directory = 'data'
... detected_faces = detect_from_directory(directory)
{A dictionary of [lists containing bounding boxes(x1, y1, x2, y2)]}
"""
if self.verbose:
logger = logging.getLogger(__name__)
if len(extensions) == 0:
if self.verbose:
logger.error("Expected at list one extension, but none was received.")
raise ValueError
if self.verbose:
logger.info("Constructing the list of images.")
additional_pattern = '/**/*' if recursive else '/*'
files = []
for extension in extensions:
files.extend(glob.glob(path + additional_pattern + extension, recursive=recursive))
if self.verbose:
logger.info("Finished searching for images. %s images found", len(files))
logger.info("Preparing to run the detection.")
predictions = {}
for image_path in tqdm(files, disable=not show_progress_bar):
if self.verbose:
logger.info("Running the face detector on image: %s", image_path)
predictions[image_path] = self.detect_from_image(image_path)
if self.verbose:
logger.info("The detector was successfully run on all %s images", len(files))
return predictions
@property
def reference_scale(self):
raise NotImplementedError
@property
def reference_x_shift(self):
raise NotImplementedError
@property
def reference_y_shift(self):
raise NotImplementedError
@staticmethod
def tensor_or_path_to_ndarray(tensor_or_path, rgb=True):
"""Convert path (represented as a string) or torch.tensor to a numpy.ndarray
Arguments:
tensor_or_path {numpy.ndarray, torch.tensor or string} -- path to the image, or the image itself
"""
if isinstance(tensor_or_path, str):
return cv2.imread(tensor_or_path) if not rgb else cv2.imread(tensor_or_path)[..., ::-1]
elif torch.is_tensor(tensor_or_path):
# Call cpu in case its coming from cuda
return tensor_or_path.cpu().numpy()[..., ::-1].copy() if not rgb else tensor_or_path.cpu().numpy()
elif isinstance(tensor_or_path, np.ndarray):
return tensor_or_path[..., ::-1].copy() if not rgb else tensor_or_path
else:
raise TypeError

View File

@@ -0,0 +1 @@
from .sfd_detector import SFDDetector as FaceDetector

View File

@@ -0,0 +1,129 @@
from __future__ import print_function
import os
import sys
import cv2
import random
import datetime
import time
import math
import argparse
import numpy as np
import torch
try:
from iou import IOU
except BaseException:
# IOU cython speedup 10x
def IOU(ax1, ay1, ax2, ay2, bx1, by1, bx2, by2):
sa = abs((ax2 - ax1) * (ay2 - ay1))
sb = abs((bx2 - bx1) * (by2 - by1))
x1, y1 = max(ax1, bx1), max(ay1, by1)
x2, y2 = min(ax2, bx2), min(ay2, by2)
w = x2 - x1
h = y2 - y1
if w < 0 or h < 0:
return 0.0
else:
return 1.0 * w * h / (sa + sb - w * h)
def bboxlog(x1, y1, x2, y2, axc, ayc, aww, ahh):
xc, yc, ww, hh = (x2 + x1) / 2, (y2 + y1) / 2, x2 - x1, y2 - y1
dx, dy = (xc - axc) / aww, (yc - ayc) / ahh
dw, dh = math.log(ww / aww), math.log(hh / ahh)
return dx, dy, dw, dh
def bboxloginv(dx, dy, dw, dh, axc, ayc, aww, ahh):
xc, yc = dx * aww + axc, dy * ahh + ayc
ww, hh = math.exp(dw) * aww, math.exp(dh) * ahh
x1, x2, y1, y2 = xc - ww / 2, xc + ww / 2, yc - hh / 2, yc + hh / 2
return x1, y1, x2, y2
def nms(dets, thresh):
if 0 == len(dets):
return []
x1, y1, x2, y2, scores = dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3], dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1, yy1 = np.maximum(x1[i], x1[order[1:]]), np.maximum(y1[i], y1[order[1:]])
xx2, yy2 = np.minimum(x2[i], x2[order[1:]]), np.minimum(y2[i], y2[order[1:]])
w, h = np.maximum(0.0, xx2 - xx1 + 1), np.maximum(0.0, yy2 - yy1 + 1)
ovr = w * h / (areas[i] + areas[order[1:]] - w * h)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def encode(matched, priors, variances):
"""Encode the variances from the priorbox layers into the ground truth boxes
we have matched (based on jaccard overlap) with the prior boxes.
Args:
matched: (tensor) Coords of ground truth for each prior in point-form
Shape: [num_priors, 4].
priors: (tensor) Prior boxes in center-offset form
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
encoded boxes (tensor), Shape: [num_priors, 4]
"""
# dist b/t match center and prior's center
g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2]
# encode variance
g_cxcy /= (variances[0] * priors[:, 2:])
# match wh / prior wh
g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
g_wh = torch.log(g_wh) / variances[1]
# return target for smooth_l1_loss
return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4]
def decode(loc, priors, variances):
"""Decode locations from predictions using priors to undo
the encoding we did for offset regression at train time.
Args:
loc (tensor): location predictions for loc layers,
Shape: [num_priors,4]
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
decoded bounding box predictions
"""
boxes = torch.cat((
priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
boxes[:, :2] -= boxes[:, 2:] / 2
boxes[:, 2:] += boxes[:, :2]
return boxes
def batch_decode(loc, priors, variances):
"""Decode locations from predictions using priors to undo
the encoding we did for offset regression at train time.
Args:
loc (tensor): location predictions for loc layers,
Shape: [num_priors,4]
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
decoded bounding box predictions
"""
boxes = torch.cat((
priors[:, :, :2] + loc[:, :, :2] * variances[0] * priors[:, :, 2:],
priors[:, :, 2:] * torch.exp(loc[:, :, 2:] * variances[1])), 2)
boxes[:, :, :2] -= boxes[:, :, 2:] / 2
boxes[:, :, 2:] += boxes[:, :, :2]
return boxes

View File

@@ -0,0 +1,114 @@
import torch
import torch.nn.functional as F
import os
import sys
import cv2
import random
import datetime
import math
import argparse
import numpy as np
import scipy.io as sio
import zipfile
from .net_s3fd import s3fd
from .bbox import *
def detect(net, img, device):
img = img - np.array([104, 117, 123])
img = img.transpose(2, 0, 1)
img = img.reshape((1,) + img.shape)
if 'cuda' in device:
torch.backends.cudnn.benchmark = True
img = torch.from_numpy(img).float().to(device)
BB, CC, HH, WW = img.size()
with torch.no_grad():
olist = net(img)
bboxlist = []
for i in range(len(olist) // 2):
olist[i * 2] = F.softmax(olist[i * 2], dim=1)
olist = [oelem.data.cpu() for oelem in olist]
for i in range(len(olist) // 2):
ocls, oreg = olist[i * 2], olist[i * 2 + 1]
FB, FC, FH, FW = ocls.size() # feature map size
stride = 2**(i + 2) # 4,8,16,32,64,128
anchor = stride * 4
poss = zip(*np.where(ocls[:, 1, :, :] > 0.05))
for Iindex, hindex, windex in poss:
axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride
score = ocls[0, 1, hindex, windex]
loc = oreg[0, :, hindex, windex].contiguous().view(1, 4)
priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]])
variances = [0.1, 0.2]
box = decode(loc, priors, variances)
x1, y1, x2, y2 = box[0] * 1.0
# cv2.rectangle(imgshow,(int(x1),int(y1)),(int(x2),int(y2)),(0,0,255),1)
bboxlist.append([x1, y1, x2, y2, score])
bboxlist = np.array(bboxlist)
if 0 == len(bboxlist):
bboxlist = np.zeros((1, 5))
return bboxlist
def batch_detect(net, imgs, device):
imgs = imgs - np.array([104, 117, 123])
imgs = imgs.transpose(0, 3, 1, 2)
if 'cuda' in device:
torch.backends.cudnn.benchmark = True
imgs = torch.from_numpy(imgs).float().to(device)
BB, CC, HH, WW = imgs.size()
with torch.no_grad():
olist = net(imgs)
# print(olist)
bboxlist = []
for i in range(len(olist) // 2):
olist[i * 2] = F.softmax(olist[i * 2], dim=1)
olist = [oelem.cpu() for oelem in olist]
for i in range(len(olist) // 2):
ocls, oreg = olist[i * 2], olist[i * 2 + 1]
FB, FC, FH, FW = ocls.size() # feature map size
stride = 2**(i + 2) # 4,8,16,32,64,128
anchor = stride * 4
poss = zip(*np.where(ocls[:, 1, :, :] > 0.05))
for Iindex, hindex, windex in poss:
axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride
score = ocls[:, 1, hindex, windex]
loc = oreg[:, :, hindex, windex].contiguous().view(BB, 1, 4)
priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]]).view(1, 1, 4)
variances = [0.1, 0.2]
box = batch_decode(loc, priors, variances)
box = box[:, 0] * 1.0
# cv2.rectangle(imgshow,(int(x1),int(y1)),(int(x2),int(y2)),(0,0,255),1)
bboxlist.append(torch.cat([box, score.unsqueeze(1)], 1).cpu().numpy())
bboxlist = np.array(bboxlist)
if 0 == len(bboxlist):
bboxlist = np.zeros((1, BB, 5))
return bboxlist
def flip_detect(net, img, device):
img = cv2.flip(img, 1)
b = detect(net, img, device)
bboxlist = np.zeros(b.shape)
bboxlist[:, 0] = img.shape[1] - b[:, 2]
bboxlist[:, 1] = b[:, 1]
bboxlist[:, 2] = img.shape[1] - b[:, 0]
bboxlist[:, 3] = b[:, 3]
bboxlist[:, 4] = b[:, 4]
return bboxlist
def pts_to_bb(pts):
min_x, min_y = np.min(pts, axis=0)
max_x, max_y = np.max(pts, axis=0)
return np.array([min_x, min_y, max_x, max_y])

View File

@@ -0,0 +1,129 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
class L2Norm(nn.Module):
def __init__(self, n_channels, scale=1.0):
super(L2Norm, self).__init__()
self.n_channels = n_channels
self.scale = scale
self.eps = 1e-10
self.weight = nn.Parameter(torch.Tensor(self.n_channels))
self.weight.data *= 0.0
self.weight.data += self.scale
def forward(self, x):
norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps
x = x / norm * self.weight.view(1, -1, 1, 1)
return x
class s3fd(nn.Module):
def __init__(self):
super(s3fd, self).__init__()
self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
self.fc6 = nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=3)
self.fc7 = nn.Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0)
self.conv6_1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0)
self.conv6_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)
self.conv7_1 = nn.Conv2d(512, 128, kernel_size=1, stride=1, padding=0)
self.conv7_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)
self.conv3_3_norm = L2Norm(256, scale=10)
self.conv4_3_norm = L2Norm(512, scale=8)
self.conv5_3_norm = L2Norm(512, scale=5)
self.conv3_3_norm_mbox_conf = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1)
self.conv3_3_norm_mbox_loc = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1)
self.conv4_3_norm_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1)
self.conv4_3_norm_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
self.conv5_3_norm_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1)
self.conv5_3_norm_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
self.fc7_mbox_conf = nn.Conv2d(1024, 2, kernel_size=3, stride=1, padding=1)
self.fc7_mbox_loc = nn.Conv2d(1024, 4, kernel_size=3, stride=1, padding=1)
self.conv6_2_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1)
self.conv6_2_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
self.conv7_2_mbox_conf = nn.Conv2d(256, 2, kernel_size=3, stride=1, padding=1)
self.conv7_2_mbox_loc = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1)
def forward(self, x):
h = F.relu(self.conv1_1(x))
h = F.relu(self.conv1_2(h))
h = F.max_pool2d(h, 2, 2)
h = F.relu(self.conv2_1(h))
h = F.relu(self.conv2_2(h))
h = F.max_pool2d(h, 2, 2)
h = F.relu(self.conv3_1(h))
h = F.relu(self.conv3_2(h))
h = F.relu(self.conv3_3(h))
f3_3 = h
h = F.max_pool2d(h, 2, 2)
h = F.relu(self.conv4_1(h))
h = F.relu(self.conv4_2(h))
h = F.relu(self.conv4_3(h))
f4_3 = h
h = F.max_pool2d(h, 2, 2)
h = F.relu(self.conv5_1(h))
h = F.relu(self.conv5_2(h))
h = F.relu(self.conv5_3(h))
f5_3 = h
h = F.max_pool2d(h, 2, 2)
h = F.relu(self.fc6(h))
h = F.relu(self.fc7(h))
ffc7 = h
h = F.relu(self.conv6_1(h))
h = F.relu(self.conv6_2(h))
f6_2 = h
h = F.relu(self.conv7_1(h))
h = F.relu(self.conv7_2(h))
f7_2 = h
f3_3 = self.conv3_3_norm(f3_3)
f4_3 = self.conv4_3_norm(f4_3)
f5_3 = self.conv5_3_norm(f5_3)
cls1 = self.conv3_3_norm_mbox_conf(f3_3)
reg1 = self.conv3_3_norm_mbox_loc(f3_3)
cls2 = self.conv4_3_norm_mbox_conf(f4_3)
reg2 = self.conv4_3_norm_mbox_loc(f4_3)
cls3 = self.conv5_3_norm_mbox_conf(f5_3)
reg3 = self.conv5_3_norm_mbox_loc(f5_3)
cls4 = self.fc7_mbox_conf(ffc7)
reg4 = self.fc7_mbox_loc(ffc7)
cls5 = self.conv6_2_mbox_conf(f6_2)
reg5 = self.conv6_2_mbox_loc(f6_2)
cls6 = self.conv7_2_mbox_conf(f7_2)
reg6 = self.conv7_2_mbox_loc(f7_2)
# max-out background label
chunk = torch.chunk(cls1, 4, 1)
bmax = torch.max(torch.max(chunk[0], chunk[1]), chunk[2])
cls1 = torch.cat([bmax, chunk[3]], dim=1)
return [cls1, reg1, cls2, reg2, cls3, reg3, cls4, reg4, cls5, reg5, cls6, reg6]

View File

@@ -0,0 +1,59 @@
import os
import cv2
from torch.utils.model_zoo import load_url
from ..core import FaceDetector
from .net_s3fd import s3fd
from .bbox import *
from .detect import *
models_urls = {
's3fd': 'https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth',
}
class SFDDetector(FaceDetector):
def __init__(self, device, path_to_detector=os.path.join(os.path.dirname(os.path.abspath(__file__)), 's3fd.pth'), verbose=False):
super(SFDDetector, self).__init__(device, verbose)
# Initialise the face detector
if not os.path.isfile(path_to_detector):
model_weights = load_url(models_urls['s3fd'])
else:
model_weights = torch.load(path_to_detector)
self.face_detector = s3fd()
self.face_detector.load_state_dict(model_weights)
self.face_detector.to(device)
self.face_detector.eval()
def detect_from_image(self, tensor_or_path):
image = self.tensor_or_path_to_ndarray(tensor_or_path)
bboxlist = detect(self.face_detector, image, device=self.device)
keep = nms(bboxlist, 0.3)
bboxlist = bboxlist[keep, :]
bboxlist = [x for x in bboxlist if x[-1] > 0.5]
return bboxlist
def detect_from_batch(self, images):
bboxlists = batch_detect(self.face_detector, images, device=self.device)
keeps = [nms(bboxlists[:, i, :], 0.3) for i in range(bboxlists.shape[1])]
bboxlists = [bboxlists[keep, i, :] for i, keep in enumerate(keeps)]
bboxlists = [[x for x in bboxlist if x[-1] > 0.5] for bboxlist in bboxlists]
return bboxlists
@property
def reference_scale(self):
return 195
@property
def reference_x_shift(self):
return 0
@property
def reference_y_shift(self):
return 0

View File

@@ -0,0 +1,261 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3,
stride=strd, padding=padding, bias=bias)
class ConvBlock(nn.Module):
def __init__(self, in_planes, out_planes):
super(ConvBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv1 = conv3x3(in_planes, int(out_planes / 2))
self.bn2 = nn.BatchNorm2d(int(out_planes / 2))
self.conv2 = conv3x3(int(out_planes / 2), int(out_planes / 4))
self.bn3 = nn.BatchNorm2d(int(out_planes / 4))
self.conv3 = conv3x3(int(out_planes / 4), int(out_planes / 4))
if in_planes != out_planes:
self.downsample = nn.Sequential(
nn.BatchNorm2d(in_planes),
nn.ReLU(True),
nn.Conv2d(in_planes, out_planes,
kernel_size=1, stride=1, bias=False),
)
else:
self.downsample = None
def forward(self, x):
residual = x
out1 = self.bn1(x)
out1 = F.relu(out1, True)
out1 = self.conv1(out1)
out2 = self.bn2(out1)
out2 = F.relu(out2, True)
out2 = self.conv2(out2)
out3 = self.bn3(out2)
out3 = F.relu(out3, True)
out3 = self.conv3(out3)
out3 = torch.cat((out1, out2, out3), 1)
if self.downsample is not None:
residual = self.downsample(residual)
out3 += residual
return out3
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class HourGlass(nn.Module):
def __init__(self, num_modules, depth, num_features):
super(HourGlass, self).__init__()
self.num_modules = num_modules
self.depth = depth
self.features = num_features
self._generate_network(self.depth)
def _generate_network(self, level):
self.add_module('b1_' + str(level), ConvBlock(self.features, self.features))
self.add_module('b2_' + str(level), ConvBlock(self.features, self.features))
if level > 1:
self._generate_network(level - 1)
else:
self.add_module('b2_plus_' + str(level), ConvBlock(self.features, self.features))
self.add_module('b3_' + str(level), ConvBlock(self.features, self.features))
def _forward(self, level, inp):
# Upper branch
up1 = inp
up1 = self._modules['b1_' + str(level)](up1)
# Lower branch
low1 = F.avg_pool2d(inp, 2, stride=2)
low1 = self._modules['b2_' + str(level)](low1)
if level > 1:
low2 = self._forward(level - 1, low1)
else:
low2 = low1
low2 = self._modules['b2_plus_' + str(level)](low2)
low3 = low2
low3 = self._modules['b3_' + str(level)](low3)
up2 = F.interpolate(low3, scale_factor=2, mode='nearest')
return up1 + up2
def forward(self, x):
return self._forward(self.depth, x)
class FAN(nn.Module):
def __init__(self, num_modules=1):
super(FAN, self).__init__()
self.num_modules = num_modules
# Base part
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = ConvBlock(64, 128)
self.conv3 = ConvBlock(128, 128)
self.conv4 = ConvBlock(128, 256)
# Stacking part
for hg_module in range(self.num_modules):
self.add_module('m' + str(hg_module), HourGlass(1, 4, 256))
self.add_module('top_m_' + str(hg_module), ConvBlock(256, 256))
self.add_module('conv_last' + str(hg_module),
nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256))
self.add_module('l' + str(hg_module), nn.Conv2d(256,
68, kernel_size=1, stride=1, padding=0))
if hg_module < self.num_modules - 1:
self.add_module(
'bl' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
self.add_module('al' + str(hg_module), nn.Conv2d(68,
256, kernel_size=1, stride=1, padding=0))
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)), True)
x = F.avg_pool2d(self.conv2(x), 2, stride=2)
x = self.conv3(x)
x = self.conv4(x)
previous = x
outputs = []
for i in range(self.num_modules):
hg = self._modules['m' + str(i)](previous)
ll = hg
ll = self._modules['top_m_' + str(i)](ll)
ll = F.relu(self._modules['bn_end' + str(i)]
(self._modules['conv_last' + str(i)](ll)), True)
# Predict heatmaps
tmp_out = self._modules['l' + str(i)](ll)
outputs.append(tmp_out)
if i < self.num_modules - 1:
ll = self._modules['bl' + str(i)](ll)
tmp_out_ = self._modules['al' + str(i)](tmp_out)
previous = previous + ll + tmp_out_
return outputs
class ResNetDepth(nn.Module):
def __init__(self, block=Bottleneck, layers=[3, 8, 36, 3], num_classes=68):
self.inplanes = 64
super(ResNetDepth, self).__init__()
self.conv1 = nn.Conv2d(3 + 68, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7)
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x

View File

@@ -0,0 +1,313 @@
from __future__ import print_function
import os
import sys
import time
import torch
import math
import numpy as np
import cv2
def _gaussian(
size=3, sigma=0.25, amplitude=1, normalize=False, width=None,
height=None, sigma_horz=None, sigma_vert=None, mean_horz=0.5,
mean_vert=0.5):
# handle some defaults
if width is None:
width = size
if height is None:
height = size
if sigma_horz is None:
sigma_horz = sigma
if sigma_vert is None:
sigma_vert = sigma
center_x = mean_horz * width + 0.5
center_y = mean_vert * height + 0.5
gauss = np.empty((height, width), dtype=np.float32)
# generate kernel
for i in range(height):
for j in range(width):
gauss[i][j] = amplitude * math.exp(-(math.pow((j + 1 - center_x) / (
sigma_horz * width), 2) / 2.0 + math.pow((i + 1 - center_y) / (sigma_vert * height), 2) / 2.0))
if normalize:
gauss = gauss / np.sum(gauss)
return gauss
def draw_gaussian(image, point, sigma):
# Check if the gaussian is inside
ul = [math.floor(point[0] - 3 * sigma), math.floor(point[1] - 3 * sigma)]
br = [math.floor(point[0] + 3 * sigma), math.floor(point[1] + 3 * sigma)]
if (ul[0] > image.shape[1] or ul[1] > image.shape[0] or br[0] < 1 or br[1] < 1):
return image
size = 6 * sigma + 1
g = _gaussian(size)
g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - int(max(1, ul[0])) + int(max(1, -ul[0]))]
g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - int(max(1, ul[1])) + int(max(1, -ul[1]))]
img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))]
img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))]
assert (g_x[0] > 0 and g_y[1] > 0)
image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]
] = image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] + g[g_y[0] - 1:g_y[1], g_x[0] - 1:g_x[1]]
image[image > 1] = 1
return image
def transform(point, center, scale, resolution, invert=False):
"""Generate and affine transformation matrix.
Given a set of points, a center, a scale and a targer resolution, the
function generates and affine transformation matrix. If invert is ``True``
it will produce the inverse transformation.
Arguments:
point {torch.tensor} -- the input 2D point
center {torch.tensor or numpy.array} -- the center around which to perform the transformations
scale {float} -- the scale of the face/object
resolution {float} -- the output resolution
Keyword Arguments:
invert {bool} -- define wherever the function should produce the direct or the
inverse transformation matrix (default: {False})
"""
_pt = torch.ones(3)
_pt[0] = point[0]
_pt[1] = point[1]
h = 200.0 * scale
t = torch.eye(3)
t[0, 0] = resolution / h
t[1, 1] = resolution / h
t[0, 2] = resolution * (-center[0] / h + 0.5)
t[1, 2] = resolution * (-center[1] / h + 0.5)
if invert:
t = torch.inverse(t)
new_point = (torch.matmul(t, _pt))[0:2]
return new_point.int()
def crop(image, center, scale, resolution=256.0):
"""Center crops an image or set of heatmaps
Arguments:
image {numpy.array} -- an rgb image
center {numpy.array} -- the center of the object, usually the same as of the bounding box
scale {float} -- scale of the face
Keyword Arguments:
resolution {float} -- the size of the output cropped image (default: {256.0})
Returns:
[type] -- [description]
""" # Crop around the center point
""" Crops the image around the center. Input is expected to be an np.ndarray """
ul = transform([1, 1], center, scale, resolution, True)
br = transform([resolution, resolution], center, scale, resolution, True)
# pad = math.ceil(torch.norm((ul - br).float()) / 2.0 - (br[0] - ul[0]) / 2.0)
if image.ndim > 2:
newDim = np.array([br[1] - ul[1], br[0] - ul[0],
image.shape[2]], dtype=np.int32)
newImg = np.zeros(newDim, dtype=np.uint8)
else:
newDim = np.array([br[1] - ul[1], br[0] - ul[0]], dtype=np.int)
newImg = np.zeros(newDim, dtype=np.uint8)
ht = image.shape[0]
wd = image.shape[1]
newX = np.array(
[max(1, -ul[0] + 1), min(br[0], wd) - ul[0]], dtype=np.int32)
newY = np.array(
[max(1, -ul[1] + 1), min(br[1], ht) - ul[1]], dtype=np.int32)
oldX = np.array([max(1, ul[0] + 1), min(br[0], wd)], dtype=np.int32)
oldY = np.array([max(1, ul[1] + 1), min(br[1], ht)], dtype=np.int32)
newImg[newY[0] - 1:newY[1], newX[0] - 1:newX[1]
] = image[oldY[0] - 1:oldY[1], oldX[0] - 1:oldX[1], :]
newImg = cv2.resize(newImg, dsize=(int(resolution), int(resolution)),
interpolation=cv2.INTER_LINEAR)
return newImg
def get_preds_fromhm(hm, center=None, scale=None):
"""Obtain (x,y) coordinates given a set of N heatmaps. If the center
and the scale is provided the function will return the points also in
the original coordinate frame.
Arguments:
hm {torch.tensor} -- the predicted heatmaps, of shape [B, N, W, H]
Keyword Arguments:
center {torch.tensor} -- the center of the bounding box (default: {None})
scale {float} -- face scale (default: {None})
"""
max, idx = torch.max(
hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2)
idx += 1
preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float()
preds[..., 0].apply_(lambda x: (x - 1) % hm.size(3) + 1)
preds[..., 1].add_(-1).div_(hm.size(2)).floor_().add_(1)
for i in range(preds.size(0)):
for j in range(preds.size(1)):
hm_ = hm[i, j, :]
pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1
if pX > 0 and pX < 63 and pY > 0 and pY < 63:
diff = torch.FloatTensor(
[hm_[pY, pX + 1] - hm_[pY, pX - 1],
hm_[pY + 1, pX] - hm_[pY - 1, pX]])
preds[i, j].add_(diff.sign_().mul_(.25))
preds.add_(-.5)
preds_orig = torch.zeros(preds.size())
if center is not None and scale is not None:
for i in range(hm.size(0)):
for j in range(hm.size(1)):
preds_orig[i, j] = transform(
preds[i, j], center, scale, hm.size(2), True)
return preds, preds_orig
def get_preds_fromhm_batch(hm, centers=None, scales=None):
"""Obtain (x,y) coordinates given a set of N heatmaps. If the centers
and the scales is provided the function will return the points also in
the original coordinate frame.
Arguments:
hm {torch.tensor} -- the predicted heatmaps, of shape [B, N, W, H]
Keyword Arguments:
centers {torch.tensor} -- the centers of the bounding box (default: {None})
scales {float} -- face scales (default: {None})
"""
max, idx = torch.max(
hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2)
idx += 1
preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float()
preds[..., 0].apply_(lambda x: (x - 1) % hm.size(3) + 1)
preds[..., 1].add_(-1).div_(hm.size(2)).floor_().add_(1)
for i in range(preds.size(0)):
for j in range(preds.size(1)):
hm_ = hm[i, j, :]
pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1
if pX > 0 and pX < 63 and pY > 0 and pY < 63:
diff = torch.FloatTensor(
[hm_[pY, pX + 1] - hm_[pY, pX - 1],
hm_[pY + 1, pX] - hm_[pY - 1, pX]])
preds[i, j].add_(diff.sign_().mul_(.25))
preds.add_(-.5)
preds_orig = torch.zeros(preds.size())
if centers is not None and scales is not None:
for i in range(hm.size(0)):
for j in range(hm.size(1)):
preds_orig[i, j] = transform(
preds[i, j], centers[i], scales[i], hm.size(2), True)
return preds, preds_orig
def shuffle_lr(parts, pairs=None):
"""Shuffle the points left-right according to the axis of symmetry
of the object.
Arguments:
parts {torch.tensor} -- a 3D or 4D object containing the
heatmaps.
Keyword Arguments:
pairs {list of integers} -- [order of the flipped points] (default: {None})
"""
if pairs is None:
pairs = [16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 27, 28, 29, 30, 35,
34, 33, 32, 31, 45, 44, 43, 42, 47, 46, 39, 38, 37, 36, 41,
40, 54, 53, 52, 51, 50, 49, 48, 59, 58, 57, 56, 55, 64, 63,
62, 61, 60, 67, 66, 65]
if parts.ndimension() == 3:
parts = parts[pairs, ...]
else:
parts = parts[:, pairs, ...]
return parts
def flip(tensor, is_label=False):
"""Flip an image or a set of heatmaps left-right
Arguments:
tensor {numpy.array or torch.tensor} -- [the input image or heatmaps]
Keyword Arguments:
is_label {bool} -- [denote wherever the input is an image or a set of heatmaps ] (default: {False})
"""
if not torch.is_tensor(tensor):
tensor = torch.from_numpy(tensor)
if is_label:
tensor = shuffle_lr(tensor).flip(tensor.ndimension() - 1)
else:
tensor = tensor.flip(tensor.ndimension() - 1)
return tensor
# From pyzolib/paths.py (https://bitbucket.org/pyzo/pyzolib/src/tip/paths.py)
def appdata_dir(appname=None, roaming=False):
""" appdata_dir(appname=None, roaming=False)
Get the path to the application directory, where applications are allowed
to write user specific files (e.g. configurations). For non-user specific
data, consider using common_appdata_dir().
If appname is given, a subdir is appended (and created if necessary).
If roaming is True, will prefer a roaming directory (Windows Vista/7).
"""
# Define default user directory
userDir = os.getenv('FACEALIGNMENT_USERDIR', None)
if userDir is None:
userDir = os.path.expanduser('~')
if not os.path.isdir(userDir): # pragma: no cover
userDir = '/var/tmp' # issue #54
# Get system app data dir
path = None
if sys.platform.startswith('win'):
path1, path2 = os.getenv('LOCALAPPDATA'), os.getenv('APPDATA')
path = (path2 or path1) if roaming else (path1 or path2)
elif sys.platform.startswith('darwin'):
path = os.path.join(userDir, 'Library', 'Application Support')
# On Linux and as fallback
if not (path and os.path.isdir(path)):
path = userDir
# Maybe we should store things local to the executable (in case of a
# portable distro or a frozen application that wants to be portable)
prefix = sys.prefix
if getattr(sys, 'frozen', None):
prefix = os.path.abspath(os.path.dirname(sys.executable))
for reldir in ('settings', '../settings'):
localpath = os.path.abspath(os.path.join(prefix, reldir))
if os.path.isdir(localpath): # pragma: no cover
try:
open(os.path.join(localpath, 'test.write'), 'wb').close()
os.remove(os.path.join(localpath, 'test.write'))
except IOError:
pass # We cannot write in this directory
else:
path = localpath
break
# Get path specific for this app
if appname:
if path == userDir:
appname = '.' + appname.lstrip('.') # Make it a hidden directory
path = os.path.join(path, appname)
if not os.path.isdir(path): # pragma: no cover
os.mkdir(path)
# Done
return path