mirror of
https://github.com/TMElyralab/MuseTalk.git
synced 2026-02-04 09:29:20 +08:00
initial_commit
This commit is contained in:
10
.gitignore
vendored
Normal file
10
.gitignore
vendored
Normal file
@@ -0,0 +1,10 @@
|
||||
.DS_Store
|
||||
*.log
|
||||
.idea/
|
||||
.vscode/
|
||||
*.pyc
|
||||
.ipynb_checkpoints
|
||||
models/
|
||||
results/
|
||||
data/audio/*.WAV
|
||||
data/video/*.mp4
|
||||
21
LICENSE
Normal file
21
LICENSE
Normal file
@@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2024 TMElyralab
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
243
README.md
Normal file
243
README.md
Normal file
@@ -0,0 +1,243 @@
|
||||
# MuseTalk
|
||||
|
||||
MuseTalk: Real-Time High Quality Lip Synchronization with Latent Space Inpainting
|
||||
</br>
|
||||
Yue Zhang <sup>\*</sup>,
|
||||
Minhao Liu<sup>\*</sup>,
|
||||
Zhaokang Chen,
|
||||
Bin Wu<sup>†</sup>,
|
||||
Yingjie He,
|
||||
Chao Zhan,
|
||||
Wenjiang Zhou
|
||||
(<sup>*</sup>Equal Contribution, <sup>†</sup>Corresponding Author, benbinwu@tencent.com)
|
||||
|
||||
**[github](https://github.com/TMElyralab/MuseTalk)** **[huggingface](https://huggingface.co/TMElyralab/MuseTalk)** **Project(comming soon)** **Technical report (comming soon)**
|
||||
|
||||
We introduce `MuseTalk`, a **real-time high quality** lip-syncing model (30fps+ on an NVIDIA Tesla V100). MuseTalk can be applied with virtual human videos, e.g., generated by [MuseV](https://github.com/TMElyralab/MuseV), as a complete solution.
|
||||
|
||||
# Overview
|
||||
`MuseTalk` is a real-time high quality audio-driven lip-syncing model trained in the latent space of `ft-mse-vae`, which
|
||||
|
||||
1. modifies an unseen face according to the input audio, with a size of face region of `256 x 256`.
|
||||
1. supports audio in various languages, such as Chinese, English, and Japanese.
|
||||
1. supports real-time inference with 30fps+ on an NVIDIA Tesla V100.
|
||||
1. supports modification of the center point of the face region proposes, which **SIGNIFICANTLY** affects generation results.
|
||||
1. checkpoint available trained on the HDTF dataset.
|
||||
1. training codes (comming soon).
|
||||
|
||||
# News
|
||||
- [04/02/2024] Released MuseTalk project and pretrained models.
|
||||
|
||||
## Model
|
||||

|
||||
MuseTalk was trained in latent spaces, where the images were encoded by a freezed VAE. The audio was encoded by a freezed `whisper-tiny` model. The architecture of the generation network was borrowed from the UNet of the `stable-diffusion-v1-4`, where the audio embeddings were fused to the image embeddings by cross-attention.
|
||||
|
||||
## Cases
|
||||
### MuseV + MuseTalk make human photos alive!
|
||||
<table class="center">
|
||||
<tr style="font-weight: bolder;text-align:center;">
|
||||
<td width="33%">Image</td>
|
||||
<td width="33%">MuseV </td>
|
||||
<td width="33%"> +MuseTalk</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>
|
||||
<img src=assets/demo/yongen/yongen.jpeg width="95%">
|
||||
</td>
|
||||
<td >
|
||||
<video src=assets/demo/yongen/yongen_musev.mp4 controls preload></video>
|
||||
</td>
|
||||
<td >
|
||||
<video src=assets/demo/yongen/yongen_musetalk.mp4 controls preload></video>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>
|
||||
<img src=assets/demo/monalisa/monalisa.png width="95%">
|
||||
</td>
|
||||
<td >
|
||||
<video src=assets/demo/monalisa/monalisa_musev.mp4 controls preload></video>
|
||||
</td>
|
||||
<td >
|
||||
<video src=assets/demo/monalisa/monalisa_musetalk.mp4 controls preload></video>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>
|
||||
<img src=assets/demo/sun1/sun.png width="95%">
|
||||
</td>
|
||||
<td >
|
||||
<video src=assets/demo/sun1/sun_musev.mp4 controls preload></video>
|
||||
</td>
|
||||
<td >
|
||||
<video src=assets/demo/sun1/sun_musetalk.mp4 controls preload></video>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>
|
||||
<img src=assets/demo/sun2/sun.png width="95%">
|
||||
</td>
|
||||
<td >
|
||||
<video src=assets/demo/sun2/sun_musev.mp4 controls preload></video>
|
||||
</td>
|
||||
<td >
|
||||
<video src=assets/demo/sun2/sun_musetalk.mp4 controls preload></video>
|
||||
</td>
|
||||
</tr>
|
||||
</table >
|
||||
|
||||
* The character of the last two rows, `Xinying Sun`, is a supermodel KOL. You can follow her on [douyin](https://www.douyin.com/user/MS4wLjABAAAAWDThbMPN_6Xmm_JgXexbOii1K-httbu2APdG8DvDyM8).
|
||||
|
||||
## Video dubbing
|
||||
<table class="center">
|
||||
<tr style="font-weight: bolder;text-align:center;">
|
||||
<td width="70%">MuseTalk</td>
|
||||
<td width="30%">Original videos</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>
|
||||
<video src=assets/demo/video_dubbing/Let_the_Bullets_Fly.mp4 controls preload></video>
|
||||
</td>
|
||||
<td>
|
||||
<a href="//www.bilibili.com/video/BV1wT411b7HU">Link</a>
|
||||
<href src=""></href>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
* For video dubbing, we applied a self-developed tool which can detect the talking person.
|
||||
|
||||
|
||||
# TODO:
|
||||
- [x] trained models and inference codes.
|
||||
- [ ] technical report.
|
||||
- [ ] training codes.
|
||||
- [ ] online UI.
|
||||
- [ ] a better model (may take longer).
|
||||
|
||||
|
||||
# Getting Started
|
||||
We provide a detailed tutorial about the installation and the basic usage of MuseTalk for new users:
|
||||
## Installation
|
||||
To prepare the Python environment and install additional packages such as opencv, diffusers, mmcv, etc., please follow the steps below:
|
||||
### Build environment
|
||||
|
||||
We recommend a python version >=3.10 and cuda version =11.7. Then build environment as follows:
|
||||
|
||||
```shell
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
### whisper
|
||||
install whisper to extract audio feature (only encoder)
|
||||
```
|
||||
pip install --editable ./musetalk/whisper
|
||||
```
|
||||
|
||||
### mmlab packages
|
||||
```bash
|
||||
pip install --no-cache-dir -U openmim
|
||||
mim install mmengine
|
||||
mim install "mmcv>=2.0.1"
|
||||
mim install "mmdet>=3.1.0"
|
||||
mim install "mmpose>=1.1.0"
|
||||
```
|
||||
|
||||
### Download ffmpeg-static
|
||||
Download the ffmpeg-static and
|
||||
```
|
||||
export FFMPEG_PATH=/path/to/ffmpeg
|
||||
```
|
||||
for example:
|
||||
```
|
||||
export FFMPEG_PATH=/musetalk/ffmpeg-4.4-amd64-static
|
||||
```
|
||||
### Download weights
|
||||
You can download weights manually as follows:
|
||||
|
||||
1. Download our trained [weights](https://huggingface.co/TMElyralab/MuseTalk).
|
||||
|
||||
2. Download the weights of other components:
|
||||
- [sd-vae-ft-mse](https://huggingface.co/stabilityai/sd-vae-ft-mse)
|
||||
- [whisper](https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt)
|
||||
- [dwpose](https://huggingface.co/yzd-v/DWPose/tree/main)
|
||||
- [face-parse-bisent](https://github.com/zllrunning/face-parsing.PyTorch)
|
||||
- [resnet18](https://download.pytorch.org/models/resnet18-5c106cde.pth)
|
||||
|
||||
|
||||
Finally, these weights should be organized in `models` as follows:
|
||||
```
|
||||
./models/
|
||||
├── musetalk
|
||||
│ └── musetalk.json
|
||||
│ └── pytorch_model.bin
|
||||
├── dwpose
|
||||
│ └── dw-ll_ucoco_384.pth
|
||||
├── face-parse-bisent
|
||||
│ ├── 79999_iter.pth
|
||||
│ └── resnet18-5c106cde.pth
|
||||
├── sd-vae-ft-mse
|
||||
│ ├── config.json
|
||||
│ └── diffusion_pytorch_model.bin
|
||||
└── whisper
|
||||
└── tiny.pt
|
||||
```
|
||||
## Quickstart
|
||||
|
||||
### Inference
|
||||
Here, we provide the inference script.
|
||||
```
|
||||
python -m scripts.inference --inference_config configs/inference/test.yaml
|
||||
```
|
||||
configs/inference/test.yaml is the path to the inference configuration file, including video_path and audio_path.
|
||||
The video_path should be either a video file or a directory of images.
|
||||
|
||||
#### Use of bbox_shift to have adjustable results
|
||||
:mag_right: We have found that upper-bound of the mask has an important impact on mouth openness. Thus, to control the mask region, we suggest using the `bbox_shift` parameter. Positive values (moving towards the lower half) increase mouth openness, while negative values (moving towards the upper half) decrease mouth openness.
|
||||
|
||||
You can start by running with the default configuration to obtain the adjustable value range, and then re-run the script within this range.
|
||||
|
||||
For example, in the case of `Xinying Sun`, after running the default configuration, it shows that the adjustable value rage is [-9, 9]. Then, to decrease the mouth openness, we set the value to be `-7`.
|
||||
```
|
||||
python -m scripts.inference --inference_config configs/inference/test.yaml --bbox_shift -7
|
||||
```
|
||||
:pushpin: More technical details can be found in [bbox_shift](assets/BBOX_SHIFT.md).
|
||||
|
||||
#### Combining MuseV and MuseTalk
|
||||
|
||||
You are suggested to first apply [MuseV](https://github.com/TMElyralab/MuseV) to generate a video by referring [this](https://github.com/TMElyralab/MuseV?tab=readme-ov-file#text2video). Then, you can use `MuseTalk` by referring [this]().
|
||||
|
||||
# Note
|
||||
|
||||
If you want to launch online video chats, you are suggested to generate videos using MuseV and apply necessary pre-processing such as face detection in advance. During online chatting, only UNet and the VAE decoder are involved, which makes MuseTalk real-time.
|
||||
|
||||
|
||||
# Acknowledgement
|
||||
1. We thank open-source components like [whisper](https://github.com/isaacOnline/whisper/tree/extract-embeddings), [dwpose](https://github.com/IDEA-Research/DWPose), [face-alignment](https://github.com/1adrianb/face-alignment), [face-parsing](https://github.com/zllrunning/face-parsing.PyTorch), [S3FD](https://github.com/yxlijun/S3FD.pytorch).
|
||||
1. MuseTalk has referred much to [diffusers](https://github.com/huggingface/diffusers).
|
||||
1. MuseTalk has been built on `HDTF` datasets.
|
||||
|
||||
Thanks for open-sourcing!
|
||||
|
||||
# Limitations
|
||||
- Resolution: Though MuseTalk uses a face region size of 256 x 256, which make it better than other open-source methods, it has not yet reached the theoretical resolution bound. We will continue to deal with this problem.
|
||||
If you need higher resolution, you could apply super resolution models such as [GFPGAN](https://github.com/TencentARC/GFPGAN) in combination with MuseTalk.
|
||||
|
||||
- Identity preservation: Some details of the original face are not well preserved, such as mustache, lip shape and color.
|
||||
|
||||
- Jitter: There exists some jitter as the current pipeline adopts single-frame generation.
|
||||
|
||||
# Citation
|
||||
```bib
|
||||
@article{musetalk,
|
||||
title={MuseTalk: Real-Time High Quality Lip Synchorization with Latent Space Inpainting},
|
||||
author={Zhang, Yue and Liu, Minhao and Chen, Zhaokang and Wu, Bin and He, Yingjie and Zhan, Chao and Zhou, Wenjiang},
|
||||
journal={arxiv},
|
||||
year={2024}
|
||||
}
|
||||
```
|
||||
# Disclaimer/License
|
||||
1. `code`: The code of MuseTalk is released under the MIT License. There is no limitation for both academic and commercial usage.
|
||||
1. `model`: The trained model are available for any purpose, even commercially.
|
||||
1. `other opensource model`: Other open-source models used must comply with their license, such as `whisper`, `ft-mse-vae`, `dwpose`, `S3FD`, etc..
|
||||
1. The testdata are collected from internet, which are available for non-commercial research purposes only.
|
||||
1. `AIGC`: This project strives to impact the domain of AI-driven video generation positively. Users are granted the freedom to create videos using this tool, but they are expected to comply with local laws and utilize it responsibly. The developers do not assume any responsibility for potential misuse by users.
|
||||
26
assets/BBOX_SHIFT.md
Normal file
26
assets/BBOX_SHIFT.md
Normal file
@@ -0,0 +1,26 @@
|
||||
## Why is there a "bbox_shift" parameter?
|
||||
When processing training data, we utilize the combination of face detection results (bbox) and facial landmarks to determine the region of the head segmentation box. Specifically, we use the upper bound of the bbox as the upper boundary of the segmentation box, the maximum y value of the facial landmarks coordinates as the lower boundary of the segmentation box, and the minimum and maximum x values of the landmarks coordinates as the left and right boundaries of the segmentation box. By processing the dataset in this way, we can ensure the integrity of the face.
|
||||
|
||||
However, we have observed that the masked ratio on the face varies across different images due to the varying face shapes of subjects. Furthermore, we found that the upper-bound of the mask mainly lies close to the 27th, 28th and 30th landmark points (as shown in Fig.1), which correspond to proportions of 15%, 63%, and 22% in the dataset, respectively.
|
||||
|
||||
During the inference process, we discovered that as the upper-bound of the mask gets closer to the mouth (30th), the audio features contribute more to lip motion. Conversely, as the upper-bound of the mask moves away from the mouth (28th), the audio features contribute more to generating details of facial disappearance. Hence, we define this characteristic as a parameter that can adjust the effect of generating mouth shapes, which users can adjust according to their needs in practical scenarios.
|
||||
|
||||

|
||||
|
||||
Fig.1. Facial landmarks
|
||||
### Step 0.
|
||||
Running with the default configuration to obtain the adjustable value range, and then re-run the script within this range.
|
||||
```
|
||||
python -m scripts.inference --inference_config configs/inference/test.yaml
|
||||
```
|
||||
```
|
||||
********************************************bbox_shift parameter adjustment**********************************************************
|
||||
Total frame:「838」 Manually adjust range : [ -9~9 ] , the current value: 0
|
||||
*************************************************************************************************************************************
|
||||
```
|
||||
### Step 1.
|
||||
re-run the script within the above range.
|
||||
```
|
||||
python -m scripts.inference --inference_config configs/inference/test.yaml --bbox_shift xx # where xx is in [-9, 9].
|
||||
```
|
||||
In our experimental observations, we found that positive values (moving towards the lower half) generally increase mouth openness, while negative values (moving towards the upper half) generally decrease mouth openness. However, it's important to note that this is not an absolute rule, and users may need to adjust the parameter according to their specific needs and the desired effect.
|
||||
BIN
assets/demo/monalisa/monalisa.png
Normal file
BIN
assets/demo/monalisa/monalisa.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 269 KiB |
BIN
assets/demo/sun1/sun.png
Normal file
BIN
assets/demo/sun1/sun.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 755 KiB |
BIN
assets/demo/sun2/sun.png
Normal file
BIN
assets/demo/sun2/sun.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 755 KiB |
BIN
assets/demo/yongen/yongen.jpeg
Normal file
BIN
assets/demo/yongen/yongen.jpeg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 93 KiB |
BIN
assets/figs/landmark_ref.png
Normal file
BIN
assets/figs/landmark_ref.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 91 KiB |
BIN
assets/figs/musetalk_arc.jpg
Normal file
BIN
assets/figs/musetalk_arc.jpg
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 786 KiB |
9
configs/inference/test.yaml
Normal file
9
configs/inference/test.yaml
Normal file
@@ -0,0 +1,9 @@
|
||||
task_0:
|
||||
video_path: "data/video/monalisa.mp4"
|
||||
audio_path: "data/audio/monalisa.wav"
|
||||
|
||||
task_1:
|
||||
video_path: "data/video/sun.mp4"
|
||||
audio_path: "data/audio/sun.wav"
|
||||
|
||||
|
||||
BIN
data/audio/monalisa.wav
Normal file
BIN
data/audio/monalisa.wav
Normal file
Binary file not shown.
BIN
data/audio/sun.wav
Normal file
BIN
data/audio/sun.wav
Normal file
Binary file not shown.
BIN
data/video/monalisa.mp4
Normal file
BIN
data/video/monalisa.mp4
Normal file
Binary file not shown.
BIN
data/video/sun.mp4
Normal file
BIN
data/video/sun.mp4
Normal file
Binary file not shown.
47
musetalk/models/unet.py
Executable file
47
musetalk/models/unet.py
Executable file
@@ -0,0 +1,47 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import math
|
||||
import json
|
||||
|
||||
from diffusers import UNet2DConditionModel
|
||||
import sys
|
||||
import time
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
class PositionalEncoding(nn.Module):
|
||||
def __init__(self, d_model=384, max_len=5000):
|
||||
super(PositionalEncoding, self).__init__()
|
||||
pe = torch.zeros(max_len, d_model)
|
||||
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
||||
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
||||
pe[:, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 1::2] = torch.cos(position * div_term)
|
||||
pe = pe.unsqueeze(0)
|
||||
self.register_buffer('pe', pe)
|
||||
|
||||
def forward(self, x):
|
||||
b, seq_len, d_model = x.size()
|
||||
pe = self.pe[:, :seq_len, :]
|
||||
x = x + pe.to(x.device)
|
||||
return x
|
||||
|
||||
class UNet():
|
||||
def __init__(self,
|
||||
unet_config,
|
||||
model_path,
|
||||
use_float16=False,
|
||||
):
|
||||
with open(unet_config, 'r') as f:
|
||||
unet_config = json.load(f)
|
||||
self.model = UNet2DConditionModel(**unet_config)
|
||||
self.pe = PositionalEncoding(d_model=384)
|
||||
self.weights = torch.load(model_path)
|
||||
self.model.load_state_dict(self.weights)
|
||||
if use_float16:
|
||||
self.model = self.model.half()
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
self.model.to(self.device)
|
||||
|
||||
if __name__ == "__main__":
|
||||
unet = UNet()
|
||||
148
musetalk/models/vae.py
Executable file
148
musetalk/models/vae.py
Executable file
@@ -0,0 +1,148 @@
|
||||
from diffusers import AutoencoderKL
|
||||
import torch
|
||||
import torchvision.transforms as transforms
|
||||
import torch.nn.functional as F
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
import os
|
||||
|
||||
class VAE():
|
||||
"""
|
||||
VAE (Variational Autoencoder) class for image processing.
|
||||
"""
|
||||
|
||||
def __init__(self, model_path="./models/sd-vae-ft-mse/", resized_img=256, use_float16=False):
|
||||
"""
|
||||
Initialize the VAE instance.
|
||||
|
||||
:param model_path: Path to the trained model.
|
||||
:param resized_img: The size to which images are resized.
|
||||
:param use_float16: Whether to use float16 precision.
|
||||
"""
|
||||
self.model_path = model_path
|
||||
self.vae = AutoencoderKL.from_pretrained(self.model_path)
|
||||
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
self.vae.to(self.device)
|
||||
|
||||
if use_float16:
|
||||
self.vae = self.vae.half()
|
||||
self._use_float16 = True
|
||||
else:
|
||||
self._use_float16 = False
|
||||
|
||||
self.scaling_factor = self.vae.config.scaling_factor
|
||||
self.transform = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
||||
self._resized_img = resized_img
|
||||
self._mask_tensor = self.get_mask_tensor()
|
||||
|
||||
def get_mask_tensor(self):
|
||||
"""
|
||||
Creates a mask tensor for image processing.
|
||||
:return: A mask tensor.
|
||||
"""
|
||||
mask_tensor = torch.zeros((self._resized_img,self._resized_img))
|
||||
mask_tensor[:self._resized_img//2,:] = 1
|
||||
mask_tensor[mask_tensor< 0.5] = 0
|
||||
mask_tensor[mask_tensor>= 0.5] = 1
|
||||
return mask_tensor
|
||||
|
||||
def preprocess_img(self,img_name,half_mask=False):
|
||||
"""
|
||||
Preprocess an image for the VAE.
|
||||
|
||||
:param img_name: The image file path or a list of image file paths.
|
||||
:param half_mask: Whether to apply a half mask to the image.
|
||||
:return: A preprocessed image tensor.
|
||||
"""
|
||||
window = []
|
||||
if isinstance(img_name, str):
|
||||
window_fnames = [img_name]
|
||||
for fname in window_fnames:
|
||||
img = cv2.imread(fname)
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
img = cv2.resize(img, (self._resized_img, self._resized_img),
|
||||
interpolation=cv2.INTER_LANCZOS4)
|
||||
window.append(img)
|
||||
else:
|
||||
img = cv2.cvtColor(img_name, cv2.COLOR_BGR2RGB)
|
||||
window.append(img)
|
||||
|
||||
x = np.asarray(window) / 255.
|
||||
x = np.transpose(x, (3, 0, 1, 2))
|
||||
x = torch.squeeze(torch.FloatTensor(x))
|
||||
if half_mask:
|
||||
x = x * (self._mask_tensor>0.5)
|
||||
x = self.transform(x)
|
||||
|
||||
x = x.unsqueeze(0) # [1, 3, 256, 256] torch tensor
|
||||
x = x.to(self.vae.device)
|
||||
|
||||
return x
|
||||
|
||||
def encode_latents(self,image):
|
||||
"""
|
||||
Encode an image into latent variables.
|
||||
|
||||
:param image: The image tensor to encode.
|
||||
:return: The encoded latent variables.
|
||||
"""
|
||||
with torch.no_grad():
|
||||
init_latent_dist = self.vae.encode(image.to(self.vae.dtype)).latent_dist
|
||||
init_latents = self.scaling_factor * init_latent_dist.sample()
|
||||
return init_latents
|
||||
|
||||
def decode_latents(self, latents):
|
||||
"""
|
||||
Decode latent variables back into an image.
|
||||
:param latents: The latent variables to decode.
|
||||
:return: A NumPy array representing the decoded image.
|
||||
"""
|
||||
latents = (1/ self.scaling_factor) * latents
|
||||
image = self.vae.decode(latents.to(self.vae.dtype)).sample
|
||||
image = (image / 2 + 0.5).clamp(0, 1)
|
||||
image = image.detach().cpu().permute(0, 2, 3, 1).float().numpy()
|
||||
image = (image * 255).round().astype("uint8")
|
||||
image = image[...,::-1] # RGB to BGR
|
||||
return image
|
||||
|
||||
def get_latents_for_unet(self,img):
|
||||
"""
|
||||
Prepare latent variables for a U-Net model.
|
||||
:param img: The image to process.
|
||||
:return: A concatenated tensor of latents for U-Net input.
|
||||
"""
|
||||
|
||||
ref_image = self.preprocess_img(img,half_mask=True) # [1, 3, 256, 256] RGB, torch tensor
|
||||
masked_latents = self.encode_latents(ref_image) # [1, 4, 32, 32], torch tensor
|
||||
ref_image = self.preprocess_img(img,half_mask=False) # [1, 3, 256, 256] RGB, torch tensor
|
||||
ref_latents = self.encode_latents(ref_image) # [1, 4, 32, 32], torch tensor
|
||||
latent_model_input = torch.cat([masked_latents, ref_latents], dim=1)
|
||||
return latent_model_input
|
||||
|
||||
if __name__ == "__main__":
|
||||
vae_mode_path = "./models/sd-vae-ft-mse/"
|
||||
vae = VAE(model_path = vae_mode_path,use_float16=False)
|
||||
img_path = "./results/sun001_crop/00000.png"
|
||||
|
||||
crop_imgs_path = "./results/sun001_crop/"
|
||||
latents_out_path = "./results/latents/"
|
||||
if not os.path.exists(latents_out_path):
|
||||
os.mkdir(latents_out_path)
|
||||
|
||||
files = os.listdir(crop_imgs_path)
|
||||
files.sort()
|
||||
files = [file for file in files if file.split(".")[-1] == "png"]
|
||||
|
||||
for file in files:
|
||||
index = file.split(".")[0]
|
||||
img_path = crop_imgs_path + file
|
||||
latents = vae.get_latents_for_unet(img_path)
|
||||
print(img_path,"latents",latents.size())
|
||||
#torch.save(latents,os.path.join(latents_out_path,index+".pt"))
|
||||
#reload_tensor = torch.load('tensor.pt')
|
||||
#print(reload_tensor.size())
|
||||
|
||||
|
||||
|
||||
5
musetalk/utils/__init__.py
Normal file
5
musetalk/utils/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
||||
import sys
|
||||
from os.path import abspath, dirname
|
||||
current_dir = dirname(abspath(__file__))
|
||||
parent_dir = dirname(current_dir)
|
||||
sys.path.append(parent_dir+'/utils')
|
||||
60
musetalk/utils/blending.py
Normal file
60
musetalk/utils/blending.py
Normal file
@@ -0,0 +1,60 @@
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
import cv2
|
||||
from face_parsing import FaceParsing
|
||||
|
||||
fp = FaceParsing()
|
||||
|
||||
def get_crop_box(box, expand):
|
||||
x, y, x1, y1 = box
|
||||
x_c, y_c = (x+x1)//2, (y+y1)//2
|
||||
w, h = x1-x, y1-y
|
||||
s = int(max(w, h)//2*expand)
|
||||
crop_box = [x_c-s, y_c-s, x_c+s, y_c+s]
|
||||
return crop_box, s
|
||||
|
||||
def face_seg(image):
|
||||
seg_image = fp(image)
|
||||
if seg_image is None:
|
||||
print("error, no person_segment")
|
||||
return None
|
||||
|
||||
seg_image = seg_image.resize(image.size)
|
||||
return seg_image
|
||||
|
||||
def get_image(image,face,face_box,upper_boundary_ratio = 0.5,expand=1.2):
|
||||
#print(image.shape)
|
||||
#print(face.shape)
|
||||
|
||||
body = Image.fromarray(image[:,:,::-1])
|
||||
face = Image.fromarray(face[:,:,::-1])
|
||||
|
||||
x, y, x1, y1 = face_box
|
||||
#print(x1-x,y1-y)
|
||||
crop_box, s = get_crop_box(face_box, expand)
|
||||
x_s, y_s, x_e, y_e = crop_box
|
||||
face_position = (x, y)
|
||||
|
||||
face_large = body.crop(crop_box)
|
||||
ori_shape = face_large.size
|
||||
|
||||
mask_image = face_seg(face_large)
|
||||
mask_small = mask_image.crop((x-x_s, y-y_s, x1-x_s, y1-y_s))
|
||||
mask_image = Image.new('L', ori_shape, 0)
|
||||
mask_image.paste(mask_small, (x-x_s, y-y_s, x1-x_s, y1-y_s))
|
||||
|
||||
# keep upper_boundary_ratio of talking area
|
||||
width, height = mask_image.size
|
||||
top_boundary = int(height * upper_boundary_ratio)
|
||||
modified_mask_image = Image.new('L', ori_shape, 0)
|
||||
modified_mask_image.paste(mask_image.crop((0, top_boundary, width, height)), (0, top_boundary))
|
||||
|
||||
blur_kernel_size = int(0.1 * ori_shape[0] // 2 * 2) + 1
|
||||
mask_array = cv2.GaussianBlur(np.array(modified_mask_image), (blur_kernel_size, blur_kernel_size), 0)
|
||||
mask_image = Image.fromarray(mask_array)
|
||||
mask_image.save("./debug_mask.png")
|
||||
|
||||
face_large.paste(face, (x-x_s, y-y_s, x1-x_s, y1-y_s))
|
||||
body.paste(face_large, crop_box[:2], mask_image)
|
||||
body = np.array(body)
|
||||
return body[:,:,::-1]
|
||||
54
musetalk/utils/dwpose/default_runtime.py
Normal file
54
musetalk/utils/dwpose/default_runtime.py
Normal file
@@ -0,0 +1,54 @@
|
||||
default_scope = 'mmpose'
|
||||
|
||||
# hooks
|
||||
default_hooks = dict(
|
||||
timer=dict(type='IterTimerHook'),
|
||||
logger=dict(type='LoggerHook', interval=50),
|
||||
param_scheduler=dict(type='ParamSchedulerHook'),
|
||||
checkpoint=dict(type='CheckpointHook', interval=10),
|
||||
sampler_seed=dict(type='DistSamplerSeedHook'),
|
||||
visualization=dict(type='PoseVisualizationHook', enable=False),
|
||||
badcase=dict(
|
||||
type='BadCaseAnalysisHook',
|
||||
enable=False,
|
||||
out_dir='badcase',
|
||||
metric_type='loss',
|
||||
badcase_thr=5))
|
||||
|
||||
# custom hooks
|
||||
custom_hooks = [
|
||||
# Synchronize model buffers such as running_mean and running_var in BN
|
||||
# at the end of each epoch
|
||||
dict(type='SyncBuffersHook')
|
||||
]
|
||||
|
||||
# multi-processing backend
|
||||
env_cfg = dict(
|
||||
cudnn_benchmark=False,
|
||||
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
|
||||
dist_cfg=dict(backend='nccl'),
|
||||
)
|
||||
|
||||
# visualizer
|
||||
vis_backends = [
|
||||
dict(type='LocalVisBackend'),
|
||||
# dict(type='TensorboardVisBackend'),
|
||||
# dict(type='WandbVisBackend'),
|
||||
]
|
||||
visualizer = dict(
|
||||
type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')
|
||||
|
||||
# logger
|
||||
log_processor = dict(
|
||||
type='LogProcessor', window_size=50, by_epoch=True, num_digits=6)
|
||||
log_level = 'INFO'
|
||||
load_from = None
|
||||
resume = False
|
||||
|
||||
# file I/O backend
|
||||
backend_args = dict(backend='local')
|
||||
|
||||
# training/validation/testing progress
|
||||
train_cfg = dict(by_epoch=True)
|
||||
val_cfg = dict()
|
||||
test_cfg = dict()
|
||||
@@ -0,0 +1,257 @@
|
||||
#_base_ = ['../../../_base_/default_runtime.py']
|
||||
_base_ = ['default_runtime.py']
|
||||
|
||||
# runtime
|
||||
max_epochs = 270
|
||||
stage2_num_epochs = 30
|
||||
base_lr = 4e-3
|
||||
train_batch_size = 32
|
||||
val_batch_size = 32
|
||||
|
||||
train_cfg = dict(max_epochs=max_epochs, val_interval=10)
|
||||
randomness = dict(seed=21)
|
||||
|
||||
# optimizer
|
||||
optim_wrapper = dict(
|
||||
type='OptimWrapper',
|
||||
optimizer=dict(type='AdamW', lr=base_lr, weight_decay=0.05),
|
||||
paramwise_cfg=dict(
|
||||
norm_decay_mult=0, bias_decay_mult=0, bypass_duplicate=True))
|
||||
|
||||
# learning rate
|
||||
param_scheduler = [
|
||||
dict(
|
||||
type='LinearLR',
|
||||
start_factor=1.0e-5,
|
||||
by_epoch=False,
|
||||
begin=0,
|
||||
end=1000),
|
||||
dict(
|
||||
# use cosine lr from 150 to 300 epoch
|
||||
type='CosineAnnealingLR',
|
||||
eta_min=base_lr * 0.05,
|
||||
begin=max_epochs // 2,
|
||||
end=max_epochs,
|
||||
T_max=max_epochs // 2,
|
||||
by_epoch=True,
|
||||
convert_to_iter_based=True),
|
||||
]
|
||||
|
||||
# automatically scaling LR based on the actual training batch size
|
||||
auto_scale_lr = dict(base_batch_size=512)
|
||||
|
||||
# codec settings
|
||||
codec = dict(
|
||||
type='SimCCLabel',
|
||||
input_size=(288, 384),
|
||||
sigma=(6., 6.93),
|
||||
simcc_split_ratio=2.0,
|
||||
normalize=False,
|
||||
use_dark=False)
|
||||
|
||||
# model settings
|
||||
model = dict(
|
||||
type='TopdownPoseEstimator',
|
||||
data_preprocessor=dict(
|
||||
type='PoseDataPreprocessor',
|
||||
mean=[123.675, 116.28, 103.53],
|
||||
std=[58.395, 57.12, 57.375],
|
||||
bgr_to_rgb=True),
|
||||
backbone=dict(
|
||||
_scope_='mmdet',
|
||||
type='CSPNeXt',
|
||||
arch='P5',
|
||||
expand_ratio=0.5,
|
||||
deepen_factor=1.,
|
||||
widen_factor=1.,
|
||||
out_indices=(4, ),
|
||||
channel_attention=True,
|
||||
norm_cfg=dict(type='SyncBN'),
|
||||
act_cfg=dict(type='SiLU'),
|
||||
init_cfg=dict(
|
||||
type='Pretrained',
|
||||
prefix='backbone.',
|
||||
checkpoint='https://download.openmmlab.com/mmpose/v1/projects/'
|
||||
'rtmpose/cspnext-l_udp-aic-coco_210e-256x192-273b7631_20230130.pth' # noqa: E501
|
||||
)),
|
||||
head=dict(
|
||||
type='RTMCCHead',
|
||||
in_channels=1024,
|
||||
out_channels=133,
|
||||
input_size=codec['input_size'],
|
||||
in_featuremap_size=(9, 12),
|
||||
simcc_split_ratio=codec['simcc_split_ratio'],
|
||||
final_layer_kernel_size=7,
|
||||
gau_cfg=dict(
|
||||
hidden_dims=256,
|
||||
s=128,
|
||||
expansion_factor=2,
|
||||
dropout_rate=0.,
|
||||
drop_path=0.,
|
||||
act_fn='SiLU',
|
||||
use_rel_bias=False,
|
||||
pos_enc=False),
|
||||
loss=dict(
|
||||
type='KLDiscretLoss',
|
||||
use_target_weight=True,
|
||||
beta=10.,
|
||||
label_softmax=True),
|
||||
decoder=codec),
|
||||
test_cfg=dict(flip_test=True, ))
|
||||
|
||||
# base dataset settings
|
||||
dataset_type = 'UBody2dDataset'
|
||||
data_mode = 'topdown'
|
||||
data_root = 'data/UBody/'
|
||||
|
||||
backend_args = dict(backend='local')
|
||||
|
||||
scenes = [
|
||||
'Magic_show', 'Entertainment', 'ConductMusic', 'Online_class', 'TalkShow',
|
||||
'Speech', 'Fitness', 'Interview', 'Olympic', 'TVShow', 'Singing',
|
||||
'SignLanguage', 'Movie', 'LiveVlog', 'VideoConference'
|
||||
]
|
||||
|
||||
train_datasets = [
|
||||
dict(
|
||||
type='CocoWholeBodyDataset',
|
||||
data_root='data/coco/',
|
||||
data_mode=data_mode,
|
||||
ann_file='annotations/coco_wholebody_train_v1.0.json',
|
||||
data_prefix=dict(img='train2017/'),
|
||||
pipeline=[])
|
||||
]
|
||||
|
||||
for scene in scenes:
|
||||
train_dataset = dict(
|
||||
type=dataset_type,
|
||||
data_root=data_root,
|
||||
data_mode=data_mode,
|
||||
ann_file=f'annotations/{scene}/train_annotations.json',
|
||||
data_prefix=dict(img='images/'),
|
||||
pipeline=[],
|
||||
sample_interval=10)
|
||||
train_datasets.append(train_dataset)
|
||||
|
||||
# pipelines
|
||||
train_pipeline = [
|
||||
dict(type='LoadImage', backend_args=backend_args),
|
||||
dict(type='GetBBoxCenterScale'),
|
||||
dict(type='RandomFlip', direction='horizontal'),
|
||||
dict(type='RandomHalfBody'),
|
||||
dict(
|
||||
type='RandomBBoxTransform', scale_factor=[0.5, 1.5], rotate_factor=90),
|
||||
dict(type='TopdownAffine', input_size=codec['input_size']),
|
||||
dict(type='mmdet.YOLOXHSVRandomAug'),
|
||||
dict(
|
||||
type='Albumentation',
|
||||
transforms=[
|
||||
dict(type='Blur', p=0.1),
|
||||
dict(type='MedianBlur', p=0.1),
|
||||
dict(
|
||||
type='CoarseDropout',
|
||||
max_holes=1,
|
||||
max_height=0.4,
|
||||
max_width=0.4,
|
||||
min_holes=1,
|
||||
min_height=0.2,
|
||||
min_width=0.2,
|
||||
p=1.0),
|
||||
]),
|
||||
dict(type='GenerateTarget', encoder=codec),
|
||||
dict(type='PackPoseInputs')
|
||||
]
|
||||
val_pipeline = [
|
||||
dict(type='LoadImage', backend_args=backend_args),
|
||||
dict(type='GetBBoxCenterScale'),
|
||||
dict(type='TopdownAffine', input_size=codec['input_size']),
|
||||
dict(type='PackPoseInputs')
|
||||
]
|
||||
|
||||
train_pipeline_stage2 = [
|
||||
dict(type='LoadImage', backend_args=backend_args),
|
||||
dict(type='GetBBoxCenterScale'),
|
||||
dict(type='RandomFlip', direction='horizontal'),
|
||||
dict(type='RandomHalfBody'),
|
||||
dict(
|
||||
type='RandomBBoxTransform',
|
||||
shift_factor=0.,
|
||||
scale_factor=[0.5, 1.5],
|
||||
rotate_factor=90),
|
||||
dict(type='TopdownAffine', input_size=codec['input_size']),
|
||||
dict(type='mmdet.YOLOXHSVRandomAug'),
|
||||
dict(
|
||||
type='Albumentation',
|
||||
transforms=[
|
||||
dict(type='Blur', p=0.1),
|
||||
dict(type='MedianBlur', p=0.1),
|
||||
dict(
|
||||
type='CoarseDropout',
|
||||
max_holes=1,
|
||||
max_height=0.4,
|
||||
max_width=0.4,
|
||||
min_holes=1,
|
||||
min_height=0.2,
|
||||
min_width=0.2,
|
||||
p=0.5),
|
||||
]),
|
||||
dict(type='GenerateTarget', encoder=codec),
|
||||
dict(type='PackPoseInputs')
|
||||
]
|
||||
|
||||
# data loaders
|
||||
train_dataloader = dict(
|
||||
batch_size=train_batch_size,
|
||||
num_workers=10,
|
||||
persistent_workers=True,
|
||||
sampler=dict(type='DefaultSampler', shuffle=True),
|
||||
dataset=dict(
|
||||
type='CombinedDataset',
|
||||
metainfo=dict(from_file='configs/_base_/datasets/coco_wholebody.py'),
|
||||
datasets=train_datasets,
|
||||
pipeline=train_pipeline,
|
||||
test_mode=False,
|
||||
))
|
||||
|
||||
val_dataloader = dict(
|
||||
batch_size=val_batch_size,
|
||||
num_workers=10,
|
||||
persistent_workers=True,
|
||||
drop_last=False,
|
||||
sampler=dict(type='DefaultSampler', shuffle=False, round_up=False),
|
||||
dataset=dict(
|
||||
type='CocoWholeBodyDataset',
|
||||
data_root=data_root,
|
||||
data_mode=data_mode,
|
||||
ann_file='data/coco/annotations/coco_wholebody_val_v1.0.json',
|
||||
bbox_file='data/coco/person_detection_results/'
|
||||
'COCO_val2017_detections_AP_H_56_person.json',
|
||||
data_prefix=dict(img='coco/val2017/'),
|
||||
test_mode=True,
|
||||
pipeline=val_pipeline,
|
||||
))
|
||||
test_dataloader = val_dataloader
|
||||
|
||||
# hooks
|
||||
default_hooks = dict(
|
||||
checkpoint=dict(
|
||||
save_best='coco-wholebody/AP', rule='greater', max_keep_ckpts=1))
|
||||
|
||||
custom_hooks = [
|
||||
dict(
|
||||
type='EMAHook',
|
||||
ema_type='ExpMomentumEMA',
|
||||
momentum=0.0002,
|
||||
update_buffers=True,
|
||||
priority=49),
|
||||
dict(
|
||||
type='mmdet.PipelineSwitchHook',
|
||||
switch_epoch=max_epochs - stage2_num_epochs,
|
||||
switch_pipeline=train_pipeline_stage2)
|
||||
]
|
||||
|
||||
# evaluators
|
||||
val_evaluator = dict(
|
||||
type='CocoWholeBodyMetric',
|
||||
ann_file='data/coco/annotations/coco_wholebody_val_v1.0.json')
|
||||
test_evaluator = val_evaluator
|
||||
1
musetalk/utils/face_detection/README.md
Normal file
1
musetalk/utils/face_detection/README.md
Normal file
@@ -0,0 +1 @@
|
||||
The code for Face Detection in this folder has been taken from the wonderful [face_alignment](https://github.com/1adrianb/face-alignment) repository. This has been modified to take batches of faces at a time.
|
||||
7
musetalk/utils/face_detection/__init__.py
Normal file
7
musetalk/utils/face_detection/__init__.py
Normal file
@@ -0,0 +1,7 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
__author__ = """Adrian Bulat"""
|
||||
__email__ = 'adrian.bulat@nottingham.ac.uk'
|
||||
__version__ = '1.0.1'
|
||||
|
||||
from .api import FaceAlignment, LandmarksType, NetworkSize, YOLOv8_face
|
||||
240
musetalk/utils/face_detection/api.py
Normal file
240
musetalk/utils/face_detection/api.py
Normal file
@@ -0,0 +1,240 @@
|
||||
from __future__ import print_function
|
||||
import os
|
||||
import torch
|
||||
from torch.utils.model_zoo import load_url
|
||||
from enum import Enum
|
||||
import numpy as np
|
||||
import cv2
|
||||
try:
|
||||
import urllib.request as request_file
|
||||
except BaseException:
|
||||
import urllib as request_file
|
||||
|
||||
from .models import FAN, ResNetDepth
|
||||
from .utils import *
|
||||
|
||||
|
||||
class LandmarksType(Enum):
|
||||
"""Enum class defining the type of landmarks to detect.
|
||||
|
||||
``_2D`` - the detected points ``(x,y)`` are detected in a 2D space and follow the visible contour of the face
|
||||
``_2halfD`` - this points represent the projection of the 3D points into 3D
|
||||
``_3D`` - detect the points ``(x,y,z)``` in a 3D space
|
||||
|
||||
"""
|
||||
_2D = 1
|
||||
_2halfD = 2
|
||||
_3D = 3
|
||||
|
||||
|
||||
class NetworkSize(Enum):
|
||||
# TINY = 1
|
||||
# SMALL = 2
|
||||
# MEDIUM = 3
|
||||
LARGE = 4
|
||||
|
||||
def __new__(cls, value):
|
||||
member = object.__new__(cls)
|
||||
member._value_ = value
|
||||
return member
|
||||
|
||||
def __int__(self):
|
||||
return self.value
|
||||
|
||||
|
||||
|
||||
class FaceAlignment:
|
||||
def __init__(self, landmarks_type, network_size=NetworkSize.LARGE,
|
||||
device='cuda', flip_input=False, face_detector='sfd', verbose=False):
|
||||
self.device = device
|
||||
self.flip_input = flip_input
|
||||
self.landmarks_type = landmarks_type
|
||||
self.verbose = verbose
|
||||
|
||||
network_size = int(network_size)
|
||||
|
||||
if 'cuda' in device:
|
||||
torch.backends.cudnn.benchmark = True
|
||||
# torch.backends.cuda.matmul.allow_tf32 = False
|
||||
# torch.backends.cudnn.benchmark = True
|
||||
# torch.backends.cudnn.deterministic = False
|
||||
# torch.backends.cudnn.allow_tf32 = True
|
||||
print('cuda start')
|
||||
|
||||
|
||||
# Get the face detector
|
||||
face_detector_module = __import__('face_detection.detection.' + face_detector,
|
||||
globals(), locals(), [face_detector], 0)
|
||||
|
||||
self.face_detector = face_detector_module.FaceDetector(device=device, verbose=verbose)
|
||||
|
||||
def get_detections_for_batch(self, images):
|
||||
images = images[..., ::-1]
|
||||
detected_faces = self.face_detector.detect_from_batch(images.copy())
|
||||
results = []
|
||||
|
||||
for i, d in enumerate(detected_faces):
|
||||
if len(d) == 0:
|
||||
results.append(None)
|
||||
continue
|
||||
d = d[0]
|
||||
d = np.clip(d, 0, None)
|
||||
|
||||
x1, y1, x2, y2 = map(int, d[:-1])
|
||||
results.append((x1, y1, x2, y2))
|
||||
|
||||
return results
|
||||
|
||||
|
||||
class YOLOv8_face:
|
||||
def __init__(self, path = 'face_detection/weights/yolov8n-face.onnx', conf_thres=0.2, iou_thres=0.5):
|
||||
self.conf_threshold = conf_thres
|
||||
self.iou_threshold = iou_thres
|
||||
self.class_names = ['face']
|
||||
self.num_classes = len(self.class_names)
|
||||
# Initialize model
|
||||
self.net = cv2.dnn.readNet(path)
|
||||
self.input_height = 640
|
||||
self.input_width = 640
|
||||
self.reg_max = 16
|
||||
|
||||
self.project = np.arange(self.reg_max)
|
||||
self.strides = (8, 16, 32)
|
||||
self.feats_hw = [(math.ceil(self.input_height / self.strides[i]), math.ceil(self.input_width / self.strides[i])) for i in range(len(self.strides))]
|
||||
self.anchors = self.make_anchors(self.feats_hw)
|
||||
|
||||
def make_anchors(self, feats_hw, grid_cell_offset=0.5):
|
||||
"""Generate anchors from features."""
|
||||
anchor_points = {}
|
||||
for i, stride in enumerate(self.strides):
|
||||
h,w = feats_hw[i]
|
||||
x = np.arange(0, w) + grid_cell_offset # shift x
|
||||
y = np.arange(0, h) + grid_cell_offset # shift y
|
||||
sx, sy = np.meshgrid(x, y)
|
||||
# sy, sx = np.meshgrid(y, x)
|
||||
anchor_points[stride] = np.stack((sx, sy), axis=-1).reshape(-1, 2)
|
||||
return anchor_points
|
||||
|
||||
def softmax(self, x, axis=1):
|
||||
x_exp = np.exp(x)
|
||||
# 如果是列向量,则axis=0
|
||||
x_sum = np.sum(x_exp, axis=axis, keepdims=True)
|
||||
s = x_exp / x_sum
|
||||
return s
|
||||
|
||||
def resize_image(self, srcimg, keep_ratio=True):
|
||||
top, left, newh, neww = 0, 0, self.input_width, self.input_height
|
||||
if keep_ratio and srcimg.shape[0] != srcimg.shape[1]:
|
||||
hw_scale = srcimg.shape[0] / srcimg.shape[1]
|
||||
if hw_scale > 1:
|
||||
newh, neww = self.input_height, int(self.input_width / hw_scale)
|
||||
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
|
||||
left = int((self.input_width - neww) * 0.5)
|
||||
img = cv2.copyMakeBorder(img, 0, 0, left, self.input_width - neww - left, cv2.BORDER_CONSTANT,
|
||||
value=(0, 0, 0)) # add border
|
||||
else:
|
||||
newh, neww = int(self.input_height * hw_scale), self.input_width
|
||||
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
|
||||
top = int((self.input_height - newh) * 0.5)
|
||||
img = cv2.copyMakeBorder(img, top, self.input_height - newh - top, 0, 0, cv2.BORDER_CONSTANT,
|
||||
value=(0, 0, 0))
|
||||
else:
|
||||
img = cv2.resize(srcimg, (self.input_width, self.input_height), interpolation=cv2.INTER_AREA)
|
||||
return img, newh, neww, top, left
|
||||
|
||||
def detect(self, srcimg):
|
||||
input_img, newh, neww, padh, padw = self.resize_image(cv2.cvtColor(srcimg, cv2.COLOR_BGR2RGB))
|
||||
scale_h, scale_w = srcimg.shape[0]/newh, srcimg.shape[1]/neww
|
||||
input_img = input_img.astype(np.float32) / 255.0
|
||||
|
||||
blob = cv2.dnn.blobFromImage(input_img)
|
||||
self.net.setInput(blob)
|
||||
outputs = self.net.forward(self.net.getUnconnectedOutLayersNames())
|
||||
# if isinstance(outputs, tuple):
|
||||
# outputs = list(outputs)
|
||||
# if float(cv2.__version__[:3])>=4.7:
|
||||
# outputs = [outputs[2], outputs[0], outputs[1]] ###opencv4.7需要这一步,opencv4.5不需要
|
||||
# Perform inference on the image
|
||||
det_bboxes, det_conf, det_classid, landmarks = self.post_process(outputs, scale_h, scale_w, padh, padw)
|
||||
return det_bboxes, det_conf, det_classid, landmarks
|
||||
|
||||
def post_process(self, preds, scale_h, scale_w, padh, padw):
|
||||
bboxes, scores, landmarks = [], [], []
|
||||
for i, pred in enumerate(preds):
|
||||
stride = int(self.input_height/pred.shape[2])
|
||||
pred = pred.transpose((0, 2, 3, 1))
|
||||
|
||||
box = pred[..., :self.reg_max * 4]
|
||||
cls = 1 / (1 + np.exp(-pred[..., self.reg_max * 4:-15])).reshape((-1,1))
|
||||
kpts = pred[..., -15:].reshape((-1,15)) ### x1,y1,score1, ..., x5,y5,score5
|
||||
|
||||
# tmp = box.reshape(self.feats_hw[i][0], self.feats_hw[i][1], 4, self.reg_max)
|
||||
tmp = box.reshape(-1, 4, self.reg_max)
|
||||
bbox_pred = self.softmax(tmp, axis=-1)
|
||||
bbox_pred = np.dot(bbox_pred, self.project).reshape((-1,4))
|
||||
|
||||
bbox = self.distance2bbox(self.anchors[stride], bbox_pred, max_shape=(self.input_height, self.input_width)) * stride
|
||||
kpts[:, 0::3] = (kpts[:, 0::3] * 2.0 + (self.anchors[stride][:, 0].reshape((-1,1)) - 0.5)) * stride
|
||||
kpts[:, 1::3] = (kpts[:, 1::3] * 2.0 + (self.anchors[stride][:, 1].reshape((-1,1)) - 0.5)) * stride
|
||||
kpts[:, 2::3] = 1 / (1+np.exp(-kpts[:, 2::3]))
|
||||
|
||||
bbox -= np.array([[padw, padh, padw, padh]]) ###合理使用广播法则
|
||||
bbox *= np.array([[scale_w, scale_h, scale_w, scale_h]])
|
||||
kpts -= np.tile(np.array([padw, padh, 0]), 5).reshape((1,15))
|
||||
kpts *= np.tile(np.array([scale_w, scale_h, 1]), 5).reshape((1,15))
|
||||
|
||||
bboxes.append(bbox)
|
||||
scores.append(cls)
|
||||
landmarks.append(kpts)
|
||||
|
||||
bboxes = np.concatenate(bboxes, axis=0)
|
||||
scores = np.concatenate(scores, axis=0)
|
||||
landmarks = np.concatenate(landmarks, axis=0)
|
||||
|
||||
bboxes_wh = bboxes.copy()
|
||||
bboxes_wh[:, 2:4] = bboxes[:, 2:4] - bboxes[:, 0:2] ####xywh
|
||||
classIds = np.argmax(scores, axis=1)
|
||||
confidences = np.max(scores, axis=1) ####max_class_confidence
|
||||
|
||||
mask = confidences>self.conf_threshold
|
||||
bboxes_wh = bboxes_wh[mask] ###合理使用广播法则
|
||||
confidences = confidences[mask]
|
||||
classIds = classIds[mask]
|
||||
landmarks = landmarks[mask]
|
||||
|
||||
indices = cv2.dnn.NMSBoxes(bboxes_wh.tolist(), confidences.tolist(), self.conf_threshold,
|
||||
self.iou_threshold).flatten()
|
||||
if len(indices) > 0:
|
||||
mlvl_bboxes = bboxes_wh[indices]
|
||||
confidences = confidences[indices]
|
||||
classIds = classIds[indices]
|
||||
landmarks = landmarks[indices]
|
||||
return mlvl_bboxes, confidences, classIds, landmarks
|
||||
else:
|
||||
print('nothing detect')
|
||||
return np.array([]), np.array([]), np.array([]), np.array([])
|
||||
|
||||
def distance2bbox(self, points, distance, max_shape=None):
|
||||
x1 = points[:, 0] - distance[:, 0]
|
||||
y1 = points[:, 1] - distance[:, 1]
|
||||
x2 = points[:, 0] + distance[:, 2]
|
||||
y2 = points[:, 1] + distance[:, 3]
|
||||
if max_shape is not None:
|
||||
x1 = np.clip(x1, 0, max_shape[1])
|
||||
y1 = np.clip(y1, 0, max_shape[0])
|
||||
x2 = np.clip(x2, 0, max_shape[1])
|
||||
y2 = np.clip(y2, 0, max_shape[0])
|
||||
return np.stack([x1, y1, x2, y2], axis=-1)
|
||||
|
||||
def draw_detections(self, image, boxes, scores, kpts):
|
||||
for box, score, kp in zip(boxes, scores, kpts):
|
||||
x, y, w, h = box.astype(int)
|
||||
# Draw rectangle
|
||||
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), thickness=3)
|
||||
cv2.putText(image, "face:"+str(round(score,2)), (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), thickness=2)
|
||||
for i in range(5):
|
||||
cv2.circle(image, (int(kp[i * 3]), int(kp[i * 3 + 1])), 4, (0, 255, 0), thickness=-1)
|
||||
# cv2.putText(image, str(i), (int(kp[i * 3]), int(kp[i * 3 + 1]) - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), thickness=1)
|
||||
return image
|
||||
|
||||
ROOT = os.path.dirname(os.path.abspath(__file__))
|
||||
1
musetalk/utils/face_detection/detection/__init__.py
Normal file
1
musetalk/utils/face_detection/detection/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .core import FaceDetector
|
||||
130
musetalk/utils/face_detection/detection/core.py
Normal file
130
musetalk/utils/face_detection/detection/core.py
Normal file
@@ -0,0 +1,130 @@
|
||||
import logging
|
||||
import glob
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
import torch
|
||||
import cv2
|
||||
|
||||
|
||||
class FaceDetector(object):
|
||||
"""An abstract class representing a face detector.
|
||||
|
||||
Any other face detection implementation must subclass it. All subclasses
|
||||
must implement ``detect_from_image``, that return a list of detected
|
||||
bounding boxes. Optionally, for speed considerations detect from path is
|
||||
recommended.
|
||||
"""
|
||||
|
||||
def __init__(self, device, verbose):
|
||||
self.device = device
|
||||
self.verbose = verbose
|
||||
|
||||
if verbose:
|
||||
if 'cpu' in device:
|
||||
logger = logging.getLogger(__name__)
|
||||
logger.warning("Detection running on CPU, this may be potentially slow.")
|
||||
|
||||
if 'cpu' not in device and 'cuda' not in device:
|
||||
if verbose:
|
||||
logger.error("Expected values for device are: {cpu, cuda} but got: %s", device)
|
||||
raise ValueError
|
||||
|
||||
def detect_from_image(self, tensor_or_path):
|
||||
"""Detects faces in a given image.
|
||||
|
||||
This function detects the faces present in a provided BGR(usually)
|
||||
image. The input can be either the image itself or the path to it.
|
||||
|
||||
Arguments:
|
||||
tensor_or_path {numpy.ndarray, torch.tensor or string} -- the path
|
||||
to an image or the image itself.
|
||||
|
||||
Example::
|
||||
|
||||
>>> path_to_image = 'data/image_01.jpg'
|
||||
... detected_faces = detect_from_image(path_to_image)
|
||||
[A list of bounding boxes (x1, y1, x2, y2)]
|
||||
>>> image = cv2.imread(path_to_image)
|
||||
... detected_faces = detect_from_image(image)
|
||||
[A list of bounding boxes (x1, y1, x2, y2)]
|
||||
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def detect_from_directory(self, path, extensions=['.jpg', '.png'], recursive=False, show_progress_bar=True):
|
||||
"""Detects faces from all the images present in a given directory.
|
||||
|
||||
Arguments:
|
||||
path {string} -- a string containing a path that points to the folder containing the images
|
||||
|
||||
Keyword Arguments:
|
||||
extensions {list} -- list of string containing the extensions to be
|
||||
consider in the following format: ``.extension_name`` (default:
|
||||
{['.jpg', '.png']}) recursive {bool} -- option wherever to scan the
|
||||
folder recursively (default: {False}) show_progress_bar {bool} --
|
||||
display a progressbar (default: {True})
|
||||
|
||||
Example:
|
||||
>>> directory = 'data'
|
||||
... detected_faces = detect_from_directory(directory)
|
||||
{A dictionary of [lists containing bounding boxes(x1, y1, x2, y2)]}
|
||||
|
||||
"""
|
||||
if self.verbose:
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
if len(extensions) == 0:
|
||||
if self.verbose:
|
||||
logger.error("Expected at list one extension, but none was received.")
|
||||
raise ValueError
|
||||
|
||||
if self.verbose:
|
||||
logger.info("Constructing the list of images.")
|
||||
additional_pattern = '/**/*' if recursive else '/*'
|
||||
files = []
|
||||
for extension in extensions:
|
||||
files.extend(glob.glob(path + additional_pattern + extension, recursive=recursive))
|
||||
|
||||
if self.verbose:
|
||||
logger.info("Finished searching for images. %s images found", len(files))
|
||||
logger.info("Preparing to run the detection.")
|
||||
|
||||
predictions = {}
|
||||
for image_path in tqdm(files, disable=not show_progress_bar):
|
||||
if self.verbose:
|
||||
logger.info("Running the face detector on image: %s", image_path)
|
||||
predictions[image_path] = self.detect_from_image(image_path)
|
||||
|
||||
if self.verbose:
|
||||
logger.info("The detector was successfully run on all %s images", len(files))
|
||||
|
||||
return predictions
|
||||
|
||||
@property
|
||||
def reference_scale(self):
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def reference_x_shift(self):
|
||||
raise NotImplementedError
|
||||
|
||||
@property
|
||||
def reference_y_shift(self):
|
||||
raise NotImplementedError
|
||||
|
||||
@staticmethod
|
||||
def tensor_or_path_to_ndarray(tensor_or_path, rgb=True):
|
||||
"""Convert path (represented as a string) or torch.tensor to a numpy.ndarray
|
||||
|
||||
Arguments:
|
||||
tensor_or_path {numpy.ndarray, torch.tensor or string} -- path to the image, or the image itself
|
||||
"""
|
||||
if isinstance(tensor_or_path, str):
|
||||
return cv2.imread(tensor_or_path) if not rgb else cv2.imread(tensor_or_path)[..., ::-1]
|
||||
elif torch.is_tensor(tensor_or_path):
|
||||
# Call cpu in case its coming from cuda
|
||||
return tensor_or_path.cpu().numpy()[..., ::-1].copy() if not rgb else tensor_or_path.cpu().numpy()
|
||||
elif isinstance(tensor_or_path, np.ndarray):
|
||||
return tensor_or_path[..., ::-1].copy() if not rgb else tensor_or_path
|
||||
else:
|
||||
raise TypeError
|
||||
1
musetalk/utils/face_detection/detection/sfd/__init__.py
Normal file
1
musetalk/utils/face_detection/detection/sfd/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .sfd_detector import SFDDetector as FaceDetector
|
||||
129
musetalk/utils/face_detection/detection/sfd/bbox.py
Normal file
129
musetalk/utils/face_detection/detection/sfd/bbox.py
Normal file
@@ -0,0 +1,129 @@
|
||||
from __future__ import print_function
|
||||
import os
|
||||
import sys
|
||||
import cv2
|
||||
import random
|
||||
import datetime
|
||||
import time
|
||||
import math
|
||||
import argparse
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
try:
|
||||
from iou import IOU
|
||||
except BaseException:
|
||||
# IOU cython speedup 10x
|
||||
def IOU(ax1, ay1, ax2, ay2, bx1, by1, bx2, by2):
|
||||
sa = abs((ax2 - ax1) * (ay2 - ay1))
|
||||
sb = abs((bx2 - bx1) * (by2 - by1))
|
||||
x1, y1 = max(ax1, bx1), max(ay1, by1)
|
||||
x2, y2 = min(ax2, bx2), min(ay2, by2)
|
||||
w = x2 - x1
|
||||
h = y2 - y1
|
||||
if w < 0 or h < 0:
|
||||
return 0.0
|
||||
else:
|
||||
return 1.0 * w * h / (sa + sb - w * h)
|
||||
|
||||
|
||||
def bboxlog(x1, y1, x2, y2, axc, ayc, aww, ahh):
|
||||
xc, yc, ww, hh = (x2 + x1) / 2, (y2 + y1) / 2, x2 - x1, y2 - y1
|
||||
dx, dy = (xc - axc) / aww, (yc - ayc) / ahh
|
||||
dw, dh = math.log(ww / aww), math.log(hh / ahh)
|
||||
return dx, dy, dw, dh
|
||||
|
||||
|
||||
def bboxloginv(dx, dy, dw, dh, axc, ayc, aww, ahh):
|
||||
xc, yc = dx * aww + axc, dy * ahh + ayc
|
||||
ww, hh = math.exp(dw) * aww, math.exp(dh) * ahh
|
||||
x1, x2, y1, y2 = xc - ww / 2, xc + ww / 2, yc - hh / 2, yc + hh / 2
|
||||
return x1, y1, x2, y2
|
||||
|
||||
|
||||
def nms(dets, thresh):
|
||||
if 0 == len(dets):
|
||||
return []
|
||||
x1, y1, x2, y2, scores = dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3], dets[:, 4]
|
||||
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
||||
order = scores.argsort()[::-1]
|
||||
|
||||
keep = []
|
||||
while order.size > 0:
|
||||
i = order[0]
|
||||
keep.append(i)
|
||||
xx1, yy1 = np.maximum(x1[i], x1[order[1:]]), np.maximum(y1[i], y1[order[1:]])
|
||||
xx2, yy2 = np.minimum(x2[i], x2[order[1:]]), np.minimum(y2[i], y2[order[1:]])
|
||||
|
||||
w, h = np.maximum(0.0, xx2 - xx1 + 1), np.maximum(0.0, yy2 - yy1 + 1)
|
||||
ovr = w * h / (areas[i] + areas[order[1:]] - w * h)
|
||||
|
||||
inds = np.where(ovr <= thresh)[0]
|
||||
order = order[inds + 1]
|
||||
|
||||
return keep
|
||||
|
||||
|
||||
def encode(matched, priors, variances):
|
||||
"""Encode the variances from the priorbox layers into the ground truth boxes
|
||||
we have matched (based on jaccard overlap) with the prior boxes.
|
||||
Args:
|
||||
matched: (tensor) Coords of ground truth for each prior in point-form
|
||||
Shape: [num_priors, 4].
|
||||
priors: (tensor) Prior boxes in center-offset form
|
||||
Shape: [num_priors,4].
|
||||
variances: (list[float]) Variances of priorboxes
|
||||
Return:
|
||||
encoded boxes (tensor), Shape: [num_priors, 4]
|
||||
"""
|
||||
|
||||
# dist b/t match center and prior's center
|
||||
g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2]
|
||||
# encode variance
|
||||
g_cxcy /= (variances[0] * priors[:, 2:])
|
||||
# match wh / prior wh
|
||||
g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
|
||||
g_wh = torch.log(g_wh) / variances[1]
|
||||
# return target for smooth_l1_loss
|
||||
return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4]
|
||||
|
||||
|
||||
def decode(loc, priors, variances):
|
||||
"""Decode locations from predictions using priors to undo
|
||||
the encoding we did for offset regression at train time.
|
||||
Args:
|
||||
loc (tensor): location predictions for loc layers,
|
||||
Shape: [num_priors,4]
|
||||
priors (tensor): Prior boxes in center-offset form.
|
||||
Shape: [num_priors,4].
|
||||
variances: (list[float]) Variances of priorboxes
|
||||
Return:
|
||||
decoded bounding box predictions
|
||||
"""
|
||||
|
||||
boxes = torch.cat((
|
||||
priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
|
||||
priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
|
||||
boxes[:, :2] -= boxes[:, 2:] / 2
|
||||
boxes[:, 2:] += boxes[:, :2]
|
||||
return boxes
|
||||
|
||||
def batch_decode(loc, priors, variances):
|
||||
"""Decode locations from predictions using priors to undo
|
||||
the encoding we did for offset regression at train time.
|
||||
Args:
|
||||
loc (tensor): location predictions for loc layers,
|
||||
Shape: [num_priors,4]
|
||||
priors (tensor): Prior boxes in center-offset form.
|
||||
Shape: [num_priors,4].
|
||||
variances: (list[float]) Variances of priorboxes
|
||||
Return:
|
||||
decoded bounding box predictions
|
||||
"""
|
||||
|
||||
boxes = torch.cat((
|
||||
priors[:, :, :2] + loc[:, :, :2] * variances[0] * priors[:, :, 2:],
|
||||
priors[:, :, 2:] * torch.exp(loc[:, :, 2:] * variances[1])), 2)
|
||||
boxes[:, :, :2] -= boxes[:, :, 2:] / 2
|
||||
boxes[:, :, 2:] += boxes[:, :, :2]
|
||||
return boxes
|
||||
114
musetalk/utils/face_detection/detection/sfd/detect.py
Normal file
114
musetalk/utils/face_detection/detection/sfd/detect.py
Normal file
@@ -0,0 +1,114 @@
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
import os
|
||||
import sys
|
||||
import cv2
|
||||
import random
|
||||
import datetime
|
||||
import math
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
import scipy.io as sio
|
||||
import zipfile
|
||||
from .net_s3fd import s3fd
|
||||
from .bbox import *
|
||||
|
||||
|
||||
def detect(net, img, device):
|
||||
img = img - np.array([104, 117, 123])
|
||||
img = img.transpose(2, 0, 1)
|
||||
img = img.reshape((1,) + img.shape)
|
||||
|
||||
if 'cuda' in device:
|
||||
torch.backends.cudnn.benchmark = True
|
||||
|
||||
img = torch.from_numpy(img).float().to(device)
|
||||
BB, CC, HH, WW = img.size()
|
||||
with torch.no_grad():
|
||||
olist = net(img)
|
||||
|
||||
bboxlist = []
|
||||
for i in range(len(olist) // 2):
|
||||
olist[i * 2] = F.softmax(olist[i * 2], dim=1)
|
||||
olist = [oelem.data.cpu() for oelem in olist]
|
||||
for i in range(len(olist) // 2):
|
||||
ocls, oreg = olist[i * 2], olist[i * 2 + 1]
|
||||
FB, FC, FH, FW = ocls.size() # feature map size
|
||||
stride = 2**(i + 2) # 4,8,16,32,64,128
|
||||
anchor = stride * 4
|
||||
poss = zip(*np.where(ocls[:, 1, :, :] > 0.05))
|
||||
for Iindex, hindex, windex in poss:
|
||||
axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride
|
||||
score = ocls[0, 1, hindex, windex]
|
||||
loc = oreg[0, :, hindex, windex].contiguous().view(1, 4)
|
||||
priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]])
|
||||
variances = [0.1, 0.2]
|
||||
box = decode(loc, priors, variances)
|
||||
x1, y1, x2, y2 = box[0] * 1.0
|
||||
# cv2.rectangle(imgshow,(int(x1),int(y1)),(int(x2),int(y2)),(0,0,255),1)
|
||||
bboxlist.append([x1, y1, x2, y2, score])
|
||||
bboxlist = np.array(bboxlist)
|
||||
if 0 == len(bboxlist):
|
||||
bboxlist = np.zeros((1, 5))
|
||||
|
||||
return bboxlist
|
||||
|
||||
def batch_detect(net, imgs, device):
|
||||
imgs = imgs - np.array([104, 117, 123])
|
||||
imgs = imgs.transpose(0, 3, 1, 2)
|
||||
|
||||
if 'cuda' in device:
|
||||
torch.backends.cudnn.benchmark = True
|
||||
|
||||
imgs = torch.from_numpy(imgs).float().to(device)
|
||||
BB, CC, HH, WW = imgs.size()
|
||||
with torch.no_grad():
|
||||
olist = net(imgs)
|
||||
# print(olist)
|
||||
|
||||
bboxlist = []
|
||||
for i in range(len(olist) // 2):
|
||||
olist[i * 2] = F.softmax(olist[i * 2], dim=1)
|
||||
|
||||
olist = [oelem.cpu() for oelem in olist]
|
||||
for i in range(len(olist) // 2):
|
||||
ocls, oreg = olist[i * 2], olist[i * 2 + 1]
|
||||
FB, FC, FH, FW = ocls.size() # feature map size
|
||||
stride = 2**(i + 2) # 4,8,16,32,64,128
|
||||
anchor = stride * 4
|
||||
poss = zip(*np.where(ocls[:, 1, :, :] > 0.05))
|
||||
for Iindex, hindex, windex in poss:
|
||||
axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride
|
||||
score = ocls[:, 1, hindex, windex]
|
||||
loc = oreg[:, :, hindex, windex].contiguous().view(BB, 1, 4)
|
||||
priors = torch.Tensor([[axc / 1.0, ayc / 1.0, stride * 4 / 1.0, stride * 4 / 1.0]]).view(1, 1, 4)
|
||||
variances = [0.1, 0.2]
|
||||
box = batch_decode(loc, priors, variances)
|
||||
box = box[:, 0] * 1.0
|
||||
# cv2.rectangle(imgshow,(int(x1),int(y1)),(int(x2),int(y2)),(0,0,255),1)
|
||||
bboxlist.append(torch.cat([box, score.unsqueeze(1)], 1).cpu().numpy())
|
||||
bboxlist = np.array(bboxlist)
|
||||
if 0 == len(bboxlist):
|
||||
bboxlist = np.zeros((1, BB, 5))
|
||||
|
||||
return bboxlist
|
||||
|
||||
def flip_detect(net, img, device):
|
||||
img = cv2.flip(img, 1)
|
||||
b = detect(net, img, device)
|
||||
|
||||
bboxlist = np.zeros(b.shape)
|
||||
bboxlist[:, 0] = img.shape[1] - b[:, 2]
|
||||
bboxlist[:, 1] = b[:, 1]
|
||||
bboxlist[:, 2] = img.shape[1] - b[:, 0]
|
||||
bboxlist[:, 3] = b[:, 3]
|
||||
bboxlist[:, 4] = b[:, 4]
|
||||
return bboxlist
|
||||
|
||||
|
||||
def pts_to_bb(pts):
|
||||
min_x, min_y = np.min(pts, axis=0)
|
||||
max_x, max_y = np.max(pts, axis=0)
|
||||
return np.array([min_x, min_y, max_x, max_y])
|
||||
129
musetalk/utils/face_detection/detection/sfd/net_s3fd.py
Normal file
129
musetalk/utils/face_detection/detection/sfd/net_s3fd.py
Normal file
@@ -0,0 +1,129 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class L2Norm(nn.Module):
|
||||
def __init__(self, n_channels, scale=1.0):
|
||||
super(L2Norm, self).__init__()
|
||||
self.n_channels = n_channels
|
||||
self.scale = scale
|
||||
self.eps = 1e-10
|
||||
self.weight = nn.Parameter(torch.Tensor(self.n_channels))
|
||||
self.weight.data *= 0.0
|
||||
self.weight.data += self.scale
|
||||
|
||||
def forward(self, x):
|
||||
norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps
|
||||
x = x / norm * self.weight.view(1, -1, 1, 1)
|
||||
return x
|
||||
|
||||
|
||||
class s3fd(nn.Module):
|
||||
def __init__(self):
|
||||
super(s3fd, self).__init__()
|
||||
self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
|
||||
self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
|
||||
self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
|
||||
self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
|
||||
self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
|
||||
self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
|
||||
self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
|
||||
self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
|
||||
self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
self.fc6 = nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=3)
|
||||
self.fc7 = nn.Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0)
|
||||
|
||||
self.conv6_1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0)
|
||||
self.conv6_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)
|
||||
|
||||
self.conv7_1 = nn.Conv2d(512, 128, kernel_size=1, stride=1, padding=0)
|
||||
self.conv7_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)
|
||||
|
||||
self.conv3_3_norm = L2Norm(256, scale=10)
|
||||
self.conv4_3_norm = L2Norm(512, scale=8)
|
||||
self.conv5_3_norm = L2Norm(512, scale=5)
|
||||
|
||||
self.conv3_3_norm_mbox_conf = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1)
|
||||
self.conv3_3_norm_mbox_loc = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1)
|
||||
self.conv4_3_norm_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1)
|
||||
self.conv4_3_norm_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
|
||||
self.conv5_3_norm_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1)
|
||||
self.conv5_3_norm_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
self.fc7_mbox_conf = nn.Conv2d(1024, 2, kernel_size=3, stride=1, padding=1)
|
||||
self.fc7_mbox_loc = nn.Conv2d(1024, 4, kernel_size=3, stride=1, padding=1)
|
||||
self.conv6_2_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1)
|
||||
self.conv6_2_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
|
||||
self.conv7_2_mbox_conf = nn.Conv2d(256, 2, kernel_size=3, stride=1, padding=1)
|
||||
self.conv7_2_mbox_loc = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
h = F.relu(self.conv1_1(x))
|
||||
h = F.relu(self.conv1_2(h))
|
||||
h = F.max_pool2d(h, 2, 2)
|
||||
|
||||
h = F.relu(self.conv2_1(h))
|
||||
h = F.relu(self.conv2_2(h))
|
||||
h = F.max_pool2d(h, 2, 2)
|
||||
|
||||
h = F.relu(self.conv3_1(h))
|
||||
h = F.relu(self.conv3_2(h))
|
||||
h = F.relu(self.conv3_3(h))
|
||||
f3_3 = h
|
||||
h = F.max_pool2d(h, 2, 2)
|
||||
|
||||
h = F.relu(self.conv4_1(h))
|
||||
h = F.relu(self.conv4_2(h))
|
||||
h = F.relu(self.conv4_3(h))
|
||||
f4_3 = h
|
||||
h = F.max_pool2d(h, 2, 2)
|
||||
|
||||
h = F.relu(self.conv5_1(h))
|
||||
h = F.relu(self.conv5_2(h))
|
||||
h = F.relu(self.conv5_3(h))
|
||||
f5_3 = h
|
||||
h = F.max_pool2d(h, 2, 2)
|
||||
|
||||
h = F.relu(self.fc6(h))
|
||||
h = F.relu(self.fc7(h))
|
||||
ffc7 = h
|
||||
h = F.relu(self.conv6_1(h))
|
||||
h = F.relu(self.conv6_2(h))
|
||||
f6_2 = h
|
||||
h = F.relu(self.conv7_1(h))
|
||||
h = F.relu(self.conv7_2(h))
|
||||
f7_2 = h
|
||||
|
||||
f3_3 = self.conv3_3_norm(f3_3)
|
||||
f4_3 = self.conv4_3_norm(f4_3)
|
||||
f5_3 = self.conv5_3_norm(f5_3)
|
||||
|
||||
cls1 = self.conv3_3_norm_mbox_conf(f3_3)
|
||||
reg1 = self.conv3_3_norm_mbox_loc(f3_3)
|
||||
cls2 = self.conv4_3_norm_mbox_conf(f4_3)
|
||||
reg2 = self.conv4_3_norm_mbox_loc(f4_3)
|
||||
cls3 = self.conv5_3_norm_mbox_conf(f5_3)
|
||||
reg3 = self.conv5_3_norm_mbox_loc(f5_3)
|
||||
cls4 = self.fc7_mbox_conf(ffc7)
|
||||
reg4 = self.fc7_mbox_loc(ffc7)
|
||||
cls5 = self.conv6_2_mbox_conf(f6_2)
|
||||
reg5 = self.conv6_2_mbox_loc(f6_2)
|
||||
cls6 = self.conv7_2_mbox_conf(f7_2)
|
||||
reg6 = self.conv7_2_mbox_loc(f7_2)
|
||||
|
||||
# max-out background label
|
||||
chunk = torch.chunk(cls1, 4, 1)
|
||||
bmax = torch.max(torch.max(chunk[0], chunk[1]), chunk[2])
|
||||
cls1 = torch.cat([bmax, chunk[3]], dim=1)
|
||||
|
||||
return [cls1, reg1, cls2, reg2, cls3, reg3, cls4, reg4, cls5, reg5, cls6, reg6]
|
||||
59
musetalk/utils/face_detection/detection/sfd/sfd_detector.py
Normal file
59
musetalk/utils/face_detection/detection/sfd/sfd_detector.py
Normal file
@@ -0,0 +1,59 @@
|
||||
import os
|
||||
import cv2
|
||||
from torch.utils.model_zoo import load_url
|
||||
|
||||
from ..core import FaceDetector
|
||||
|
||||
from .net_s3fd import s3fd
|
||||
from .bbox import *
|
||||
from .detect import *
|
||||
|
||||
models_urls = {
|
||||
's3fd': 'https://www.adrianbulat.com/downloads/python-fan/s3fd-619a316812.pth',
|
||||
}
|
||||
|
||||
|
||||
class SFDDetector(FaceDetector):
|
||||
def __init__(self, device, path_to_detector=os.path.join(os.path.dirname(os.path.abspath(__file__)), 's3fd.pth'), verbose=False):
|
||||
super(SFDDetector, self).__init__(device, verbose)
|
||||
|
||||
# Initialise the face detector
|
||||
if not os.path.isfile(path_to_detector):
|
||||
model_weights = load_url(models_urls['s3fd'])
|
||||
else:
|
||||
model_weights = torch.load(path_to_detector)
|
||||
|
||||
self.face_detector = s3fd()
|
||||
self.face_detector.load_state_dict(model_weights)
|
||||
self.face_detector.to(device)
|
||||
self.face_detector.eval()
|
||||
|
||||
def detect_from_image(self, tensor_or_path):
|
||||
image = self.tensor_or_path_to_ndarray(tensor_or_path)
|
||||
|
||||
bboxlist = detect(self.face_detector, image, device=self.device)
|
||||
keep = nms(bboxlist, 0.3)
|
||||
bboxlist = bboxlist[keep, :]
|
||||
bboxlist = [x for x in bboxlist if x[-1] > 0.5]
|
||||
|
||||
return bboxlist
|
||||
|
||||
def detect_from_batch(self, images):
|
||||
bboxlists = batch_detect(self.face_detector, images, device=self.device)
|
||||
keeps = [nms(bboxlists[:, i, :], 0.3) for i in range(bboxlists.shape[1])]
|
||||
bboxlists = [bboxlists[keep, i, :] for i, keep in enumerate(keeps)]
|
||||
bboxlists = [[x for x in bboxlist if x[-1] > 0.5] for bboxlist in bboxlists]
|
||||
|
||||
return bboxlists
|
||||
|
||||
@property
|
||||
def reference_scale(self):
|
||||
return 195
|
||||
|
||||
@property
|
||||
def reference_x_shift(self):
|
||||
return 0
|
||||
|
||||
@property
|
||||
def reference_y_shift(self):
|
||||
return 0
|
||||
261
musetalk/utils/face_detection/models.py
Normal file
261
musetalk/utils/face_detection/models.py
Normal file
@@ -0,0 +1,261 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import math
|
||||
|
||||
|
||||
def conv3x3(in_planes, out_planes, strd=1, padding=1, bias=False):
|
||||
"3x3 convolution with padding"
|
||||
return nn.Conv2d(in_planes, out_planes, kernel_size=3,
|
||||
stride=strd, padding=padding, bias=bias)
|
||||
|
||||
|
||||
class ConvBlock(nn.Module):
|
||||
def __init__(self, in_planes, out_planes):
|
||||
super(ConvBlock, self).__init__()
|
||||
self.bn1 = nn.BatchNorm2d(in_planes)
|
||||
self.conv1 = conv3x3(in_planes, int(out_planes / 2))
|
||||
self.bn2 = nn.BatchNorm2d(int(out_planes / 2))
|
||||
self.conv2 = conv3x3(int(out_planes / 2), int(out_planes / 4))
|
||||
self.bn3 = nn.BatchNorm2d(int(out_planes / 4))
|
||||
self.conv3 = conv3x3(int(out_planes / 4), int(out_planes / 4))
|
||||
|
||||
if in_planes != out_planes:
|
||||
self.downsample = nn.Sequential(
|
||||
nn.BatchNorm2d(in_planes),
|
||||
nn.ReLU(True),
|
||||
nn.Conv2d(in_planes, out_planes,
|
||||
kernel_size=1, stride=1, bias=False),
|
||||
)
|
||||
else:
|
||||
self.downsample = None
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out1 = self.bn1(x)
|
||||
out1 = F.relu(out1, True)
|
||||
out1 = self.conv1(out1)
|
||||
|
||||
out2 = self.bn2(out1)
|
||||
out2 = F.relu(out2, True)
|
||||
out2 = self.conv2(out2)
|
||||
|
||||
out3 = self.bn3(out2)
|
||||
out3 = F.relu(out3, True)
|
||||
out3 = self.conv3(out3)
|
||||
|
||||
out3 = torch.cat((out1, out2, out3), 1)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(residual)
|
||||
|
||||
out3 += residual
|
||||
|
||||
return out3
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
||||
super(Bottleneck, self).__init__()
|
||||
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(planes)
|
||||
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
|
||||
padding=1, bias=False)
|
||||
self.bn2 = nn.BatchNorm2d(planes)
|
||||
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
|
||||
self.bn3 = nn.BatchNorm2d(planes * 4)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
residual = self.downsample(x)
|
||||
|
||||
out += residual
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class HourGlass(nn.Module):
|
||||
def __init__(self, num_modules, depth, num_features):
|
||||
super(HourGlass, self).__init__()
|
||||
self.num_modules = num_modules
|
||||
self.depth = depth
|
||||
self.features = num_features
|
||||
|
||||
self._generate_network(self.depth)
|
||||
|
||||
def _generate_network(self, level):
|
||||
self.add_module('b1_' + str(level), ConvBlock(self.features, self.features))
|
||||
|
||||
self.add_module('b2_' + str(level), ConvBlock(self.features, self.features))
|
||||
|
||||
if level > 1:
|
||||
self._generate_network(level - 1)
|
||||
else:
|
||||
self.add_module('b2_plus_' + str(level), ConvBlock(self.features, self.features))
|
||||
|
||||
self.add_module('b3_' + str(level), ConvBlock(self.features, self.features))
|
||||
|
||||
def _forward(self, level, inp):
|
||||
# Upper branch
|
||||
up1 = inp
|
||||
up1 = self._modules['b1_' + str(level)](up1)
|
||||
|
||||
# Lower branch
|
||||
low1 = F.avg_pool2d(inp, 2, stride=2)
|
||||
low1 = self._modules['b2_' + str(level)](low1)
|
||||
|
||||
if level > 1:
|
||||
low2 = self._forward(level - 1, low1)
|
||||
else:
|
||||
low2 = low1
|
||||
low2 = self._modules['b2_plus_' + str(level)](low2)
|
||||
|
||||
low3 = low2
|
||||
low3 = self._modules['b3_' + str(level)](low3)
|
||||
|
||||
up2 = F.interpolate(low3, scale_factor=2, mode='nearest')
|
||||
|
||||
return up1 + up2
|
||||
|
||||
def forward(self, x):
|
||||
return self._forward(self.depth, x)
|
||||
|
||||
|
||||
class FAN(nn.Module):
|
||||
|
||||
def __init__(self, num_modules=1):
|
||||
super(FAN, self).__init__()
|
||||
self.num_modules = num_modules
|
||||
|
||||
# Base part
|
||||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
|
||||
self.bn1 = nn.BatchNorm2d(64)
|
||||
self.conv2 = ConvBlock(64, 128)
|
||||
self.conv3 = ConvBlock(128, 128)
|
||||
self.conv4 = ConvBlock(128, 256)
|
||||
|
||||
# Stacking part
|
||||
for hg_module in range(self.num_modules):
|
||||
self.add_module('m' + str(hg_module), HourGlass(1, 4, 256))
|
||||
self.add_module('top_m_' + str(hg_module), ConvBlock(256, 256))
|
||||
self.add_module('conv_last' + str(hg_module),
|
||||
nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
|
||||
self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256))
|
||||
self.add_module('l' + str(hg_module), nn.Conv2d(256,
|
||||
68, kernel_size=1, stride=1, padding=0))
|
||||
|
||||
if hg_module < self.num_modules - 1:
|
||||
self.add_module(
|
||||
'bl' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
|
||||
self.add_module('al' + str(hg_module), nn.Conv2d(68,
|
||||
256, kernel_size=1, stride=1, padding=0))
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.bn1(self.conv1(x)), True)
|
||||
x = F.avg_pool2d(self.conv2(x), 2, stride=2)
|
||||
x = self.conv3(x)
|
||||
x = self.conv4(x)
|
||||
|
||||
previous = x
|
||||
|
||||
outputs = []
|
||||
for i in range(self.num_modules):
|
||||
hg = self._modules['m' + str(i)](previous)
|
||||
|
||||
ll = hg
|
||||
ll = self._modules['top_m_' + str(i)](ll)
|
||||
|
||||
ll = F.relu(self._modules['bn_end' + str(i)]
|
||||
(self._modules['conv_last' + str(i)](ll)), True)
|
||||
|
||||
# Predict heatmaps
|
||||
tmp_out = self._modules['l' + str(i)](ll)
|
||||
outputs.append(tmp_out)
|
||||
|
||||
if i < self.num_modules - 1:
|
||||
ll = self._modules['bl' + str(i)](ll)
|
||||
tmp_out_ = self._modules['al' + str(i)](tmp_out)
|
||||
previous = previous + ll + tmp_out_
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
class ResNetDepth(nn.Module):
|
||||
|
||||
def __init__(self, block=Bottleneck, layers=[3, 8, 36, 3], num_classes=68):
|
||||
self.inplanes = 64
|
||||
super(ResNetDepth, self).__init__()
|
||||
self.conv1 = nn.Conv2d(3 + 68, 64, kernel_size=7, stride=2, padding=3,
|
||||
bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(64)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
self.layer1 = self._make_layer(block, 64, layers[0])
|
||||
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
||||
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
||||
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
||||
self.avgpool = nn.AvgPool2d(7)
|
||||
self.fc = nn.Linear(512 * block.expansion, num_classes)
|
||||
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||||
m.weight.data.normal_(0, math.sqrt(2. / n))
|
||||
elif isinstance(m, nn.BatchNorm2d):
|
||||
m.weight.data.fill_(1)
|
||||
m.bias.data.zero_()
|
||||
|
||||
def _make_layer(self, block, planes, blocks, stride=1):
|
||||
downsample = None
|
||||
if stride != 1 or self.inplanes != planes * block.expansion:
|
||||
downsample = nn.Sequential(
|
||||
nn.Conv2d(self.inplanes, planes * block.expansion,
|
||||
kernel_size=1, stride=stride, bias=False),
|
||||
nn.BatchNorm2d(planes * block.expansion),
|
||||
)
|
||||
|
||||
layers = []
|
||||
layers.append(block(self.inplanes, planes, stride, downsample))
|
||||
self.inplanes = planes * block.expansion
|
||||
for i in range(1, blocks):
|
||||
layers.append(block(self.inplanes, planes))
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
x = self.maxpool(x)
|
||||
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
x = self.layer4(x)
|
||||
|
||||
x = self.avgpool(x)
|
||||
x = x.view(x.size(0), -1)
|
||||
x = self.fc(x)
|
||||
|
||||
return x
|
||||
313
musetalk/utils/face_detection/utils.py
Normal file
313
musetalk/utils/face_detection/utils.py
Normal file
@@ -0,0 +1,313 @@
|
||||
from __future__ import print_function
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
import torch
|
||||
import math
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
|
||||
def _gaussian(
|
||||
size=3, sigma=0.25, amplitude=1, normalize=False, width=None,
|
||||
height=None, sigma_horz=None, sigma_vert=None, mean_horz=0.5,
|
||||
mean_vert=0.5):
|
||||
# handle some defaults
|
||||
if width is None:
|
||||
width = size
|
||||
if height is None:
|
||||
height = size
|
||||
if sigma_horz is None:
|
||||
sigma_horz = sigma
|
||||
if sigma_vert is None:
|
||||
sigma_vert = sigma
|
||||
center_x = mean_horz * width + 0.5
|
||||
center_y = mean_vert * height + 0.5
|
||||
gauss = np.empty((height, width), dtype=np.float32)
|
||||
# generate kernel
|
||||
for i in range(height):
|
||||
for j in range(width):
|
||||
gauss[i][j] = amplitude * math.exp(-(math.pow((j + 1 - center_x) / (
|
||||
sigma_horz * width), 2) / 2.0 + math.pow((i + 1 - center_y) / (sigma_vert * height), 2) / 2.0))
|
||||
if normalize:
|
||||
gauss = gauss / np.sum(gauss)
|
||||
return gauss
|
||||
|
||||
|
||||
def draw_gaussian(image, point, sigma):
|
||||
# Check if the gaussian is inside
|
||||
ul = [math.floor(point[0] - 3 * sigma), math.floor(point[1] - 3 * sigma)]
|
||||
br = [math.floor(point[0] + 3 * sigma), math.floor(point[1] + 3 * sigma)]
|
||||
if (ul[0] > image.shape[1] or ul[1] > image.shape[0] or br[0] < 1 or br[1] < 1):
|
||||
return image
|
||||
size = 6 * sigma + 1
|
||||
g = _gaussian(size)
|
||||
g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - int(max(1, ul[0])) + int(max(1, -ul[0]))]
|
||||
g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - int(max(1, ul[1])) + int(max(1, -ul[1]))]
|
||||
img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))]
|
||||
img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))]
|
||||
assert (g_x[0] > 0 and g_y[1] > 0)
|
||||
image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]
|
||||
] = image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] + g[g_y[0] - 1:g_y[1], g_x[0] - 1:g_x[1]]
|
||||
image[image > 1] = 1
|
||||
return image
|
||||
|
||||
|
||||
def transform(point, center, scale, resolution, invert=False):
|
||||
"""Generate and affine transformation matrix.
|
||||
|
||||
Given a set of points, a center, a scale and a targer resolution, the
|
||||
function generates and affine transformation matrix. If invert is ``True``
|
||||
it will produce the inverse transformation.
|
||||
|
||||
Arguments:
|
||||
point {torch.tensor} -- the input 2D point
|
||||
center {torch.tensor or numpy.array} -- the center around which to perform the transformations
|
||||
scale {float} -- the scale of the face/object
|
||||
resolution {float} -- the output resolution
|
||||
|
||||
Keyword Arguments:
|
||||
invert {bool} -- define wherever the function should produce the direct or the
|
||||
inverse transformation matrix (default: {False})
|
||||
"""
|
||||
_pt = torch.ones(3)
|
||||
_pt[0] = point[0]
|
||||
_pt[1] = point[1]
|
||||
|
||||
h = 200.0 * scale
|
||||
t = torch.eye(3)
|
||||
t[0, 0] = resolution / h
|
||||
t[1, 1] = resolution / h
|
||||
t[0, 2] = resolution * (-center[0] / h + 0.5)
|
||||
t[1, 2] = resolution * (-center[1] / h + 0.5)
|
||||
|
||||
if invert:
|
||||
t = torch.inverse(t)
|
||||
|
||||
new_point = (torch.matmul(t, _pt))[0:2]
|
||||
|
||||
return new_point.int()
|
||||
|
||||
|
||||
def crop(image, center, scale, resolution=256.0):
|
||||
"""Center crops an image or set of heatmaps
|
||||
|
||||
Arguments:
|
||||
image {numpy.array} -- an rgb image
|
||||
center {numpy.array} -- the center of the object, usually the same as of the bounding box
|
||||
scale {float} -- scale of the face
|
||||
|
||||
Keyword Arguments:
|
||||
resolution {float} -- the size of the output cropped image (default: {256.0})
|
||||
|
||||
Returns:
|
||||
[type] -- [description]
|
||||
""" # Crop around the center point
|
||||
""" Crops the image around the center. Input is expected to be an np.ndarray """
|
||||
ul = transform([1, 1], center, scale, resolution, True)
|
||||
br = transform([resolution, resolution], center, scale, resolution, True)
|
||||
# pad = math.ceil(torch.norm((ul - br).float()) / 2.0 - (br[0] - ul[0]) / 2.0)
|
||||
if image.ndim > 2:
|
||||
newDim = np.array([br[1] - ul[1], br[0] - ul[0],
|
||||
image.shape[2]], dtype=np.int32)
|
||||
newImg = np.zeros(newDim, dtype=np.uint8)
|
||||
else:
|
||||
newDim = np.array([br[1] - ul[1], br[0] - ul[0]], dtype=np.int)
|
||||
newImg = np.zeros(newDim, dtype=np.uint8)
|
||||
ht = image.shape[0]
|
||||
wd = image.shape[1]
|
||||
newX = np.array(
|
||||
[max(1, -ul[0] + 1), min(br[0], wd) - ul[0]], dtype=np.int32)
|
||||
newY = np.array(
|
||||
[max(1, -ul[1] + 1), min(br[1], ht) - ul[1]], dtype=np.int32)
|
||||
oldX = np.array([max(1, ul[0] + 1), min(br[0], wd)], dtype=np.int32)
|
||||
oldY = np.array([max(1, ul[1] + 1), min(br[1], ht)], dtype=np.int32)
|
||||
newImg[newY[0] - 1:newY[1], newX[0] - 1:newX[1]
|
||||
] = image[oldY[0] - 1:oldY[1], oldX[0] - 1:oldX[1], :]
|
||||
newImg = cv2.resize(newImg, dsize=(int(resolution), int(resolution)),
|
||||
interpolation=cv2.INTER_LINEAR)
|
||||
return newImg
|
||||
|
||||
|
||||
def get_preds_fromhm(hm, center=None, scale=None):
|
||||
"""Obtain (x,y) coordinates given a set of N heatmaps. If the center
|
||||
and the scale is provided the function will return the points also in
|
||||
the original coordinate frame.
|
||||
|
||||
Arguments:
|
||||
hm {torch.tensor} -- the predicted heatmaps, of shape [B, N, W, H]
|
||||
|
||||
Keyword Arguments:
|
||||
center {torch.tensor} -- the center of the bounding box (default: {None})
|
||||
scale {float} -- face scale (default: {None})
|
||||
"""
|
||||
max, idx = torch.max(
|
||||
hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2)
|
||||
idx += 1
|
||||
preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float()
|
||||
preds[..., 0].apply_(lambda x: (x - 1) % hm.size(3) + 1)
|
||||
preds[..., 1].add_(-1).div_(hm.size(2)).floor_().add_(1)
|
||||
|
||||
for i in range(preds.size(0)):
|
||||
for j in range(preds.size(1)):
|
||||
hm_ = hm[i, j, :]
|
||||
pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1
|
||||
if pX > 0 and pX < 63 and pY > 0 and pY < 63:
|
||||
diff = torch.FloatTensor(
|
||||
[hm_[pY, pX + 1] - hm_[pY, pX - 1],
|
||||
hm_[pY + 1, pX] - hm_[pY - 1, pX]])
|
||||
preds[i, j].add_(diff.sign_().mul_(.25))
|
||||
|
||||
preds.add_(-.5)
|
||||
|
||||
preds_orig = torch.zeros(preds.size())
|
||||
if center is not None and scale is not None:
|
||||
for i in range(hm.size(0)):
|
||||
for j in range(hm.size(1)):
|
||||
preds_orig[i, j] = transform(
|
||||
preds[i, j], center, scale, hm.size(2), True)
|
||||
|
||||
return preds, preds_orig
|
||||
|
||||
def get_preds_fromhm_batch(hm, centers=None, scales=None):
|
||||
"""Obtain (x,y) coordinates given a set of N heatmaps. If the centers
|
||||
and the scales is provided the function will return the points also in
|
||||
the original coordinate frame.
|
||||
|
||||
Arguments:
|
||||
hm {torch.tensor} -- the predicted heatmaps, of shape [B, N, W, H]
|
||||
|
||||
Keyword Arguments:
|
||||
centers {torch.tensor} -- the centers of the bounding box (default: {None})
|
||||
scales {float} -- face scales (default: {None})
|
||||
"""
|
||||
max, idx = torch.max(
|
||||
hm.view(hm.size(0), hm.size(1), hm.size(2) * hm.size(3)), 2)
|
||||
idx += 1
|
||||
preds = idx.view(idx.size(0), idx.size(1), 1).repeat(1, 1, 2).float()
|
||||
preds[..., 0].apply_(lambda x: (x - 1) % hm.size(3) + 1)
|
||||
preds[..., 1].add_(-1).div_(hm.size(2)).floor_().add_(1)
|
||||
|
||||
for i in range(preds.size(0)):
|
||||
for j in range(preds.size(1)):
|
||||
hm_ = hm[i, j, :]
|
||||
pX, pY = int(preds[i, j, 0]) - 1, int(preds[i, j, 1]) - 1
|
||||
if pX > 0 and pX < 63 and pY > 0 and pY < 63:
|
||||
diff = torch.FloatTensor(
|
||||
[hm_[pY, pX + 1] - hm_[pY, pX - 1],
|
||||
hm_[pY + 1, pX] - hm_[pY - 1, pX]])
|
||||
preds[i, j].add_(diff.sign_().mul_(.25))
|
||||
|
||||
preds.add_(-.5)
|
||||
|
||||
preds_orig = torch.zeros(preds.size())
|
||||
if centers is not None and scales is not None:
|
||||
for i in range(hm.size(0)):
|
||||
for j in range(hm.size(1)):
|
||||
preds_orig[i, j] = transform(
|
||||
preds[i, j], centers[i], scales[i], hm.size(2), True)
|
||||
|
||||
return preds, preds_orig
|
||||
|
||||
def shuffle_lr(parts, pairs=None):
|
||||
"""Shuffle the points left-right according to the axis of symmetry
|
||||
of the object.
|
||||
|
||||
Arguments:
|
||||
parts {torch.tensor} -- a 3D or 4D object containing the
|
||||
heatmaps.
|
||||
|
||||
Keyword Arguments:
|
||||
pairs {list of integers} -- [order of the flipped points] (default: {None})
|
||||
"""
|
||||
if pairs is None:
|
||||
pairs = [16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
|
||||
26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 27, 28, 29, 30, 35,
|
||||
34, 33, 32, 31, 45, 44, 43, 42, 47, 46, 39, 38, 37, 36, 41,
|
||||
40, 54, 53, 52, 51, 50, 49, 48, 59, 58, 57, 56, 55, 64, 63,
|
||||
62, 61, 60, 67, 66, 65]
|
||||
if parts.ndimension() == 3:
|
||||
parts = parts[pairs, ...]
|
||||
else:
|
||||
parts = parts[:, pairs, ...]
|
||||
|
||||
return parts
|
||||
|
||||
|
||||
def flip(tensor, is_label=False):
|
||||
"""Flip an image or a set of heatmaps left-right
|
||||
|
||||
Arguments:
|
||||
tensor {numpy.array or torch.tensor} -- [the input image or heatmaps]
|
||||
|
||||
Keyword Arguments:
|
||||
is_label {bool} -- [denote wherever the input is an image or a set of heatmaps ] (default: {False})
|
||||
"""
|
||||
if not torch.is_tensor(tensor):
|
||||
tensor = torch.from_numpy(tensor)
|
||||
|
||||
if is_label:
|
||||
tensor = shuffle_lr(tensor).flip(tensor.ndimension() - 1)
|
||||
else:
|
||||
tensor = tensor.flip(tensor.ndimension() - 1)
|
||||
|
||||
return tensor
|
||||
|
||||
# From pyzolib/paths.py (https://bitbucket.org/pyzo/pyzolib/src/tip/paths.py)
|
||||
|
||||
|
||||
def appdata_dir(appname=None, roaming=False):
|
||||
""" appdata_dir(appname=None, roaming=False)
|
||||
|
||||
Get the path to the application directory, where applications are allowed
|
||||
to write user specific files (e.g. configurations). For non-user specific
|
||||
data, consider using common_appdata_dir().
|
||||
If appname is given, a subdir is appended (and created if necessary).
|
||||
If roaming is True, will prefer a roaming directory (Windows Vista/7).
|
||||
"""
|
||||
|
||||
# Define default user directory
|
||||
userDir = os.getenv('FACEALIGNMENT_USERDIR', None)
|
||||
if userDir is None:
|
||||
userDir = os.path.expanduser('~')
|
||||
if not os.path.isdir(userDir): # pragma: no cover
|
||||
userDir = '/var/tmp' # issue #54
|
||||
|
||||
# Get system app data dir
|
||||
path = None
|
||||
if sys.platform.startswith('win'):
|
||||
path1, path2 = os.getenv('LOCALAPPDATA'), os.getenv('APPDATA')
|
||||
path = (path2 or path1) if roaming else (path1 or path2)
|
||||
elif sys.platform.startswith('darwin'):
|
||||
path = os.path.join(userDir, 'Library', 'Application Support')
|
||||
# On Linux and as fallback
|
||||
if not (path and os.path.isdir(path)):
|
||||
path = userDir
|
||||
|
||||
# Maybe we should store things local to the executable (in case of a
|
||||
# portable distro or a frozen application that wants to be portable)
|
||||
prefix = sys.prefix
|
||||
if getattr(sys, 'frozen', None):
|
||||
prefix = os.path.abspath(os.path.dirname(sys.executable))
|
||||
for reldir in ('settings', '../settings'):
|
||||
localpath = os.path.abspath(os.path.join(prefix, reldir))
|
||||
if os.path.isdir(localpath): # pragma: no cover
|
||||
try:
|
||||
open(os.path.join(localpath, 'test.write'), 'wb').close()
|
||||
os.remove(os.path.join(localpath, 'test.write'))
|
||||
except IOError:
|
||||
pass # We cannot write in this directory
|
||||
else:
|
||||
path = localpath
|
||||
break
|
||||
|
||||
# Get path specific for this app
|
||||
if appname:
|
||||
if path == userDir:
|
||||
appname = '.' + appname.lstrip('.') # Make it a hidden directory
|
||||
path = os.path.join(path, appname)
|
||||
if not os.path.isdir(path): # pragma: no cover
|
||||
os.mkdir(path)
|
||||
|
||||
# Done
|
||||
return path
|
||||
50
musetalk/utils/face_parsing/__init__.py
Executable file
50
musetalk/utils/face_parsing/__init__.py
Executable file
@@ -0,0 +1,50 @@
|
||||
import torch
|
||||
import time
|
||||
import os
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from .model import BiSeNet
|
||||
import torchvision.transforms as transforms
|
||||
|
||||
class FaceParsing():
|
||||
def __init__(self):
|
||||
self.net = self.model_init()
|
||||
self.preprocess = self.image_preprocess()
|
||||
|
||||
def model_init(self,
|
||||
resnet_path='./models/face-parse-bisent/resnet18-5c106cde.pth',
|
||||
model_pth='./models/face-parse-bisent/79999_iter.pth'):
|
||||
net = BiSeNet(resnet_path)
|
||||
net.cuda()
|
||||
net.load_state_dict(torch.load(model_pth))
|
||||
net.eval()
|
||||
return net
|
||||
|
||||
def image_preprocess(self):
|
||||
return transforms.Compose([
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
|
||||
])
|
||||
|
||||
def __call__(self, image, size=(512, 512)):
|
||||
if isinstance(image, str):
|
||||
image = Image.open(image)
|
||||
|
||||
width, height = image.size
|
||||
with torch.no_grad():
|
||||
image = image.resize(size, Image.BILINEAR)
|
||||
img = self.preprocess(image)
|
||||
img = torch.unsqueeze(img, 0).cuda()
|
||||
out = self.net(img)[0]
|
||||
parsing = out.squeeze(0).cpu().numpy().argmax(0)
|
||||
parsing[np.where(parsing>13)] = 0
|
||||
parsing[np.where(parsing>=1)] = 255
|
||||
parsing = Image.fromarray(parsing.astype(np.uint8))
|
||||
return parsing
|
||||
|
||||
if __name__ == "__main__":
|
||||
fp = FaceParsing()
|
||||
segmap = fp('154_small.png')
|
||||
segmap.save('res.png')
|
||||
|
||||
283
musetalk/utils/face_parsing/model.py
Executable file
283
musetalk/utils/face_parsing/model.py
Executable file
@@ -0,0 +1,283 @@
|
||||
#!/usr/bin/python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torchvision
|
||||
|
||||
from .resnet import Resnet18
|
||||
# from modules.bn import InPlaceABNSync as BatchNorm2d
|
||||
|
||||
|
||||
class ConvBNReLU(nn.Module):
|
||||
def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1, *args, **kwargs):
|
||||
super(ConvBNReLU, self).__init__()
|
||||
self.conv = nn.Conv2d(in_chan,
|
||||
out_chan,
|
||||
kernel_size = ks,
|
||||
stride = stride,
|
||||
padding = padding,
|
||||
bias = False)
|
||||
self.bn = nn.BatchNorm2d(out_chan)
|
||||
self.init_weight()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
x = F.relu(self.bn(x))
|
||||
return x
|
||||
|
||||
def init_weight(self):
|
||||
for ly in self.children():
|
||||
if isinstance(ly, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(ly.weight, a=1)
|
||||
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
||||
|
||||
class BiSeNetOutput(nn.Module):
|
||||
def __init__(self, in_chan, mid_chan, n_classes, *args, **kwargs):
|
||||
super(BiSeNetOutput, self).__init__()
|
||||
self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1)
|
||||
self.conv_out = nn.Conv2d(mid_chan, n_classes, kernel_size=1, bias=False)
|
||||
self.init_weight()
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
x = self.conv_out(x)
|
||||
return x
|
||||
|
||||
def init_weight(self):
|
||||
for ly in self.children():
|
||||
if isinstance(ly, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(ly.weight, a=1)
|
||||
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
||||
|
||||
def get_params(self):
|
||||
wd_params, nowd_params = [], []
|
||||
for name, module in self.named_modules():
|
||||
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
||||
wd_params.append(module.weight)
|
||||
if not module.bias is None:
|
||||
nowd_params.append(module.bias)
|
||||
elif isinstance(module, nn.BatchNorm2d):
|
||||
nowd_params += list(module.parameters())
|
||||
return wd_params, nowd_params
|
||||
|
||||
|
||||
class AttentionRefinementModule(nn.Module):
|
||||
def __init__(self, in_chan, out_chan, *args, **kwargs):
|
||||
super(AttentionRefinementModule, self).__init__()
|
||||
self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1)
|
||||
self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size= 1, bias=False)
|
||||
self.bn_atten = nn.BatchNorm2d(out_chan)
|
||||
self.sigmoid_atten = nn.Sigmoid()
|
||||
self.init_weight()
|
||||
|
||||
def forward(self, x):
|
||||
feat = self.conv(x)
|
||||
atten = F.avg_pool2d(feat, feat.size()[2:])
|
||||
atten = self.conv_atten(atten)
|
||||
atten = self.bn_atten(atten)
|
||||
atten = self.sigmoid_atten(atten)
|
||||
out = torch.mul(feat, atten)
|
||||
return out
|
||||
|
||||
def init_weight(self):
|
||||
for ly in self.children():
|
||||
if isinstance(ly, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(ly.weight, a=1)
|
||||
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
||||
|
||||
|
||||
class ContextPath(nn.Module):
|
||||
def __init__(self, resnet_path, *args, **kwargs):
|
||||
super(ContextPath, self).__init__()
|
||||
self.resnet = Resnet18(resnet_path)
|
||||
self.arm16 = AttentionRefinementModule(256, 128)
|
||||
self.arm32 = AttentionRefinementModule(512, 128)
|
||||
self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
|
||||
self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
|
||||
self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0)
|
||||
|
||||
self.init_weight()
|
||||
|
||||
def forward(self, x):
|
||||
H0, W0 = x.size()[2:]
|
||||
feat8, feat16, feat32 = self.resnet(x)
|
||||
H8, W8 = feat8.size()[2:]
|
||||
H16, W16 = feat16.size()[2:]
|
||||
H32, W32 = feat32.size()[2:]
|
||||
|
||||
avg = F.avg_pool2d(feat32, feat32.size()[2:])
|
||||
avg = self.conv_avg(avg)
|
||||
avg_up = F.interpolate(avg, (H32, W32), mode='nearest')
|
||||
|
||||
feat32_arm = self.arm32(feat32)
|
||||
feat32_sum = feat32_arm + avg_up
|
||||
feat32_up = F.interpolate(feat32_sum, (H16, W16), mode='nearest')
|
||||
feat32_up = self.conv_head32(feat32_up)
|
||||
|
||||
feat16_arm = self.arm16(feat16)
|
||||
feat16_sum = feat16_arm + feat32_up
|
||||
feat16_up = F.interpolate(feat16_sum, (H8, W8), mode='nearest')
|
||||
feat16_up = self.conv_head16(feat16_up)
|
||||
|
||||
return feat8, feat16_up, feat32_up # x8, x8, x16
|
||||
|
||||
def init_weight(self):
|
||||
for ly in self.children():
|
||||
if isinstance(ly, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(ly.weight, a=1)
|
||||
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
||||
|
||||
def get_params(self):
|
||||
wd_params, nowd_params = [], []
|
||||
for name, module in self.named_modules():
|
||||
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
||||
wd_params.append(module.weight)
|
||||
if not module.bias is None:
|
||||
nowd_params.append(module.bias)
|
||||
elif isinstance(module, nn.BatchNorm2d):
|
||||
nowd_params += list(module.parameters())
|
||||
return wd_params, nowd_params
|
||||
|
||||
|
||||
### This is not used, since I replace this with the resnet feature with the same size
|
||||
class SpatialPath(nn.Module):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(SpatialPath, self).__init__()
|
||||
self.conv1 = ConvBNReLU(3, 64, ks=7, stride=2, padding=3)
|
||||
self.conv2 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1)
|
||||
self.conv3 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1)
|
||||
self.conv_out = ConvBNReLU(64, 128, ks=1, stride=1, padding=0)
|
||||
self.init_weight()
|
||||
|
||||
def forward(self, x):
|
||||
feat = self.conv1(x)
|
||||
feat = self.conv2(feat)
|
||||
feat = self.conv3(feat)
|
||||
feat = self.conv_out(feat)
|
||||
return feat
|
||||
|
||||
def init_weight(self):
|
||||
for ly in self.children():
|
||||
if isinstance(ly, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(ly.weight, a=1)
|
||||
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
||||
|
||||
def get_params(self):
|
||||
wd_params, nowd_params = [], []
|
||||
for name, module in self.named_modules():
|
||||
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
||||
wd_params.append(module.weight)
|
||||
if not module.bias is None:
|
||||
nowd_params.append(module.bias)
|
||||
elif isinstance(module, nn.BatchNorm2d):
|
||||
nowd_params += list(module.parameters())
|
||||
return wd_params, nowd_params
|
||||
|
||||
|
||||
class FeatureFusionModule(nn.Module):
|
||||
def __init__(self, in_chan, out_chan, *args, **kwargs):
|
||||
super(FeatureFusionModule, self).__init__()
|
||||
self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0)
|
||||
self.conv1 = nn.Conv2d(out_chan,
|
||||
out_chan//4,
|
||||
kernel_size = 1,
|
||||
stride = 1,
|
||||
padding = 0,
|
||||
bias = False)
|
||||
self.conv2 = nn.Conv2d(out_chan//4,
|
||||
out_chan,
|
||||
kernel_size = 1,
|
||||
stride = 1,
|
||||
padding = 0,
|
||||
bias = False)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
self.init_weight()
|
||||
|
||||
def forward(self, fsp, fcp):
|
||||
fcat = torch.cat([fsp, fcp], dim=1)
|
||||
feat = self.convblk(fcat)
|
||||
atten = F.avg_pool2d(feat, feat.size()[2:])
|
||||
atten = self.conv1(atten)
|
||||
atten = self.relu(atten)
|
||||
atten = self.conv2(atten)
|
||||
atten = self.sigmoid(atten)
|
||||
feat_atten = torch.mul(feat, atten)
|
||||
feat_out = feat_atten + feat
|
||||
return feat_out
|
||||
|
||||
def init_weight(self):
|
||||
for ly in self.children():
|
||||
if isinstance(ly, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(ly.weight, a=1)
|
||||
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
||||
|
||||
def get_params(self):
|
||||
wd_params, nowd_params = [], []
|
||||
for name, module in self.named_modules():
|
||||
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
||||
wd_params.append(module.weight)
|
||||
if not module.bias is None:
|
||||
nowd_params.append(module.bias)
|
||||
elif isinstance(module, nn.BatchNorm2d):
|
||||
nowd_params += list(module.parameters())
|
||||
return wd_params, nowd_params
|
||||
|
||||
|
||||
class BiSeNet(nn.Module):
|
||||
def __init__(self, resnet_path='models/resnet18-5c106cde.pth', n_classes=19, *args, **kwargs):
|
||||
super(BiSeNet, self).__init__()
|
||||
self.cp = ContextPath(resnet_path)
|
||||
## here self.sp is deleted
|
||||
self.ffm = FeatureFusionModule(256, 256)
|
||||
self.conv_out = BiSeNetOutput(256, 256, n_classes)
|
||||
self.conv_out16 = BiSeNetOutput(128, 64, n_classes)
|
||||
self.conv_out32 = BiSeNetOutput(128, 64, n_classes)
|
||||
self.init_weight()
|
||||
|
||||
def forward(self, x):
|
||||
H, W = x.size()[2:]
|
||||
feat_res8, feat_cp8, feat_cp16 = self.cp(x) # here return res3b1 feature
|
||||
feat_sp = feat_res8 # use res3b1 feature to replace spatial path feature
|
||||
feat_fuse = self.ffm(feat_sp, feat_cp8)
|
||||
|
||||
feat_out = self.conv_out(feat_fuse)
|
||||
feat_out16 = self.conv_out16(feat_cp8)
|
||||
feat_out32 = self.conv_out32(feat_cp16)
|
||||
|
||||
feat_out = F.interpolate(feat_out, (H, W), mode='bilinear', align_corners=True)
|
||||
feat_out16 = F.interpolate(feat_out16, (H, W), mode='bilinear', align_corners=True)
|
||||
feat_out32 = F.interpolate(feat_out32, (H, W), mode='bilinear', align_corners=True)
|
||||
return feat_out, feat_out16, feat_out32
|
||||
|
||||
def init_weight(self):
|
||||
for ly in self.children():
|
||||
if isinstance(ly, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(ly.weight, a=1)
|
||||
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
||||
|
||||
def get_params(self):
|
||||
wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params = [], [], [], []
|
||||
for name, child in self.named_children():
|
||||
child_wd_params, child_nowd_params = child.get_params()
|
||||
if isinstance(child, FeatureFusionModule) or isinstance(child, BiSeNetOutput):
|
||||
lr_mul_wd_params += child_wd_params
|
||||
lr_mul_nowd_params += child_nowd_params
|
||||
else:
|
||||
wd_params += child_wd_params
|
||||
nowd_params += child_nowd_params
|
||||
return wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
net = BiSeNet(19)
|
||||
net.cuda()
|
||||
net.eval()
|
||||
in_ten = torch.randn(16, 3, 640, 480).cuda()
|
||||
out, out16, out32 = net(in_ten)
|
||||
print(out.shape)
|
||||
|
||||
net.get_params()
|
||||
109
musetalk/utils/face_parsing/resnet.py
Executable file
109
musetalk/utils/face_parsing/resnet.py
Executable file
@@ -0,0 +1,109 @@
|
||||
#!/usr/bin/python
|
||||
# -*- encoding: utf-8 -*-
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.model_zoo as modelzoo
|
||||
|
||||
# from modules.bn import InPlaceABNSync as BatchNorm2d
|
||||
|
||||
resnet18_url = 'https://download.pytorch.org/models/resnet18-5c106cde.pth'
|
||||
|
||||
|
||||
def conv3x3(in_planes, out_planes, stride=1):
|
||||
"""3x3 convolution with padding"""
|
||||
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
||||
padding=1, bias=False)
|
||||
|
||||
|
||||
class BasicBlock(nn.Module):
|
||||
def __init__(self, in_chan, out_chan, stride=1):
|
||||
super(BasicBlock, self).__init__()
|
||||
self.conv1 = conv3x3(in_chan, out_chan, stride)
|
||||
self.bn1 = nn.BatchNorm2d(out_chan)
|
||||
self.conv2 = conv3x3(out_chan, out_chan)
|
||||
self.bn2 = nn.BatchNorm2d(out_chan)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.downsample = None
|
||||
if in_chan != out_chan or stride != 1:
|
||||
self.downsample = nn.Sequential(
|
||||
nn.Conv2d(in_chan, out_chan,
|
||||
kernel_size=1, stride=stride, bias=False),
|
||||
nn.BatchNorm2d(out_chan),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
residual = self.conv1(x)
|
||||
residual = F.relu(self.bn1(residual))
|
||||
residual = self.conv2(residual)
|
||||
residual = self.bn2(residual)
|
||||
|
||||
shortcut = x
|
||||
if self.downsample is not None:
|
||||
shortcut = self.downsample(x)
|
||||
|
||||
out = shortcut + residual
|
||||
out = self.relu(out)
|
||||
return out
|
||||
|
||||
|
||||
def create_layer_basic(in_chan, out_chan, bnum, stride=1):
|
||||
layers = [BasicBlock(in_chan, out_chan, stride=stride)]
|
||||
for i in range(bnum-1):
|
||||
layers.append(BasicBlock(out_chan, out_chan, stride=1))
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
|
||||
class Resnet18(nn.Module):
|
||||
def __init__(self, model_path):
|
||||
super(Resnet18, self).__init__()
|
||||
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
|
||||
bias=False)
|
||||
self.bn1 = nn.BatchNorm2d(64)
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1)
|
||||
self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2)
|
||||
self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2)
|
||||
self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2)
|
||||
self.init_weight(model_path)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(x)
|
||||
x = F.relu(self.bn1(x))
|
||||
x = self.maxpool(x)
|
||||
|
||||
x = self.layer1(x)
|
||||
feat8 = self.layer2(x) # 1/8
|
||||
feat16 = self.layer3(feat8) # 1/16
|
||||
feat32 = self.layer4(feat16) # 1/32
|
||||
return feat8, feat16, feat32
|
||||
|
||||
def init_weight(self, model_path):
|
||||
state_dict = torch.load(model_path) #modelzoo.load_url(resnet18_url)
|
||||
self_state_dict = self.state_dict()
|
||||
for k, v in state_dict.items():
|
||||
if 'fc' in k: continue
|
||||
self_state_dict.update({k: v})
|
||||
self.load_state_dict(self_state_dict)
|
||||
|
||||
def get_params(self):
|
||||
wd_params, nowd_params = [], []
|
||||
for name, module in self.named_modules():
|
||||
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
||||
wd_params.append(module.weight)
|
||||
if not module.bias is None:
|
||||
nowd_params.append(module.bias)
|
||||
elif isinstance(module, nn.BatchNorm2d):
|
||||
nowd_params += list(module.parameters())
|
||||
return wd_params, nowd_params
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
net = Resnet18()
|
||||
x = torch.randn(16, 3, 224, 224)
|
||||
out = net(x)
|
||||
print(out[0].size())
|
||||
print(out[1].size())
|
||||
print(out[2].size())
|
||||
net.get_params()
|
||||
113
musetalk/utils/preprocessing.py
Normal file
113
musetalk/utils/preprocessing.py
Normal file
@@ -0,0 +1,113 @@
|
||||
import sys
|
||||
from face_detection import FaceAlignment,LandmarksType
|
||||
from os import listdir, path
|
||||
import subprocess
|
||||
import numpy as np
|
||||
import cv2
|
||||
import pickle
|
||||
import os
|
||||
import json
|
||||
from mmpose.apis import inference_topdown, init_model
|
||||
from mmpose.structures import merge_data_samples
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
# initialize the mmpose model
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
config_file = './musetalk/utils/dwpose/rtmpose-l_8xb32-270e_coco-ubody-wholebody-384x288.py'
|
||||
checkpoint_file = './models/dwpose/dw-ll_ucoco_384.pth'
|
||||
model = init_model(config_file, checkpoint_file, device=device)
|
||||
|
||||
# initialize the face detection model
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
fa = FaceAlignment(LandmarksType._2D, flip_input=False,device=device)
|
||||
|
||||
# maker if the bbox is not sufficient
|
||||
coord_placeholder = (0.0,0.0,0.0,0.0)
|
||||
|
||||
def resize_landmark(landmark, w, h, new_w, new_h):
|
||||
w_ratio = new_w / w
|
||||
h_ratio = new_h / h
|
||||
landmark_norm = landmark / [w, h]
|
||||
landmark_resized = landmark_norm * [new_w, new_h]
|
||||
return landmark_resized
|
||||
|
||||
def read_imgs(img_list):
|
||||
frames = []
|
||||
print('reading images...')
|
||||
for img_path in tqdm(img_list):
|
||||
frame = cv2.imread(img_path)
|
||||
frames.append(frame)
|
||||
return frames
|
||||
|
||||
def get_landmark_and_bbox(img_list,upperbondrange =0):
|
||||
frames = read_imgs(img_list)
|
||||
batch_size_fa = 1
|
||||
batches = [frames[i:i + batch_size_fa] for i in range(0, len(frames), batch_size_fa)]
|
||||
coords_list = []
|
||||
landmarks = []
|
||||
if upperbondrange != 0:
|
||||
print('get key_landmark and face bounding boxes with the bbox_shift:',upperbondrange)
|
||||
else:
|
||||
print('get key_landmark and face bounding boxes with the default value')
|
||||
average_range_minus = []
|
||||
average_range_plus = []
|
||||
for fb in tqdm(batches):
|
||||
results = inference_topdown(model, np.asarray(fb)[0])
|
||||
results = merge_data_samples(results)
|
||||
keypoints = results.pred_instances.keypoints
|
||||
face_land_mark= keypoints[0][23:91]
|
||||
face_land_mark = face_land_mark.astype(np.int32)
|
||||
|
||||
# get bounding boxes by face detetion
|
||||
bbox = fa.get_detections_for_batch(np.asarray(fb))
|
||||
|
||||
# adjust the bounding box refer to landmark
|
||||
# Add the bounding box to a tuple and append it to the coordinates list
|
||||
for j, f in enumerate(bbox):
|
||||
if f is None: # no face in the image
|
||||
coords_list += [coord_placeholder]
|
||||
continue
|
||||
|
||||
half_face_coord = face_land_mark[29]#np.mean([face_land_mark[28], face_land_mark[29]], axis=0)
|
||||
range_minus = (face_land_mark[30]- face_land_mark[29])[1]
|
||||
range_plus = (face_land_mark[29]- face_land_mark[28])[1]
|
||||
average_range_minus.append(range_minus)
|
||||
average_range_plus.append(range_plus)
|
||||
if upperbondrange != 0:
|
||||
half_face_coord[1] = upperbondrange+half_face_coord[1] #手动调整 + 向下(偏29) - 向上(偏28)
|
||||
half_face_dist = np.max(face_land_mark[:,1]) - half_face_coord[1]
|
||||
upper_bond = half_face_coord[1]-half_face_dist
|
||||
|
||||
f_landmark = (np.min(face_land_mark[:, 0]),int(upper_bond),np.max(face_land_mark[:, 0]),np.max(face_land_mark[:,1]))
|
||||
x1, y1, x2, y2 = f_landmark
|
||||
|
||||
if y2-y1<=0 or x2-x1<=0 or x1<0: # if the landmark bbox is not suitable, reuse the bbox
|
||||
coords_list += [f]
|
||||
w,h = f[2]-f[0], f[3]-f[1]
|
||||
print("error bbox:",f)
|
||||
else:
|
||||
coords_list += [f_landmark]
|
||||
|
||||
print("********************************************bbox_shift parameter adjustment**********************************************************")
|
||||
print(f"Total frame:「{len(frames)}」 Manually adjust range : [ -{int(sum(average_range_minus) / len(average_range_minus))}~{int(sum(average_range_plus) / len(average_range_plus))} ] , the current value: {upperbondrange}")
|
||||
print("*************************************************************************************************************************************")
|
||||
return coords_list,frames
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
img_list = ["./results/lyria/00000.png","./results/lyria/00001.png","./results/lyria/00002.png","./results/lyria/00003.png"]
|
||||
crop_coord_path = "./coord_face.pkl"
|
||||
coords_list,full_frames = get_landmark_and_bbox(img_list)
|
||||
with open(crop_coord_path, 'wb') as f:
|
||||
pickle.dump(coords_list, f)
|
||||
|
||||
for bbox, frame in zip(coords_list,full_frames):
|
||||
if bbox == coord_placeholder:
|
||||
continue
|
||||
x1, y1, x2, y2 = bbox
|
||||
crop_frame = frame[y1:y2, x1:x2]
|
||||
print('Cropped shape', crop_frame.shape)
|
||||
|
||||
#cv2.imwrite(path.join(save_dir, '{}.png'.format(i)),full_frames[i][0][y1:y2, x1:x2])
|
||||
print(coords_list)
|
||||
61
musetalk/utils/utils.py
Normal file
61
musetalk/utils/utils.py
Normal file
@@ -0,0 +1,61 @@
|
||||
import os
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
ffmpeg_path = os.getenv('FFMPEG_PATH')
|
||||
if ffmpeg_path is None:
|
||||
print("please download ffmpeg-static and export to FFMPEG_PATH. \nFor example: export FFMPEG_PATH=/musetalk/ffmpeg-4.4-amd64-static")
|
||||
elif ffmpeg_path not in os.getenv('PATH'):
|
||||
print("add ffmpeg to path")
|
||||
os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"
|
||||
|
||||
|
||||
from musetalk.whisper.audio2feature import Audio2Feature
|
||||
from musetalk.models.vae import VAE
|
||||
from musetalk.models.unet import UNet,PositionalEncoding
|
||||
|
||||
def load_all_model():
|
||||
audio_processor = Audio2Feature(model_path="./models/whisper/tiny.pt")
|
||||
vae = VAE(model_path = "./models/sd-vae-ft-mse/")
|
||||
unet = UNet(unet_config="./models/musetalk/musetalk.json",
|
||||
model_path ="./models/musetalk/pytorch_model.bin")
|
||||
pe = PositionalEncoding(d_model=384)
|
||||
return audio_processor,vae,unet,pe
|
||||
|
||||
def get_file_type(video_path):
|
||||
_, ext = os.path.splitext(video_path)
|
||||
|
||||
if ext.lower() in ['.jpg', '.jpeg', '.png', '.bmp', '.tif', '.tiff']:
|
||||
return 'image'
|
||||
elif ext.lower() in ['.avi', '.mp4', '.mov', '.flv', '.mkv']:
|
||||
return 'video'
|
||||
else:
|
||||
return 'unsupported'
|
||||
|
||||
def get_video_fps(video_path):
|
||||
video = cv2.VideoCapture(video_path)
|
||||
fps = video.get(cv2.CAP_PROP_FPS)
|
||||
video.release()
|
||||
return fps
|
||||
|
||||
def datagen(whisper_chunks,vae_encode_latents,batch_size=8,delay_frame = 0):
|
||||
whisper_batch, latent_batch = [], []
|
||||
for i, w in enumerate(whisper_chunks):
|
||||
idx = (i+delay_frame)%len(vae_encode_latents)
|
||||
latent = vae_encode_latents[idx]
|
||||
whisper_batch.append(w)
|
||||
latent_batch.append(latent)
|
||||
|
||||
if len(latent_batch) >= batch_size:
|
||||
whisper_batch = np.asarray(whisper_batch)
|
||||
latent_batch = torch.cat(latent_batch, dim=0)
|
||||
yield whisper_batch, latent_batch
|
||||
whisper_batch, latent_batch = [], []
|
||||
|
||||
# the last batch may smaller than batch size
|
||||
if len(latent_batch) > 0:
|
||||
whisper_batch = np.asarray(whisper_batch)
|
||||
latent_batch = torch.cat(latent_batch, dim=0)
|
||||
|
||||
yield whisper_batch, latent_batch
|
||||
125
musetalk/whisper/audio2feature.py
Normal file
125
musetalk/whisper/audio2feature.py
Normal file
@@ -0,0 +1,125 @@
|
||||
import os
|
||||
#import whisper
|
||||
from whisper import load_model
|
||||
#import whisper.whispher as whiisper
|
||||
import soundfile as sf
|
||||
import numpy as np
|
||||
import time
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
|
||||
class Audio2Feature():
|
||||
def __init__(self, whisper_model_type="tiny",model_path="./checkpoints/wisper_tiny.pt"):
|
||||
self.whisper_model_type = whisper_model_type
|
||||
self.model = load_model(model_path) #
|
||||
|
||||
|
||||
def get_sliced_feature(self,feature_array, vid_idx, audio_feat_length= [2,2],fps = 25):
|
||||
"""
|
||||
Get sliced features based on a given index
|
||||
:param feature_array:
|
||||
:param start_idx: the start index of the feature
|
||||
:param audio_feat_length:
|
||||
:return:
|
||||
"""
|
||||
length = len(feature_array)
|
||||
selected_feature = []
|
||||
selected_idx = []
|
||||
|
||||
center_idx = int(vid_idx*50/fps)
|
||||
left_idx = center_idx-audio_feat_length[0]*2
|
||||
right_idx = center_idx + (audio_feat_length[1]+1)*2
|
||||
|
||||
for idx in range(left_idx,right_idx):
|
||||
idx = max(0, idx)
|
||||
idx = min(length-1, idx)
|
||||
x = feature_array[idx]
|
||||
selected_feature.append(x)
|
||||
selected_idx.append(idx)
|
||||
|
||||
selected_feature = np.concatenate(selected_feature, axis=0)
|
||||
selected_feature = selected_feature.reshape(-1, 384)# 50*384
|
||||
return selected_feature,selected_idx
|
||||
|
||||
def get_sliced_feature_sparse(self,feature_array, vid_idx, audio_feat_length= [2,2],fps = 25):
|
||||
"""
|
||||
Get sliced features based on a given index
|
||||
:param feature_array:
|
||||
:param start_idx: the start index of the feature
|
||||
:param audio_feat_length:
|
||||
:return:
|
||||
"""
|
||||
length = len(feature_array)
|
||||
selected_feature = []
|
||||
selected_idx = []
|
||||
|
||||
for dt in range(-audio_feat_length[0],audio_feat_length[1]+1):
|
||||
left_idx = int((vid_idx+dt)*50/fps)
|
||||
if left_idx<1 or left_idx>length-1:
|
||||
left_idx = max(0, left_idx)
|
||||
left_idx = min(length-1, left_idx)
|
||||
|
||||
x = feature_array[left_idx]
|
||||
x = x[np.newaxis,:,:]
|
||||
x = np.repeat(x, 2, axis=0)
|
||||
selected_feature.append(x)
|
||||
selected_idx.append(left_idx)
|
||||
selected_idx.append(left_idx)
|
||||
else:
|
||||
x = feature_array[left_idx-1:left_idx+1]
|
||||
selected_feature.append(x)
|
||||
selected_idx.append(left_idx-1)
|
||||
selected_idx.append(left_idx)
|
||||
selected_feature = np.concatenate(selected_feature, axis=0)
|
||||
selected_feature = selected_feature.reshape(-1, 384)# 50*384
|
||||
return selected_feature,selected_idx
|
||||
|
||||
|
||||
def feature2chunks(self,feature_array,fps,audio_feat_length = [2,2]):
|
||||
whisper_chunks = []
|
||||
whisper_idx_multiplier = 50./fps
|
||||
i = 0
|
||||
print(f"video in {fps} FPS, audio idx in 50FPS")
|
||||
while 1:
|
||||
start_idx = int(i * whisper_idx_multiplier)
|
||||
selected_feature,selected_idx = self.get_sliced_feature(feature_array= feature_array,vid_idx = i,audio_feat_length=audio_feat_length,fps=fps)
|
||||
#print(f"i:{i},selected_idx {selected_idx}")
|
||||
whisper_chunks.append(selected_feature)
|
||||
i += 1
|
||||
if start_idx>len(feature_array):
|
||||
break
|
||||
|
||||
return whisper_chunks
|
||||
|
||||
def audio2feat(self,audio_path):
|
||||
# get the sample rate of the audio
|
||||
result = self.model.transcribe(audio_path)
|
||||
embed_list = []
|
||||
for emb in result['segments']:
|
||||
encoder_embeddings = emb['encoder_embeddings']
|
||||
encoder_embeddings = encoder_embeddings.transpose(0,2,1,3)
|
||||
encoder_embeddings = encoder_embeddings.squeeze(0)
|
||||
start_idx = int(emb['start'])
|
||||
end_idx = int(emb['end'])
|
||||
emb_end_idx = int((end_idx - start_idx)/2)
|
||||
embed_list.append(encoder_embeddings[:emb_end_idx])
|
||||
concatenated_array = np.concatenate(embed_list, axis=0)
|
||||
return concatenated_array
|
||||
|
||||
if __name__ == "__main__":
|
||||
audio_processor = Audio2Feature(model_path="../../models/whisper/whisper_tiny.pt")
|
||||
audio_path = "./test.mp3"
|
||||
array = audio_processor.audio2feat(audio_path)
|
||||
print(array.shape)
|
||||
fps = 25
|
||||
whisper_idx_multiplier = 50./fps
|
||||
|
||||
i = 0
|
||||
print(f"video in {fps} FPS, audio idx in 50FPS")
|
||||
while 1:
|
||||
start_idx = int(i * whisper_idx_multiplier)
|
||||
selected_feature,selected_idx = audio_processor.get_sliced_feature(feature_array= array,vid_idx = i,audio_feat_length=[2,2],fps=fps)
|
||||
print(f"video idx {i},\t audio idx {selected_idx},\t shape {selected_feature.shape}")
|
||||
i += 1
|
||||
if start_idx>len(array):
|
||||
break
|
||||
6
musetalk/whisper/requirements.txt
Normal file
6
musetalk/whisper/requirements.txt
Normal file
@@ -0,0 +1,6 @@
|
||||
numpy
|
||||
torch
|
||||
tqdm
|
||||
more-itertools
|
||||
transformers>=4.19.0
|
||||
ffmpeg-python==0.2.0
|
||||
24
musetalk/whisper/setup.py
Normal file
24
musetalk/whisper/setup.py
Normal file
@@ -0,0 +1,24 @@
|
||||
import os
|
||||
|
||||
import pkg_resources
|
||||
from setuptools import setup, find_packages
|
||||
|
||||
setup(
|
||||
name="whisper",
|
||||
py_modules=["whisper"],
|
||||
version="1.0",
|
||||
description="",
|
||||
author="OpenAI",
|
||||
packages=find_packages(exclude=["tests*"]),
|
||||
install_requires=[
|
||||
str(r)
|
||||
for r in pkg_resources.parse_requirements(
|
||||
open(os.path.join(os.path.dirname(__file__), "requirements.txt"))
|
||||
)
|
||||
],
|
||||
entry_points = {
|
||||
'console_scripts': ['whisper=whisper.transcribe:cli'],
|
||||
},
|
||||
include_package_data=True,
|
||||
extras_require={'dev': ['pytest']},
|
||||
)
|
||||
5
musetalk/whisper/whisper.egg-info/PKG-INFO
Normal file
5
musetalk/whisper/whisper.egg-info/PKG-INFO
Normal file
@@ -0,0 +1,5 @@
|
||||
Metadata-Version: 2.1
|
||||
Name: whisper
|
||||
Version: 1.0
|
||||
Author: OpenAI
|
||||
Provides-Extra: dev
|
||||
18
musetalk/whisper/whisper.egg-info/SOURCES.txt
Normal file
18
musetalk/whisper/whisper.egg-info/SOURCES.txt
Normal file
@@ -0,0 +1,18 @@
|
||||
setup.py
|
||||
whisper/__init__.py
|
||||
whisper/__main__.py
|
||||
whisper/audio.py
|
||||
whisper/decoding.py
|
||||
whisper/model.py
|
||||
whisper/tokenizer.py
|
||||
whisper/transcribe.py
|
||||
whisper/utils.py
|
||||
whisper.egg-info/PKG-INFO
|
||||
whisper.egg-info/SOURCES.txt
|
||||
whisper.egg-info/dependency_links.txt
|
||||
whisper.egg-info/entry_points.txt
|
||||
whisper.egg-info/requires.txt
|
||||
whisper.egg-info/top_level.txt
|
||||
whisper/normalizers/__init__.py
|
||||
whisper/normalizers/basic.py
|
||||
whisper/normalizers/english.py
|
||||
1
musetalk/whisper/whisper.egg-info/dependency_links.txt
Normal file
1
musetalk/whisper/whisper.egg-info/dependency_links.txt
Normal file
@@ -0,0 +1 @@
|
||||
|
||||
2
musetalk/whisper/whisper.egg-info/entry_points.txt
Normal file
2
musetalk/whisper/whisper.egg-info/entry_points.txt
Normal file
@@ -0,0 +1,2 @@
|
||||
[console_scripts]
|
||||
whisper = whisper.transcribe:cli
|
||||
9
musetalk/whisper/whisper.egg-info/requires.txt
Normal file
9
musetalk/whisper/whisper.egg-info/requires.txt
Normal file
@@ -0,0 +1,9 @@
|
||||
numpy
|
||||
torch
|
||||
tqdm
|
||||
more-itertools
|
||||
transformers>=4.19.0
|
||||
ffmpeg-python==0.2.0
|
||||
|
||||
[dev]
|
||||
pytest
|
||||
1
musetalk/whisper/whisper.egg-info/top_level.txt
Normal file
1
musetalk/whisper/whisper.egg-info/top_level.txt
Normal file
@@ -0,0 +1 @@
|
||||
whisper
|
||||
116
musetalk/whisper/whisper/__init__.py
Normal file
116
musetalk/whisper/whisper/__init__.py
Normal file
@@ -0,0 +1,116 @@
|
||||
import hashlib
|
||||
import io
|
||||
import os
|
||||
import urllib
|
||||
import warnings
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
from .audio import load_audio, log_mel_spectrogram, pad_or_trim
|
||||
from .decoding import DecodingOptions, DecodingResult, decode, detect_language
|
||||
from .model import Whisper, ModelDimensions
|
||||
from .transcribe import transcribe
|
||||
|
||||
|
||||
_MODELS = {
|
||||
"tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt",
|
||||
"tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt",
|
||||
"base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt",
|
||||
"base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt",
|
||||
"small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt",
|
||||
"small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt",
|
||||
"medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt",
|
||||
"medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt",
|
||||
"large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt",
|
||||
"large-v1": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large-v1.pt",
|
||||
"large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt",
|
||||
"large-v3": "https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt",
|
||||
}
|
||||
|
||||
|
||||
def _download(url: str, root: str, in_memory: bool) -> Union[bytes, str]:
|
||||
os.makedirs(root, exist_ok=True)
|
||||
|
||||
expected_sha256 = url.split("/")[-2]
|
||||
download_target = os.path.join(root, os.path.basename(url))
|
||||
|
||||
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
||||
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
||||
|
||||
if os.path.isfile(download_target):
|
||||
model_bytes = open(download_target, "rb").read()
|
||||
if hashlib.sha256(model_bytes).hexdigest() == expected_sha256:
|
||||
return model_bytes if in_memory else download_target
|
||||
else:
|
||||
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
||||
|
||||
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
||||
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
|
||||
while True:
|
||||
buffer = source.read(8192)
|
||||
if not buffer:
|
||||
break
|
||||
|
||||
output.write(buffer)
|
||||
loop.update(len(buffer))
|
||||
|
||||
model_bytes = open(download_target, "rb").read()
|
||||
if hashlib.sha256(model_bytes).hexdigest() != expected_sha256:
|
||||
raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.")
|
||||
|
||||
return model_bytes if in_memory else download_target
|
||||
|
||||
|
||||
def available_models() -> List[str]:
|
||||
"""Returns the names of available models"""
|
||||
return list(_MODELS.keys())
|
||||
|
||||
|
||||
def load_model(name: str, device: Optional[Union[str, torch.device]] = None, download_root: str = None, in_memory: bool = False) -> Whisper:
|
||||
"""
|
||||
Load a Whisper ASR model
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name : str
|
||||
one of the official model names listed by `whisper.available_models()`, or
|
||||
path to a model checkpoint containing the model dimensions and the model state_dict.
|
||||
device : Union[str, torch.device]
|
||||
the PyTorch device to put the model into
|
||||
download_root: str
|
||||
path to download the model files; by default, it uses "~/.cache/whisper"
|
||||
in_memory: bool
|
||||
whether to preload the model weights into host memory
|
||||
|
||||
Returns
|
||||
-------
|
||||
model : Whisper
|
||||
The Whisper ASR model instance
|
||||
"""
|
||||
|
||||
if device is None:
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
if download_root is None:
|
||||
download_root = os.getenv(
|
||||
"XDG_CACHE_HOME",
|
||||
os.path.join(os.path.expanduser("~"), ".cache", "whisper")
|
||||
)
|
||||
|
||||
if name in _MODELS:
|
||||
checkpoint_file = _download(_MODELS[name], download_root, in_memory)
|
||||
elif os.path.isfile(name):
|
||||
checkpoint_file = open(name, "rb").read() if in_memory else name
|
||||
else:
|
||||
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
|
||||
|
||||
with (io.BytesIO(checkpoint_file) if in_memory else open(checkpoint_file, "rb")) as fp:
|
||||
checkpoint = torch.load(fp, map_location=device)
|
||||
del checkpoint_file
|
||||
|
||||
dims = ModelDimensions(**checkpoint["dims"])
|
||||
model = Whisper(dims)
|
||||
model.load_state_dict(checkpoint["model_state_dict"])
|
||||
|
||||
return model.to(device)
|
||||
4
musetalk/whisper/whisper/__main__.py
Normal file
4
musetalk/whisper/whisper/__main__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from .transcribe import cli
|
||||
|
||||
|
||||
cli()
|
||||
50001
musetalk/whisper/whisper/assets/gpt2/merges.txt
Normal file
50001
musetalk/whisper/whisper/assets/gpt2/merges.txt
Normal file
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1 @@
|
||||
{"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}
|
||||
@@ -0,0 +1 @@
|
||||
{"unk_token": "<|endoftext|>", "bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "add_prefix_space": false, "model_max_length": 1024, "special_tokens_map_file": null, "name_or_path": "gpt2", "tokenizer_class": "GPT2Tokenizer"}
|
||||
1
musetalk/whisper/whisper/assets/gpt2/vocab.json
Normal file
1
musetalk/whisper/whisper/assets/gpt2/vocab.json
Normal file
File diff suppressed because one or more lines are too long
BIN
musetalk/whisper/whisper/assets/mel_filters.npz
Executable file
BIN
musetalk/whisper/whisper/assets/mel_filters.npz
Executable file
Binary file not shown.
@@ -0,0 +1 @@
|
||||
{"<|endoftext|>": 50257}
|
||||
50000
musetalk/whisper/whisper/assets/multilingual/merges.txt
Normal file
50000
musetalk/whisper/whisper/assets/multilingual/merges.txt
Normal file
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1 @@
|
||||
{"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}
|
||||
@@ -0,0 +1 @@
|
||||
{"unk_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "<|endoftext|>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "model_max_length": 1024, "special_tokens_map_file": null, "name_or_path": "multilingual", "errors": "replace", "tokenizer_class": "GPT2Tokenizer"}
|
||||
1
musetalk/whisper/whisper/assets/multilingual/vocab.json
Normal file
1
musetalk/whisper/whisper/assets/multilingual/vocab.json
Normal file
File diff suppressed because one or more lines are too long
125
musetalk/whisper/whisper/audio.py
Normal file
125
musetalk/whisper/whisper/audio.py
Normal file
@@ -0,0 +1,125 @@
|
||||
import os
|
||||
from functools import lru_cache
|
||||
from typing import Union
|
||||
|
||||
import ffmpeg
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from .utils import exact_div
|
||||
|
||||
# hard-coded audio hyperparameters
|
||||
SAMPLE_RATE = 16000
|
||||
N_FFT = 400
|
||||
N_MELS = 80
|
||||
HOP_LENGTH = 160
|
||||
CHUNK_LENGTH = 30
|
||||
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000: number of samples in a chunk
|
||||
N_FRAMES = exact_div(N_SAMPLES, HOP_LENGTH) # 3000: number of frames in a mel spectrogram input
|
||||
|
||||
|
||||
def load_audio(file: str, sr: int = SAMPLE_RATE):
|
||||
"""
|
||||
Open an audio file and read as mono waveform, resampling as necessary
|
||||
|
||||
Parameters
|
||||
----------
|
||||
file: str
|
||||
The audio file to open
|
||||
|
||||
sr: int
|
||||
The sample rate to resample the audio if necessary
|
||||
|
||||
Returns
|
||||
-------
|
||||
A NumPy array containing the audio waveform, in float32 dtype.
|
||||
"""
|
||||
try:
|
||||
# This launches a subprocess to decode audio while down-mixing and resampling as necessary.
|
||||
# Requires the ffmpeg CLI and `ffmpeg-python` package to be installed.
|
||||
out, _ = (
|
||||
ffmpeg.input(file, threads=0)
|
||||
.output("-", format="s16le", acodec="pcm_s16le", ac=1, ar=sr)
|
||||
.run(cmd=["ffmpeg", "-nostdin"], capture_stdout=True, capture_stderr=True)
|
||||
)
|
||||
except ffmpeg.Error as e:
|
||||
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
|
||||
|
||||
return np.frombuffer(out, np.int16).flatten().astype(np.float32) / 32768.0
|
||||
|
||||
|
||||
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
||||
"""
|
||||
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
|
||||
"""
|
||||
if torch.is_tensor(array):
|
||||
if array.shape[axis] > length:
|
||||
array = array.index_select(dim=axis, index=torch.arange(length))
|
||||
|
||||
if array.shape[axis] < length:
|
||||
pad_widths = [(0, 0)] * array.ndim
|
||||
pad_widths[axis] = (0, length - array.shape[axis])
|
||||
array = F.pad(array, [pad for sizes in pad_widths[::-1] for pad in sizes])
|
||||
else:
|
||||
if array.shape[axis] > length:
|
||||
array = array.take(indices=range(length), axis=axis)
|
||||
|
||||
if array.shape[axis] < length:
|
||||
pad_widths = [(0, 0)] * array.ndim
|
||||
pad_widths[axis] = (0, length - array.shape[axis])
|
||||
array = np.pad(array, pad_widths)
|
||||
|
||||
return array
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def mel_filters(device, n_mels: int = N_MELS) -> torch.Tensor:
|
||||
"""
|
||||
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
|
||||
Allows decoupling librosa dependency; saved using:
|
||||
|
||||
np.savez_compressed(
|
||||
"mel_filters.npz",
|
||||
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
|
||||
)
|
||||
"""
|
||||
assert n_mels == 80, f"Unsupported n_mels: {n_mels}"
|
||||
with np.load(os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz")) as f:
|
||||
return torch.from_numpy(f[f"mel_{n_mels}"]).to(device)
|
||||
|
||||
|
||||
def log_mel_spectrogram(audio: Union[str, np.ndarray, torch.Tensor], n_mels: int = N_MELS):
|
||||
"""
|
||||
Compute the log-Mel spectrogram of
|
||||
|
||||
Parameters
|
||||
----------
|
||||
audio: Union[str, np.ndarray, torch.Tensor], shape = (*)
|
||||
The path to audio or either a NumPy array or Tensor containing the audio waveform in 16 kHz
|
||||
|
||||
n_mels: int
|
||||
The number of Mel-frequency filters, only 80 is supported
|
||||
|
||||
Returns
|
||||
-------
|
||||
torch.Tensor, shape = (80, n_frames)
|
||||
A Tensor that contains the Mel spectrogram
|
||||
"""
|
||||
if not torch.is_tensor(audio):
|
||||
if isinstance(audio, str):
|
||||
audio = load_audio(audio)
|
||||
audio = torch.from_numpy(audio)
|
||||
|
||||
window = torch.hann_window(N_FFT).to(audio.device)
|
||||
stft = torch.stft(audio, N_FFT, HOP_LENGTH, window=window, return_complex=True)
|
||||
|
||||
magnitudes = stft[:, :-1].abs() ** 2
|
||||
|
||||
filters = mel_filters(audio.device, n_mels)
|
||||
mel_spec = filters @ magnitudes
|
||||
|
||||
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
|
||||
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
|
||||
log_spec = (log_spec + 4.0) / 4.0
|
||||
return log_spec
|
||||
729
musetalk/whisper/whisper/decoding.py
Normal file
729
musetalk/whisper/whisper/decoding.py
Normal file
@@ -0,0 +1,729 @@
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Dict, List, Tuple, Iterable, Optional, Sequence, Union, TYPE_CHECKING
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import Tensor
|
||||
from torch.distributions import Categorical
|
||||
|
||||
from .audio import CHUNK_LENGTH
|
||||
from .tokenizer import Tokenizer, get_tokenizer
|
||||
from .utils import compression_ratio
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .model import Whisper
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def detect_language(model: "Whisper", mel: Tensor, tokenizer: Tokenizer = None) -> Tuple[Tensor, List[dict]]:
|
||||
"""
|
||||
Detect the spoken language in the audio, and return them as list of strings, along with the ids
|
||||
of the most probable language tokens and the probability distribution over all language tokens.
|
||||
This is performed outside the main decode loop in order to not interfere with kv-caching.
|
||||
|
||||
Returns
|
||||
-------
|
||||
language_tokens : Tensor, shape = (n_audio,)
|
||||
ids of the most probable language tokens, which appears after the startoftranscript token.
|
||||
language_probs : List[Dict[str, float]], length = n_audio
|
||||
list of dictionaries containing the probability distribution over all languages.
|
||||
"""
|
||||
if tokenizer is None:
|
||||
tokenizer = get_tokenizer(model.is_multilingual)
|
||||
if tokenizer.language is None or tokenizer.language_token not in tokenizer.sot_sequence:
|
||||
raise ValueError(f"This model doesn't have language tokens so it can't perform lang id")
|
||||
|
||||
single = mel.ndim == 2
|
||||
if single:
|
||||
mel = mel.unsqueeze(0)
|
||||
|
||||
# skip encoder forward pass if already-encoded audio features were given
|
||||
if mel.shape[-2:] != (model.dims.n_audio_ctx, model.dims.n_audio_state):
|
||||
mel = model.encoder(mel)
|
||||
|
||||
# forward pass using a single token, startoftranscript
|
||||
n_audio = mel.shape[0]
|
||||
x = torch.tensor([[tokenizer.sot]] * n_audio).to(mel.device) # [n_audio, 1]
|
||||
logits = model.logits(x, mel)[:, 0]
|
||||
|
||||
# collect detected languages; suppress all non-language tokens
|
||||
mask = torch.ones(logits.shape[-1], dtype=torch.bool)
|
||||
mask[list(tokenizer.all_language_tokens)] = False
|
||||
logits[:, mask] = -np.inf
|
||||
language_tokens = logits.argmax(dim=-1)
|
||||
language_token_probs = logits.softmax(dim=-1).cpu()
|
||||
language_probs = [
|
||||
{
|
||||
c: language_token_probs[i, j].item()
|
||||
for j, c in zip(tokenizer.all_language_tokens, tokenizer.all_language_codes)
|
||||
}
|
||||
for i in range(n_audio)
|
||||
]
|
||||
|
||||
if single:
|
||||
language_tokens = language_tokens[0]
|
||||
language_probs = language_probs[0]
|
||||
|
||||
return language_tokens, language_probs
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class DecodingOptions:
|
||||
task: str = "transcribe" # whether to perform X->X "transcribe" or X->English "translate"
|
||||
language: Optional[str] = None # language that the audio is in; uses detected language if None
|
||||
|
||||
# sampling-related options
|
||||
temperature: float = 0.0
|
||||
sample_len: Optional[int] = None # maximum number of tokens to sample
|
||||
best_of: Optional[int] = None # number of independent samples to collect, when t > 0
|
||||
beam_size: Optional[int] = None # number of beams in beam search, when t == 0
|
||||
patience: Optional[float] = None # patience in beam search (https://arxiv.org/abs/2204.05424)
|
||||
|
||||
# options for ranking generations (either beams or best-of-N samples)
|
||||
length_penalty: Optional[float] = None # "alpha" in Google NMT, None defaults to length norm
|
||||
|
||||
# prompt, prefix, and token suppression
|
||||
prompt: Optional[Union[str, List[int]]] = None # text or tokens for the previous context
|
||||
prefix: Optional[Union[str, List[int]]] = None # text or tokens to prefix the current context
|
||||
suppress_blank: bool = True # this will suppress blank outputs
|
||||
|
||||
# list of tokens ids (or comma-separated token ids) to suppress
|
||||
# "-1" will suppress a set of symbols as defined in `tokenizer.non_speech_tokens()`
|
||||
suppress_tokens: Optional[Union[str, Iterable[int]]] = "-1"
|
||||
|
||||
# timestamp sampling options
|
||||
without_timestamps: bool = False # use <|notimestamps|> to sample text tokens only
|
||||
max_initial_timestamp: Optional[float] = 1.0 # the initial timestamp cannot be later than this
|
||||
|
||||
# implementation details
|
||||
fp16: bool = True # use fp16 for most of the calculation
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class DecodingResult:
|
||||
audio_features: Tensor
|
||||
language: str
|
||||
encoder_embeddings: np.ndarray
|
||||
decoder_embeddings: np.ndarray
|
||||
language_probs: Optional[Dict[str, float]] = None
|
||||
tokens: List[int] = field(default_factory=list)
|
||||
text: str = ""
|
||||
avg_logprob: float = np.nan
|
||||
no_speech_prob: float = np.nan
|
||||
temperature: float = np.nan
|
||||
compression_ratio: float = np.nan
|
||||
|
||||
|
||||
class Inference:
|
||||
def logits(self, tokens: Tensor, audio_features: Tensor) -> Tensor:
|
||||
"""Perform a forward pass on the decoder and return per-token logits"""
|
||||
raise NotImplementedError
|
||||
|
||||
def rearrange_kv_cache(self, source_indices) -> None:
|
||||
"""Update the key-value cache according to the updated beams"""
|
||||
raise NotImplementedError
|
||||
|
||||
def cleanup_caching(self) -> None:
|
||||
"""Clean up any resources or hooks after decoding is finished"""
|
||||
pass
|
||||
|
||||
|
||||
class PyTorchInference(Inference):
|
||||
def __init__(self, model: "Whisper", initial_token_length: int):
|
||||
self.model: "Whisper" = model
|
||||
self.initial_token_length = initial_token_length
|
||||
self.kv_cache = {}
|
||||
self.hooks = []
|
||||
|
||||
def logits(self, tokens: Tensor, audio_features: Tensor, include_embeddings=False) -> Tensor:
|
||||
if not self.kv_cache:
|
||||
self.kv_cache, self.hooks = self.model.install_kv_cache_hooks()
|
||||
|
||||
if tokens.shape[-1] > self.initial_token_length:
|
||||
# only need to use the last token except in the first forward pass
|
||||
tokens = tokens[:, -1:]
|
||||
|
||||
return_val = self.model.decoder(tokens, audio_features,
|
||||
kv_cache=self.kv_cache, include_embeddings=include_embeddings)
|
||||
return return_val
|
||||
|
||||
def cleanup_caching(self):
|
||||
for hook in self.hooks:
|
||||
hook.remove()
|
||||
|
||||
self.kv_cache = {}
|
||||
self.hooks = []
|
||||
|
||||
def rearrange_kv_cache(self, source_indices):
|
||||
for module, tensor in self.kv_cache.items():
|
||||
# update the key/value cache to contain the selected sequences
|
||||
self.kv_cache[module] = tensor[source_indices].detach()
|
||||
|
||||
|
||||
class SequenceRanker:
|
||||
def rank(self, tokens: List[List[Tensor]], sum_logprobs: List[List[float]]) -> List[int]:
|
||||
"""
|
||||
Given a list of groups of samples and their cumulative log probabilities,
|
||||
return the indices of the samples in each group to select as the final result
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class MaximumLikelihoodRanker(SequenceRanker):
|
||||
"""
|
||||
Select the sample with the highest log probabilities, penalized using either
|
||||
a simple length normalization or Google NMT paper's length penalty
|
||||
"""
|
||||
|
||||
def __init__(self, length_penalty: Optional[float]):
|
||||
self.length_penalty = length_penalty
|
||||
|
||||
def rank(self, tokens: List[List[Tensor]], sum_logprobs: List[List[float]]):
|
||||
def scores(logprobs, lengths):
|
||||
result = []
|
||||
for logprob, length in zip(logprobs, lengths):
|
||||
if self.length_penalty is None:
|
||||
penalty = length
|
||||
else:
|
||||
# from the Google NMT paper
|
||||
penalty = ((5 + length) / 6) ** self.length_penalty
|
||||
result.append(logprob / penalty)
|
||||
return result
|
||||
|
||||
# get the sequence with the highest score
|
||||
lengths = [[len(t) for t in s] for s in tokens]
|
||||
return [np.argmax(scores(p, l)) for p, l in zip(sum_logprobs, lengths)]
|
||||
|
||||
|
||||
class TokenDecoder:
|
||||
def reset(self):
|
||||
"""Initialize any stateful variables for decoding a new sequence"""
|
||||
|
||||
def update(self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor) -> Tuple[Tensor, bool]:
|
||||
"""Specify how to select the next token, based on the current trace and logits
|
||||
|
||||
Parameters
|
||||
----------
|
||||
tokens : Tensor, shape = (n_batch, current_sequence_length)
|
||||
all tokens in the context so far, including the prefix and sot_sequence tokens
|
||||
|
||||
logits : Tensor, shape = (n_batch, vocab_size)
|
||||
per-token logits of the probability distribution at the current step
|
||||
|
||||
sum_logprobs : Tensor, shape = (n_batch)
|
||||
cumulative log probabilities for each sequence
|
||||
|
||||
Returns
|
||||
-------
|
||||
tokens : Tensor, shape = (n_batch, current_sequence_length + 1)
|
||||
the tokens, appended with the selected next token
|
||||
|
||||
completed : bool
|
||||
True if all sequences has reached the end of text
|
||||
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def finalize(
|
||||
self, tokens: Tensor, sum_logprobs: Tensor
|
||||
) -> Tuple[Sequence[Sequence[Tensor]], List[List[float]]]:
|
||||
"""Finalize search and return the final candidate sequences
|
||||
|
||||
Parameters
|
||||
----------
|
||||
tokens : Tensor, shape = (n_audio, n_group, current_sequence_length)
|
||||
all tokens in the context so far, including the prefix and sot_sequence
|
||||
|
||||
sum_logprobs : Tensor, shape = (n_audio, n_group)
|
||||
cumulative log probabilities for each sequence
|
||||
|
||||
Returns
|
||||
-------
|
||||
tokens : Sequence[Sequence[Tensor]], length = n_audio
|
||||
sequence of Tensors containing candidate token sequences, for each audio input
|
||||
|
||||
sum_logprobs : List[List[float]], length = n_audio
|
||||
sequence of cumulative log probabilities corresponding to the above
|
||||
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class GreedyDecoder(TokenDecoder):
|
||||
def __init__(self, temperature: float, eot: int):
|
||||
self.temperature = temperature
|
||||
self.eot = eot
|
||||
|
||||
def update(self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor) -> Tuple[Tensor, bool]:
|
||||
temperature = self.temperature
|
||||
if temperature == 0:
|
||||
next_tokens = logits.argmax(dim=-1)
|
||||
else:
|
||||
next_tokens = Categorical(logits=logits / temperature).sample()
|
||||
|
||||
logprobs = F.log_softmax(logits.float(), dim=-1)
|
||||
current_logprobs = logprobs[torch.arange(logprobs.shape[0]), next_tokens]
|
||||
sum_logprobs += current_logprobs * (tokens[:, -1] != self.eot)
|
||||
|
||||
next_tokens[tokens[:, -1] == self.eot] = self.eot
|
||||
tokens = torch.cat([tokens, next_tokens[:, None]], dim=-1)
|
||||
|
||||
completed = (tokens[:, -1] == self.eot).all()
|
||||
return tokens, completed
|
||||
|
||||
def finalize(self, tokens: Tensor, sum_logprobs: Tensor):
|
||||
# make sure each sequence has at least one EOT token at the end
|
||||
tokens = F.pad(tokens, (0, 1), value=self.eot)
|
||||
return tokens, sum_logprobs.tolist()
|
||||
|
||||
|
||||
class BeamSearchDecoder(TokenDecoder):
|
||||
def __init__(self, beam_size: int, eot: int, inference: Inference, patience: Optional[float] = None):
|
||||
self.beam_size = beam_size
|
||||
self.eot = eot
|
||||
self.inference = inference
|
||||
self.patience = patience or 1.0
|
||||
self.max_candidates: int = round(beam_size * self.patience)
|
||||
self.finished_sequences = None
|
||||
|
||||
assert self.max_candidates > 0, f"Invalid beam size ({beam_size}) or patience ({patience})"
|
||||
|
||||
def reset(self):
|
||||
self.finished_sequences = None
|
||||
|
||||
def update(self, tokens: Tensor, logits: Tensor, sum_logprobs: Tensor) -> Tuple[Tensor, bool]:
|
||||
if tokens.shape[0] % self.beam_size != 0:
|
||||
raise ValueError(f"{tokens.shape}[0] % {self.beam_size} != 0")
|
||||
|
||||
n_audio = tokens.shape[0] // self.beam_size
|
||||
if self.finished_sequences is None: # for the first update
|
||||
self.finished_sequences = [{} for _ in range(n_audio)]
|
||||
|
||||
logprobs = F.log_softmax(logits.float(), dim=-1)
|
||||
next_tokens, source_indices, finished_sequences = [], [], []
|
||||
for i in range(n_audio):
|
||||
scores, sources, finished = {}, {}, {}
|
||||
|
||||
# STEP 1: calculate the cumulative log probabilities for possible candidates
|
||||
for j in range(self.beam_size):
|
||||
idx = i * self.beam_size + j
|
||||
prefix = tokens[idx].tolist()
|
||||
for logprob, token in zip(*logprobs[idx].topk(self.beam_size + 1)):
|
||||
new_logprob = (sum_logprobs[idx] + logprob).item()
|
||||
sequence = tuple(prefix + [token.item()])
|
||||
scores[sequence] = new_logprob
|
||||
sources[sequence] = idx
|
||||
|
||||
# STEP 2: rank the candidates and keep the top beam_size sequences for each audio
|
||||
saved = 0
|
||||
for sequence in sorted(scores, key=scores.get, reverse=True):
|
||||
if sequence[-1] == self.eot:
|
||||
finished[sequence] = scores[sequence]
|
||||
else:
|
||||
sum_logprobs[len(next_tokens)] = scores[sequence]
|
||||
next_tokens.append(sequence)
|
||||
source_indices.append(sources[sequence])
|
||||
|
||||
saved += 1
|
||||
if saved == self.beam_size:
|
||||
break
|
||||
|
||||
finished_sequences.append(finished)
|
||||
|
||||
tokens = torch.tensor(next_tokens, device=tokens.device)
|
||||
self.inference.rearrange_kv_cache(source_indices)
|
||||
|
||||
# add newly finished sequences to self.finished_sequences
|
||||
assert len(self.finished_sequences) == len(finished_sequences)
|
||||
for previously_finished, newly_finished in zip(self.finished_sequences, finished_sequences):
|
||||
for seq in sorted(newly_finished, key=newly_finished.get, reverse=True):
|
||||
if len(previously_finished) >= self.max_candidates:
|
||||
break # the candidate list is full
|
||||
previously_finished[seq] = newly_finished[seq]
|
||||
|
||||
# mark as completed if all audio has enough number of samples
|
||||
completed = all(
|
||||
len(sequences) >= self.max_candidates for sequences in self.finished_sequences
|
||||
)
|
||||
return tokens, completed
|
||||
|
||||
def finalize(self, preceding_tokens: Tensor, sum_logprobs: Tensor):
|
||||
# collect all finished sequences, including patience, and add unfinished ones if not enough
|
||||
sum_logprobs = sum_logprobs.cpu()
|
||||
for i, sequences in enumerate(self.finished_sequences):
|
||||
if len(sequences) < self.beam_size: # when not enough sequences are finished
|
||||
for j in list(np.argsort(sum_logprobs[i]))[::-1]:
|
||||
sequence = preceding_tokens[i, j].tolist() + [self.eot]
|
||||
sequences[tuple(sequence)] = sum_logprobs[i][j].item()
|
||||
if len(sequences) >= self.beam_size:
|
||||
break
|
||||
|
||||
tokens: List[List[Tensor]] = [
|
||||
[torch.tensor(seq) for seq in sequences.keys()] for sequences in self.finished_sequences
|
||||
]
|
||||
sum_logprobs: List[List[float]] = [
|
||||
list(sequences.values()) for sequences in self.finished_sequences
|
||||
]
|
||||
return tokens, sum_logprobs
|
||||
|
||||
|
||||
class LogitFilter:
|
||||
def apply(self, logits: Tensor, tokens: Tensor) -> None:
|
||||
"""Apply any filtering or masking to logits in-place
|
||||
|
||||
Parameters
|
||||
----------
|
||||
logits : Tensor, shape = (n_batch, vocab_size)
|
||||
per-token logits of the probability distribution at the current step
|
||||
|
||||
tokens : Tensor, shape = (n_batch, current_sequence_length)
|
||||
all tokens in the context so far, including the prefix and sot_sequence tokens
|
||||
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class SuppressBlank(LogitFilter):
|
||||
def __init__(self, tokenizer: Tokenizer, sample_begin: int):
|
||||
self.tokenizer = tokenizer
|
||||
self.sample_begin = sample_begin
|
||||
|
||||
def apply(self, logits: Tensor, tokens: Tensor):
|
||||
if tokens.shape[1] == self.sample_begin:
|
||||
logits[:, self.tokenizer.encode(" ") + [self.tokenizer.eot]] = -np.inf
|
||||
|
||||
|
||||
class SuppressTokens(LogitFilter):
|
||||
def __init__(self, suppress_tokens: Sequence[int]):
|
||||
self.suppress_tokens = list(suppress_tokens)
|
||||
|
||||
def apply(self, logits: Tensor, tokens: Tensor):
|
||||
logits[:, self.suppress_tokens] = -np.inf
|
||||
|
||||
|
||||
class ApplyTimestampRules(LogitFilter):
|
||||
def __init__(
|
||||
self, tokenizer: Tokenizer, sample_begin: int, max_initial_timestamp_index: Optional[int]
|
||||
):
|
||||
self.tokenizer = tokenizer
|
||||
self.sample_begin = sample_begin
|
||||
self.max_initial_timestamp_index = max_initial_timestamp_index
|
||||
|
||||
def apply(self, logits: Tensor, tokens: Tensor):
|
||||
# suppress <|notimestamps|> which is handled by without_timestamps
|
||||
if self.tokenizer.no_timestamps is not None:
|
||||
logits[:, self.tokenizer.no_timestamps] = -np.inf
|
||||
|
||||
# timestamps have to appear in pairs, except directly before EOT; mask logits accordingly
|
||||
for k in range(tokens.shape[0]):
|
||||
seq = [t for t in tokens[k, self.sample_begin :].tolist()]
|
||||
last_was_timestamp = len(seq) >= 1 and seq[-1] >= self.tokenizer.timestamp_begin
|
||||
penultimate_was_timestamp = len(seq) < 2 or seq[-2] >= self.tokenizer.timestamp_begin
|
||||
|
||||
if last_was_timestamp:
|
||||
if penultimate_was_timestamp: # has to be non-timestamp
|
||||
logits[k, self.tokenizer.timestamp_begin :] = -np.inf
|
||||
else: # cannot be normal text tokens
|
||||
logits[k, : self.tokenizer.eot] = -np.inf
|
||||
|
||||
# apply the `max_initial_timestamp` option
|
||||
if tokens.shape[1] == self.sample_begin and self.max_initial_timestamp_index is not None:
|
||||
last_allowed = self.tokenizer.timestamp_begin + self.max_initial_timestamp_index
|
||||
logits[:, last_allowed + 1 :] = -np.inf
|
||||
|
||||
# if sum of probability over timestamps is above any other token, sample timestamp
|
||||
logprobs = F.log_softmax(logits.float(), dim=-1)
|
||||
for k in range(tokens.shape[0]):
|
||||
timestamp_logprob = logprobs[k, self.tokenizer.timestamp_begin :].logsumexp(dim=-1)
|
||||
max_text_token_logprob = logprobs[k, : self.tokenizer.timestamp_begin].max()
|
||||
if timestamp_logprob > max_text_token_logprob:
|
||||
logits[k, : self.tokenizer.timestamp_begin] = -np.inf
|
||||
|
||||
|
||||
class DecodingTask:
|
||||
inference: Inference
|
||||
sequence_ranker: SequenceRanker
|
||||
decoder: TokenDecoder
|
||||
logit_filters: List[LogitFilter]
|
||||
|
||||
def __init__(self, model: "Whisper", options: DecodingOptions):
|
||||
self.model = model
|
||||
|
||||
language = options.language or "en"
|
||||
tokenizer = get_tokenizer(model.is_multilingual, language=language, task=options.task)
|
||||
self.tokenizer: Tokenizer = tokenizer
|
||||
self.options: DecodingOptions = self._verify_options(options)
|
||||
|
||||
self.n_group: int = options.beam_size or options.best_of or 1
|
||||
self.n_ctx: int = model.dims.n_text_ctx
|
||||
self.sample_len: int = options.sample_len or model.dims.n_text_ctx // 2
|
||||
|
||||
self.sot_sequence: Tuple[int] = tokenizer.sot_sequence
|
||||
if self.options.without_timestamps:
|
||||
self.sot_sequence = tokenizer.sot_sequence_including_notimestamps
|
||||
|
||||
self.initial_tokens: Tuple[int] = self._get_initial_tokens()
|
||||
self.sample_begin: int = len(self.initial_tokens)
|
||||
self.sot_index: int = self.initial_tokens.index(tokenizer.sot)
|
||||
|
||||
# inference: implements the forward pass through the decoder, including kv caching
|
||||
self.inference = PyTorchInference(model, len(self.initial_tokens))
|
||||
|
||||
# sequence ranker: implements how to rank a group of sampled sequences
|
||||
self.sequence_ranker = MaximumLikelihoodRanker(options.length_penalty)
|
||||
|
||||
# decoder: implements how to select the next tokens, given the autoregressive distribution
|
||||
if options.beam_size is not None:
|
||||
self.decoder = BeamSearchDecoder(
|
||||
options.beam_size, tokenizer.eot, self.inference, options.patience
|
||||
)
|
||||
else:
|
||||
self.decoder = GreedyDecoder(options.temperature, tokenizer.eot)
|
||||
|
||||
# logit filters: applies various rules to suppress or penalize certain tokens
|
||||
self.logit_filters = []
|
||||
if self.options.suppress_blank:
|
||||
self.logit_filters.append(SuppressBlank(self.tokenizer, self.sample_begin))
|
||||
if self.options.suppress_tokens:
|
||||
self.logit_filters.append(SuppressTokens(self._get_suppress_tokens()))
|
||||
if not options.without_timestamps:
|
||||
precision = CHUNK_LENGTH / model.dims.n_audio_ctx # usually 0.02 seconds
|
||||
max_initial_timestamp_index = None
|
||||
if options.max_initial_timestamp:
|
||||
max_initial_timestamp_index = round(self.options.max_initial_timestamp / precision)
|
||||
self.logit_filters.append(
|
||||
ApplyTimestampRules(tokenizer, self.sample_begin, max_initial_timestamp_index)
|
||||
)
|
||||
|
||||
def _verify_options(self, options: DecodingOptions) -> DecodingOptions:
|
||||
if options.beam_size is not None and options.best_of is not None:
|
||||
raise ValueError("beam_size and best_of can't be given together")
|
||||
if options.temperature == 0:
|
||||
if options.best_of is not None:
|
||||
raise ValueError("best_of with greedy sampling (T=0) is not compatible")
|
||||
if options.patience is not None and options.beam_size is None:
|
||||
raise ValueError("patience requires beam_size to be given")
|
||||
if options.length_penalty is not None and not (0 <= options.length_penalty <= 1):
|
||||
raise ValueError("length_penalty (alpha) should be a value between 0 and 1")
|
||||
|
||||
return options
|
||||
|
||||
def _get_initial_tokens(self) -> Tuple[int]:
|
||||
tokens = list(self.sot_sequence)
|
||||
prefix = self.options.prefix
|
||||
prompt = self.options.prompt
|
||||
|
||||
if prefix:
|
||||
prefix_tokens = (
|
||||
self.tokenizer.encode(" " + prefix.strip()) if isinstance(prefix, str) else prefix
|
||||
)
|
||||
if self.sample_len is not None:
|
||||
max_prefix_len = self.n_ctx // 2 - self.sample_len
|
||||
prefix_tokens = prefix_tokens[-max_prefix_len:]
|
||||
tokens = tokens + prefix_tokens
|
||||
|
||||
if prompt:
|
||||
prompt_tokens = (
|
||||
self.tokenizer.encode(" " + prompt.strip()) if isinstance(prompt, str) else prompt
|
||||
)
|
||||
tokens = [self.tokenizer.sot_prev] + prompt_tokens[-(self.n_ctx // 2 - 1) :] + tokens
|
||||
|
||||
return tuple(tokens)
|
||||
|
||||
def _get_suppress_tokens(self) -> Tuple[int]:
|
||||
suppress_tokens = self.options.suppress_tokens
|
||||
|
||||
if isinstance(suppress_tokens, str):
|
||||
suppress_tokens = [int(t) for t in suppress_tokens.split(",")]
|
||||
|
||||
if -1 in suppress_tokens:
|
||||
suppress_tokens = [t for t in suppress_tokens if t >= 0]
|
||||
suppress_tokens.extend(self.tokenizer.non_speech_tokens)
|
||||
elif suppress_tokens is None or len(suppress_tokens) == 0:
|
||||
suppress_tokens = [] # interpret empty string as an empty list
|
||||
else:
|
||||
assert isinstance(suppress_tokens, list), "suppress_tokens must be a list"
|
||||
|
||||
suppress_tokens.extend(
|
||||
[self.tokenizer.sot, self.tokenizer.sot_prev, self.tokenizer.sot_lm]
|
||||
)
|
||||
if self.tokenizer.no_speech is not None:
|
||||
# no-speech probability is collected separately
|
||||
suppress_tokens.append(self.tokenizer.no_speech)
|
||||
|
||||
return tuple(sorted(set(suppress_tokens)))
|
||||
|
||||
def _get_audio_features(self, mel: Tensor, include_embeddings: bool = False):
|
||||
if self.options.fp16:
|
||||
mel = mel.half()
|
||||
|
||||
if mel.shape[-2:] == (self.model.dims.n_audio_ctx, self.model.dims.n_audio_state):
|
||||
# encoded audio features are given; skip audio encoding
|
||||
audio_features = mel
|
||||
else:
|
||||
result = self.model.encoder(mel, include_embeddings)
|
||||
if include_embeddings:
|
||||
audio_features, embeddings = result
|
||||
else:
|
||||
audio_features = result
|
||||
|
||||
if audio_features.dtype != (torch.float16 if self.options.fp16 else torch.float32):
|
||||
return TypeError(f"audio_features has an incorrect dtype: {audio_features.dtype}")
|
||||
|
||||
if include_embeddings:
|
||||
return audio_features, embeddings
|
||||
else:
|
||||
return audio_features
|
||||
|
||||
def _detect_language(self, audio_features: Tensor, tokens: Tensor):
|
||||
languages = [self.options.language] * audio_features.shape[0]
|
||||
lang_probs = None
|
||||
|
||||
if self.options.language is None or self.options.task == "lang_id":
|
||||
lang_tokens, lang_probs = self.model.detect_language(audio_features, self.tokenizer)
|
||||
languages = [max(probs, key=probs.get) for probs in lang_probs]
|
||||
if self.options.language is None:
|
||||
tokens[:, self.sot_index + 1] = lang_tokens # write language tokens
|
||||
|
||||
return languages, lang_probs
|
||||
|
||||
def _main_loop(self, audio_features: Tensor, tokens: Tensor):
|
||||
assert audio_features.shape[0] == tokens.shape[0]
|
||||
n_batch = tokens.shape[0]
|
||||
sum_logprobs: Tensor = torch.zeros(n_batch, device=audio_features.device)
|
||||
no_speech_probs = [np.nan] * n_batch
|
||||
|
||||
try:
|
||||
embeddings = []
|
||||
for i in range(self.sample_len):
|
||||
logits, token_embeddings = self.inference.logits(tokens, audio_features, include_embeddings=True)
|
||||
|
||||
if i == 0 and self.tokenizer.no_speech is not None: # save no_speech_probs
|
||||
probs_at_sot = logits[:, self.sot_index].float().softmax(dim=-1)
|
||||
no_speech_probs = probs_at_sot[:, self.tokenizer.no_speech].tolist()
|
||||
|
||||
# now we need to consider the logits at the last token only
|
||||
logits = logits[:, -1]
|
||||
token_embeddings = token_embeddings[:, :, -1]
|
||||
|
||||
# Append embeddings together
|
||||
embeddings.append(token_embeddings)
|
||||
|
||||
# apply the logit filters, e.g. for suppressing or applying penalty to
|
||||
for logit_filter in self.logit_filters:
|
||||
logit_filter.apply(logits, tokens)
|
||||
|
||||
# expand the tokens tensor with the selected next tokens
|
||||
tokens, completed = self.decoder.update(tokens, logits, sum_logprobs)
|
||||
|
||||
if completed or tokens.shape[-1] > self.n_ctx:
|
||||
break
|
||||
finally:
|
||||
if completed:
|
||||
embeddings = embeddings[:-1]
|
||||
embeddings = np.stack(embeddings, 2)
|
||||
self.inference.cleanup_caching()
|
||||
|
||||
return tokens, sum_logprobs, no_speech_probs, embeddings
|
||||
|
||||
@torch.no_grad()
|
||||
def run(self, mel: Tensor) -> List[DecodingResult]:
|
||||
self.decoder.reset()
|
||||
tokenizer: Tokenizer = self.tokenizer
|
||||
n_audio: int = mel.shape[0]
|
||||
|
||||
# encoder forward pass
|
||||
forward_pass: Tuple[Tensor, np.ndarray] = self._get_audio_features(mel, include_embeddings=True)
|
||||
audio_features, encoder_embeddings = forward_pass
|
||||
tokens: Tensor = torch.tensor([self.initial_tokens]).repeat(n_audio, 1)
|
||||
|
||||
# detect language if requested, overwriting the language token
|
||||
languages, language_probs = self._detect_language(audio_features, tokens)
|
||||
if self.options.task == "lang_id":
|
||||
return [
|
||||
DecodingResult(audio_features=features, language=language, language_probs=probs)
|
||||
for features, language, probs in zip(audio_features, languages, language_probs)
|
||||
]
|
||||
|
||||
# repeat the audio & text tensors by the group size, for beam search or best-of-n sampling
|
||||
audio_features = audio_features.repeat_interleave(self.n_group, dim=0)
|
||||
tokens = tokens.repeat_interleave(self.n_group, dim=0).to(audio_features.device)
|
||||
|
||||
# call the main sampling loop
|
||||
tokens, sum_logprobs, no_speech_probs, decoder_embeddings = self._main_loop(audio_features, tokens)
|
||||
|
||||
# reshape the tensors to have (n_audio, n_group) as the first two dimensions
|
||||
audio_features = audio_features[:: self.n_group]
|
||||
no_speech_probs = no_speech_probs[:: self.n_group]
|
||||
assert audio_features.shape[0] == len(no_speech_probs) == n_audio
|
||||
|
||||
tokens = tokens.reshape(n_audio, self.n_group, -1)
|
||||
sum_logprobs = sum_logprobs.reshape(n_audio, self.n_group)
|
||||
|
||||
# get the final candidates for each group, and slice between the first sampled token and EOT
|
||||
tokens, sum_logprobs = self.decoder.finalize(tokens, sum_logprobs)
|
||||
tokens: List[List[Tensor]] = [
|
||||
[t[self.sample_begin : (t == tokenizer.eot).nonzero()[0, 0]] for t in s] for s in tokens
|
||||
]
|
||||
|
||||
# select the top-ranked sample in each group
|
||||
selected = self.sequence_ranker.rank(tokens, sum_logprobs)
|
||||
tokens: List[List[int]] = [t[i].tolist() for i, t in zip(selected, tokens)]
|
||||
texts: List[str] = [tokenizer.decode(t).strip() for t in tokens]
|
||||
|
||||
sum_logprobs: List[float] = [lp[i] for i, lp in zip(selected, sum_logprobs)]
|
||||
avg_logprobs: List[float] = [lp / (len(t) + 1) for t, lp in zip(tokens, sum_logprobs)]
|
||||
|
||||
fields = (texts, languages, tokens, audio_features, avg_logprobs, no_speech_probs)
|
||||
if len(set(map(len, fields))) != 1:
|
||||
raise RuntimeError(f"inconsistent result lengths: {list(map(len, fields))}")
|
||||
|
||||
return [
|
||||
DecodingResult(
|
||||
audio_features=features,
|
||||
language=language,
|
||||
tokens=tokens,
|
||||
text=text,
|
||||
avg_logprob=avg_logprob,
|
||||
no_speech_prob=no_speech_prob,
|
||||
temperature=self.options.temperature,
|
||||
compression_ratio=compression_ratio(text),
|
||||
encoder_embeddings=encoder_embeddings,
|
||||
decoder_embeddings=decoder_embeddings
|
||||
)
|
||||
for text, language, tokens, features, avg_logprob, no_speech_prob in zip(*fields)
|
||||
]
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def decode(model: "Whisper", mel: Tensor, options: DecodingOptions = DecodingOptions()) -> Union[DecodingResult, List[DecodingResult]]:
|
||||
"""
|
||||
Performs decoding of 30-second audio segment(s), provided as Mel spectrogram(s).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
model: Whisper
|
||||
the Whisper model instance
|
||||
|
||||
mel: torch.Tensor, shape = (80, 3000) or (*, 80, 3000)
|
||||
A tensor containing the Mel spectrogram(s)
|
||||
|
||||
options: DecodingOptions
|
||||
A dataclass that contains all necessary options for decoding 30-second segments
|
||||
|
||||
Returns
|
||||
-------
|
||||
result: Union[DecodingResult, List[DecodingResult]]
|
||||
The result(s) of decoding contained in `DecodingResult` dataclass instance(s)
|
||||
"""
|
||||
single = mel.ndim == 2
|
||||
if single:
|
||||
mel = mel.unsqueeze(0)
|
||||
|
||||
result = DecodingTask(model, options).run(mel)
|
||||
|
||||
if single:
|
||||
result = result[0]
|
||||
|
||||
return result
|
||||
290
musetalk/whisper/whisper/model.py
Normal file
290
musetalk/whisper/whisper/model.py
Normal file
@@ -0,0 +1,290 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict
|
||||
from typing import Iterable, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import Tensor
|
||||
from torch import nn
|
||||
|
||||
from .transcribe import transcribe as transcribe_function
|
||||
from .decoding import detect_language as detect_language_function, decode as decode_function
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelDimensions:
|
||||
n_mels: int
|
||||
n_audio_ctx: int
|
||||
n_audio_state: int
|
||||
n_audio_head: int
|
||||
n_audio_layer: int
|
||||
n_vocab: int
|
||||
n_text_ctx: int
|
||||
n_text_state: int
|
||||
n_text_head: int
|
||||
n_text_layer: int
|
||||
|
||||
|
||||
class LayerNorm(nn.LayerNorm):
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
return super().forward(x.float()).type(x.dtype)
|
||||
|
||||
|
||||
class Linear(nn.Linear):
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
return F.linear(
|
||||
x, self.weight.to(x.dtype), None if self.bias is None else self.bias.to(x.dtype)
|
||||
)
|
||||
|
||||
|
||||
class Conv1d(nn.Conv1d):
|
||||
def _conv_forward(self, x: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor:
|
||||
return super()._conv_forward(
|
||||
x, weight.to(x.dtype), None if bias is None else bias.to(x.dtype)
|
||||
)
|
||||
|
||||
|
||||
def sinusoids(length, channels, max_timescale=10000):
|
||||
"""Returns sinusoids for positional embedding"""
|
||||
assert channels % 2 == 0
|
||||
log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
|
||||
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
|
||||
scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
|
||||
return torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1)
|
||||
|
||||
|
||||
class MultiHeadAttention(nn.Module):
|
||||
def __init__(self, n_state: int, n_head: int):
|
||||
super().__init__()
|
||||
self.n_head = n_head
|
||||
self.query = Linear(n_state, n_state)
|
||||
self.key = Linear(n_state, n_state, bias=False)
|
||||
self.value = Linear(n_state, n_state)
|
||||
self.out = Linear(n_state, n_state)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: Tensor,
|
||||
xa: Optional[Tensor] = None,
|
||||
mask: Optional[Tensor] = None,
|
||||
kv_cache: Optional[dict] = None,
|
||||
):
|
||||
q = self.query(x)
|
||||
|
||||
if kv_cache is None or xa is None:
|
||||
# hooks, if installed (i.e. kv_cache is not None), will prepend the cached kv tensors;
|
||||
# otherwise, perform key/value projections for self- or cross-attention as usual.
|
||||
k = self.key(x if xa is None else xa)
|
||||
v = self.value(x if xa is None else xa)
|
||||
else:
|
||||
# for cross-attention, calculate keys and values once and reuse in subsequent calls.
|
||||
k = kv_cache.get(self.key, self.key(xa))
|
||||
v = kv_cache.get(self.value, self.value(xa))
|
||||
|
||||
wv = self.qkv_attention(q, k, v, mask)
|
||||
return self.out(wv)
|
||||
|
||||
def qkv_attention(self, q: Tensor, k: Tensor, v: Tensor, mask: Optional[Tensor] = None):
|
||||
n_batch, n_ctx, n_state = q.shape
|
||||
scale = (n_state // self.n_head) ** -0.25
|
||||
q = q.view(*q.shape[:2], self.n_head, -1).permute(0, 2, 1, 3) * scale
|
||||
k = k.view(*k.shape[:2], self.n_head, -1).permute(0, 2, 3, 1) * scale
|
||||
v = v.view(*v.shape[:2], self.n_head, -1).permute(0, 2, 1, 3)
|
||||
|
||||
qk = q @ k
|
||||
if mask is not None:
|
||||
qk = qk + mask[:n_ctx, :n_ctx]
|
||||
|
||||
w = F.softmax(qk.float(), dim=-1).to(q.dtype)
|
||||
return (w @ v).permute(0, 2, 1, 3).flatten(start_dim=2)
|
||||
|
||||
|
||||
class ResidualAttentionBlock(nn.Module):
|
||||
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
|
||||
super().__init__()
|
||||
|
||||
self.attn = MultiHeadAttention(n_state, n_head)
|
||||
self.attn_ln = LayerNorm(n_state)
|
||||
|
||||
self.cross_attn = MultiHeadAttention(n_state, n_head) if cross_attention else None
|
||||
self.cross_attn_ln = LayerNorm(n_state) if cross_attention else None
|
||||
|
||||
n_mlp = n_state * 4
|
||||
self.mlp = nn.Sequential(Linear(n_state, n_mlp), nn.GELU(), Linear(n_mlp, n_state))
|
||||
self.mlp_ln = LayerNorm(n_state)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: Tensor,
|
||||
xa: Optional[Tensor] = None,
|
||||
mask: Optional[Tensor] = None,
|
||||
kv_cache: Optional[dict] = None,
|
||||
):
|
||||
x = x + self.attn(self.attn_ln(x), mask=mask, kv_cache=kv_cache)
|
||||
if self.cross_attn:
|
||||
x = x + self.cross_attn(self.cross_attn_ln(x), xa, kv_cache=kv_cache)
|
||||
x = x + self.mlp(self.mlp_ln(x))
|
||||
return x
|
||||
|
||||
|
||||
class AudioEncoder(nn.Module):
|
||||
def __init__(self, n_mels: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
|
||||
super().__init__()
|
||||
self.conv1 = Conv1d(n_mels, n_state, kernel_size=3, padding=1)
|
||||
self.conv2 = Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1)
|
||||
self.register_buffer("positional_embedding", sinusoids(n_ctx, n_state))
|
||||
|
||||
self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
|
||||
[ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
|
||||
)
|
||||
self.ln_post = LayerNorm(n_state)
|
||||
|
||||
def forward(self, x: Tensor, include_embeddings: bool = False):
|
||||
"""
|
||||
x : torch.Tensor, shape = (batch_size, n_mels, n_ctx)
|
||||
the mel spectrogram of the audio
|
||||
include_embeddings: bool
|
||||
whether to include intermediate steps in the output
|
||||
"""
|
||||
x = F.gelu(self.conv1(x))
|
||||
x = F.gelu(self.conv2(x))
|
||||
x = x.permute(0, 2, 1)
|
||||
|
||||
assert x.shape[1:] == self.positional_embedding.shape, "incorrect audio shape"
|
||||
x = (x + self.positional_embedding).to(x.dtype)
|
||||
|
||||
if include_embeddings:
|
||||
embeddings = [x.cpu().detach().numpy()]
|
||||
|
||||
for block in self.blocks:
|
||||
x = block(x)
|
||||
if include_embeddings:
|
||||
embeddings.append(x.cpu().detach().numpy())
|
||||
|
||||
x = self.ln_post(x)
|
||||
|
||||
if include_embeddings:
|
||||
embeddings = np.stack(embeddings, axis=1)
|
||||
return x, embeddings
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
class TextDecoder(nn.Module):
|
||||
def __init__(self, n_vocab: int, n_ctx: int, n_state: int, n_head: int, n_layer: int):
|
||||
super().__init__()
|
||||
|
||||
self.token_embedding = nn.Embedding(n_vocab, n_state)
|
||||
self.positional_embedding = nn.Parameter(torch.empty(n_ctx, n_state))
|
||||
|
||||
self.blocks: Iterable[ResidualAttentionBlock] = nn.ModuleList(
|
||||
[ResidualAttentionBlock(n_state, n_head, cross_attention=True) for _ in range(n_layer)]
|
||||
)
|
||||
self.ln = LayerNorm(n_state)
|
||||
|
||||
mask = torch.empty(n_ctx, n_ctx).fill_(-np.inf).triu_(1)
|
||||
self.register_buffer("mask", mask, persistent=False)
|
||||
|
||||
def forward(self, x: Tensor, xa: Tensor, kv_cache: Optional[dict] = None, include_embeddings: bool = False):
|
||||
"""
|
||||
x : torch.LongTensor, shape = (batch_size, <= n_ctx)
|
||||
the text tokens
|
||||
xa : torch.Tensor, shape = (batch_size, n_mels, n_audio_ctx)
|
||||
the encoded audio features to be attended on
|
||||
include_embeddings : bool
|
||||
Whether to include intermediate values in the output to this function
|
||||
"""
|
||||
offset = next(iter(kv_cache.values())).shape[1] if kv_cache else 0
|
||||
x = self.token_embedding(x) + self.positional_embedding[offset : offset + x.shape[-1]]
|
||||
x = x.to(xa.dtype)
|
||||
|
||||
if include_embeddings:
|
||||
embeddings = [x.cpu().detach().numpy()]
|
||||
|
||||
for block in self.blocks:
|
||||
x = block(x, xa, mask=self.mask, kv_cache=kv_cache)
|
||||
if include_embeddings:
|
||||
embeddings.append(x.cpu().detach().numpy())
|
||||
|
||||
x = self.ln(x)
|
||||
logits = (x @ torch.transpose(self.token_embedding.weight.to(x.dtype), 0, 1)).float()
|
||||
|
||||
if include_embeddings:
|
||||
embeddings = np.stack(embeddings, axis=1)
|
||||
return logits, embeddings
|
||||
else:
|
||||
return logits
|
||||
|
||||
|
||||
class Whisper(nn.Module):
|
||||
def __init__(self, dims: ModelDimensions):
|
||||
super().__init__()
|
||||
self.dims = dims
|
||||
self.encoder = AudioEncoder(
|
||||
self.dims.n_mels,
|
||||
self.dims.n_audio_ctx,
|
||||
self.dims.n_audio_state,
|
||||
self.dims.n_audio_head,
|
||||
self.dims.n_audio_layer,
|
||||
)
|
||||
self.decoder = TextDecoder(
|
||||
self.dims.n_vocab,
|
||||
self.dims.n_text_ctx,
|
||||
self.dims.n_text_state,
|
||||
self.dims.n_text_head,
|
||||
self.dims.n_text_layer,
|
||||
)
|
||||
|
||||
def embed_audio(self, mel: torch.Tensor):
|
||||
return self.encoder.forward(mel)
|
||||
|
||||
def logits(self, tokens: torch.Tensor, audio_features: torch.Tensor):
|
||||
return self.decoder.forward(tokens, audio_features)
|
||||
|
||||
def forward(self, mel: torch.Tensor, tokens: torch.Tensor) -> Dict[str, torch.Tensor]:
|
||||
return self.decoder(tokens, self.encoder(mel))
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
return next(self.parameters()).device
|
||||
|
||||
@property
|
||||
def is_multilingual(self):
|
||||
return self.dims.n_vocab == 51865
|
||||
|
||||
def install_kv_cache_hooks(self, cache: Optional[dict] = None):
|
||||
"""
|
||||
The `MultiHeadAttention` module optionally accepts `kv_cache` which stores the key and value
|
||||
tensors calculated for the previous positions. This method returns a dictionary that stores
|
||||
all caches, and the necessary hooks for the key and value projection modules that save the
|
||||
intermediate tensors to be reused during later calculations.
|
||||
|
||||
Returns
|
||||
-------
|
||||
cache : Dict[nn.Module, torch.Tensor]
|
||||
A dictionary object mapping the key/value projection modules to its cache
|
||||
hooks : List[RemovableHandle]
|
||||
List of PyTorch RemovableHandle objects to stop the hooks to be called
|
||||
"""
|
||||
cache = {**cache} if cache is not None else {}
|
||||
hooks = []
|
||||
|
||||
def save_to_cache(module, _, output):
|
||||
if module not in cache or output.shape[1] > self.decoder.positional_embedding.shape[0]:
|
||||
cache[module] = output # save as-is, for the first token or cross attention
|
||||
else:
|
||||
cache[module] = torch.cat([cache[module], output], dim=1).detach()
|
||||
return cache[module]
|
||||
|
||||
def install_hooks(layer: nn.Module):
|
||||
if isinstance(layer, MultiHeadAttention):
|
||||
hooks.append(layer.key.register_forward_hook(save_to_cache))
|
||||
hooks.append(layer.value.register_forward_hook(save_to_cache))
|
||||
|
||||
self.decoder.apply(install_hooks)
|
||||
return cache, hooks
|
||||
|
||||
detect_language = detect_language_function
|
||||
transcribe = transcribe_function
|
||||
decode = decode_function
|
||||
2
musetalk/whisper/whisper/normalizers/__init__.py
Normal file
2
musetalk/whisper/whisper/normalizers/__init__.py
Normal file
@@ -0,0 +1,2 @@
|
||||
from .basic import BasicTextNormalizer
|
||||
from .english import EnglishTextNormalizer
|
||||
71
musetalk/whisper/whisper/normalizers/basic.py
Normal file
71
musetalk/whisper/whisper/normalizers/basic.py
Normal file
@@ -0,0 +1,71 @@
|
||||
import re
|
||||
import unicodedata
|
||||
|
||||
import regex
|
||||
|
||||
# non-ASCII letters that are not separated by "NFKD" normalization
|
||||
ADDITIONAL_DIACRITICS = {
|
||||
"œ": "oe",
|
||||
"Œ": "OE",
|
||||
"ø": "o",
|
||||
"Ø": "O",
|
||||
"æ": "ae",
|
||||
"Æ": "AE",
|
||||
"ß": "ss",
|
||||
"ẞ": "SS",
|
||||
"đ": "d",
|
||||
"Đ": "D",
|
||||
"ð": "d",
|
||||
"Ð": "D",
|
||||
"þ": "th",
|
||||
"Þ": "th",
|
||||
"ł": "l",
|
||||
"Ł": "L",
|
||||
}
|
||||
|
||||
|
||||
def remove_symbols_and_diacritics(s: str, keep=""):
|
||||
"""
|
||||
Replace any other markers, symbols, and punctuations with a space,
|
||||
and drop any diacritics (category 'Mn' and some manual mappings)
|
||||
"""
|
||||
return "".join(
|
||||
c
|
||||
if c in keep
|
||||
else ADDITIONAL_DIACRITICS[c]
|
||||
if c in ADDITIONAL_DIACRITICS
|
||||
else ""
|
||||
if unicodedata.category(c) == "Mn"
|
||||
else " "
|
||||
if unicodedata.category(c)[0] in "MSP"
|
||||
else c
|
||||
for c in unicodedata.normalize("NFKD", s)
|
||||
)
|
||||
|
||||
|
||||
def remove_symbols(s: str):
|
||||
"""
|
||||
Replace any other markers, symbols, punctuations with a space, keeping diacritics
|
||||
"""
|
||||
return "".join(
|
||||
" " if unicodedata.category(c)[0] in "MSP" else c for c in unicodedata.normalize("NFKC", s)
|
||||
)
|
||||
|
||||
|
||||
class BasicTextNormalizer:
|
||||
def __init__(self, remove_diacritics: bool = False, split_letters: bool = False):
|
||||
self.clean = remove_symbols_and_diacritics if remove_diacritics else remove_symbols
|
||||
self.split_letters = split_letters
|
||||
|
||||
def __call__(self, s: str):
|
||||
s = s.lower()
|
||||
s = re.sub(r"[<\[][^>\]]*[>\]]", "", s) # remove words between brackets
|
||||
s = re.sub(r"\(([^)]+?)\)", "", s) # remove words between parenthesis
|
||||
s = self.clean(s).lower()
|
||||
|
||||
if self.split_letters:
|
||||
s = " ".join(regex.findall(r"\X", s, regex.U))
|
||||
|
||||
s = re.sub(r"\s+", " ", s) # replace any successive whitespace characters with a space
|
||||
|
||||
return s
|
||||
1742
musetalk/whisper/whisper/normalizers/english.json
Normal file
1742
musetalk/whisper/whisper/normalizers/english.json
Normal file
File diff suppressed because it is too large
Load Diff
543
musetalk/whisper/whisper/normalizers/english.py
Normal file
543
musetalk/whisper/whisper/normalizers/english.py
Normal file
@@ -0,0 +1,543 @@
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
from fractions import Fraction
|
||||
from typing import Iterator, List, Match, Optional, Union
|
||||
|
||||
from more_itertools import windowed
|
||||
|
||||
from .basic import remove_symbols_and_diacritics
|
||||
|
||||
|
||||
class EnglishNumberNormalizer:
|
||||
"""
|
||||
Convert any spelled-out numbers into arabic numbers, while handling:
|
||||
|
||||
- remove any commas
|
||||
- keep the suffixes such as: `1960s`, `274th`, `32nd`, etc.
|
||||
- spell out currency symbols after the number. e.g. `$20 million` -> `20000000 dollars`
|
||||
- spell out `one` and `ones`
|
||||
- interpret successive single-digit numbers as nominal: `one oh one` -> `101`
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
self.zeros = {"o", "oh", "zero"}
|
||||
self.ones = {
|
||||
name: i
|
||||
for i, name in enumerate(
|
||||
[
|
||||
"one",
|
||||
"two",
|
||||
"three",
|
||||
"four",
|
||||
"five",
|
||||
"six",
|
||||
"seven",
|
||||
"eight",
|
||||
"nine",
|
||||
"ten",
|
||||
"eleven",
|
||||
"twelve",
|
||||
"thirteen",
|
||||
"fourteen",
|
||||
"fifteen",
|
||||
"sixteen",
|
||||
"seventeen",
|
||||
"eighteen",
|
||||
"nineteen",
|
||||
],
|
||||
start=1,
|
||||
)
|
||||
}
|
||||
self.ones_plural = {
|
||||
"sixes" if name == "six" else name + "s": (value, "s")
|
||||
for name, value in self.ones.items()
|
||||
}
|
||||
self.ones_ordinal = {
|
||||
"zeroth": (0, "th"),
|
||||
"first": (1, "st"),
|
||||
"second": (2, "nd"),
|
||||
"third": (3, "rd"),
|
||||
"fifth": (5, "th"),
|
||||
"twelfth": (12, "th"),
|
||||
**{
|
||||
name + ("h" if name.endswith("t") else "th"): (value, "th")
|
||||
for name, value in self.ones.items()
|
||||
if value > 3 and value != 5 and value != 12
|
||||
},
|
||||
}
|
||||
self.ones_suffixed = {**self.ones_plural, **self.ones_ordinal}
|
||||
|
||||
self.tens = {
|
||||
"twenty": 20,
|
||||
"thirty": 30,
|
||||
"forty": 40,
|
||||
"fifty": 50,
|
||||
"sixty": 60,
|
||||
"seventy": 70,
|
||||
"eighty": 80,
|
||||
"ninety": 90,
|
||||
}
|
||||
self.tens_plural = {
|
||||
name.replace("y", "ies"): (value, "s") for name, value in self.tens.items()
|
||||
}
|
||||
self.tens_ordinal = {
|
||||
name.replace("y", "ieth"): (value, "th") for name, value in self.tens.items()
|
||||
}
|
||||
self.tens_suffixed = {**self.tens_plural, **self.tens_ordinal}
|
||||
|
||||
self.multipliers = {
|
||||
"hundred": 100,
|
||||
"thousand": 1_000,
|
||||
"million": 1_000_000,
|
||||
"billion": 1_000_000_000,
|
||||
"trillion": 1_000_000_000_000,
|
||||
"quadrillion": 1_000_000_000_000_000,
|
||||
"quintillion": 1_000_000_000_000_000_000,
|
||||
"sextillion": 1_000_000_000_000_000_000_000,
|
||||
"septillion": 1_000_000_000_000_000_000_000_000,
|
||||
"octillion": 1_000_000_000_000_000_000_000_000_000,
|
||||
"nonillion": 1_000_000_000_000_000_000_000_000_000_000,
|
||||
"decillion": 1_000_000_000_000_000_000_000_000_000_000_000,
|
||||
}
|
||||
self.multipliers_plural = {
|
||||
name + "s": (value, "s") for name, value in self.multipliers.items()
|
||||
}
|
||||
self.multipliers_ordinal = {
|
||||
name + "th": (value, "th") for name, value in self.multipliers.items()
|
||||
}
|
||||
self.multipliers_suffixed = {**self.multipliers_plural, **self.multipliers_ordinal}
|
||||
self.decimals = {*self.ones, *self.tens, *self.zeros}
|
||||
|
||||
self.preceding_prefixers = {
|
||||
"minus": "-",
|
||||
"negative": "-",
|
||||
"plus": "+",
|
||||
"positive": "+",
|
||||
}
|
||||
self.following_prefixers = {
|
||||
"pound": "£",
|
||||
"pounds": "£",
|
||||
"euro": "€",
|
||||
"euros": "€",
|
||||
"dollar": "$",
|
||||
"dollars": "$",
|
||||
"cent": "¢",
|
||||
"cents": "¢",
|
||||
}
|
||||
self.prefixes = set(
|
||||
list(self.preceding_prefixers.values()) + list(self.following_prefixers.values())
|
||||
)
|
||||
self.suffixers = {
|
||||
"per": {"cent": "%"},
|
||||
"percent": "%",
|
||||
}
|
||||
self.specials = {"and", "double", "triple", "point"}
|
||||
|
||||
self.words = set(
|
||||
[
|
||||
key
|
||||
for mapping in [
|
||||
self.zeros,
|
||||
self.ones,
|
||||
self.ones_suffixed,
|
||||
self.tens,
|
||||
self.tens_suffixed,
|
||||
self.multipliers,
|
||||
self.multipliers_suffixed,
|
||||
self.preceding_prefixers,
|
||||
self.following_prefixers,
|
||||
self.suffixers,
|
||||
self.specials,
|
||||
]
|
||||
for key in mapping
|
||||
]
|
||||
)
|
||||
self.literal_words = {"one", "ones"}
|
||||
|
||||
def process_words(self, words: List[str]) -> Iterator[str]:
|
||||
prefix: Optional[str] = None
|
||||
value: Optional[Union[str, int]] = None
|
||||
skip = False
|
||||
|
||||
def to_fraction(s: str):
|
||||
try:
|
||||
return Fraction(s)
|
||||
except ValueError:
|
||||
return None
|
||||
|
||||
def output(result: Union[str, int]):
|
||||
nonlocal prefix, value
|
||||
result = str(result)
|
||||
if prefix is not None:
|
||||
result = prefix + result
|
||||
value = None
|
||||
prefix = None
|
||||
return result
|
||||
|
||||
if len(words) == 0:
|
||||
return
|
||||
|
||||
for prev, current, next in windowed([None] + words + [None], 3):
|
||||
if skip:
|
||||
skip = False
|
||||
continue
|
||||
|
||||
next_is_numeric = next is not None and re.match(r"^\d+(\.\d+)?$", next)
|
||||
has_prefix = current[0] in self.prefixes
|
||||
current_without_prefix = current[1:] if has_prefix else current
|
||||
if re.match(r"^\d+(\.\d+)?$", current_without_prefix):
|
||||
# arabic numbers (potentially with signs and fractions)
|
||||
f = to_fraction(current_without_prefix)
|
||||
assert f is not None
|
||||
if value is not None:
|
||||
if isinstance(value, str) and value.endswith("."):
|
||||
# concatenate decimals / ip address components
|
||||
value = str(value) + str(current)
|
||||
continue
|
||||
else:
|
||||
yield output(value)
|
||||
|
||||
prefix = current[0] if has_prefix else prefix
|
||||
if f.denominator == 1:
|
||||
value = f.numerator # store integers as int
|
||||
else:
|
||||
value = current_without_prefix
|
||||
elif current not in self.words:
|
||||
# non-numeric words
|
||||
if value is not None:
|
||||
yield output(value)
|
||||
yield output(current)
|
||||
elif current in self.zeros:
|
||||
value = str(value or "") + "0"
|
||||
elif current in self.ones:
|
||||
ones = self.ones[current]
|
||||
|
||||
if value is None:
|
||||
value = ones
|
||||
elif isinstance(value, str) or prev in self.ones:
|
||||
if prev in self.tens and ones < 10: # replace the last zero with the digit
|
||||
assert value[-1] == "0"
|
||||
value = value[:-1] + str(ones)
|
||||
else:
|
||||
value = str(value) + str(ones)
|
||||
elif ones < 10:
|
||||
if value % 10 == 0:
|
||||
value += ones
|
||||
else:
|
||||
value = str(value) + str(ones)
|
||||
else: # eleven to nineteen
|
||||
if value % 100 == 0:
|
||||
value += ones
|
||||
else:
|
||||
value = str(value) + str(ones)
|
||||
elif current in self.ones_suffixed:
|
||||
# ordinal or cardinal; yield the number right away
|
||||
ones, suffix = self.ones_suffixed[current]
|
||||
if value is None:
|
||||
yield output(str(ones) + suffix)
|
||||
elif isinstance(value, str) or prev in self.ones:
|
||||
if prev in self.tens and ones < 10:
|
||||
assert value[-1] == "0"
|
||||
yield output(value[:-1] + str(ones) + suffix)
|
||||
else:
|
||||
yield output(str(value) + str(ones) + suffix)
|
||||
elif ones < 10:
|
||||
if value % 10 == 0:
|
||||
yield output(str(value + ones) + suffix)
|
||||
else:
|
||||
yield output(str(value) + str(ones) + suffix)
|
||||
else: # eleven to nineteen
|
||||
if value % 100 == 0:
|
||||
yield output(str(value + ones) + suffix)
|
||||
else:
|
||||
yield output(str(value) + str(ones) + suffix)
|
||||
value = None
|
||||
elif current in self.tens:
|
||||
tens = self.tens[current]
|
||||
if value is None:
|
||||
value = tens
|
||||
elif isinstance(value, str):
|
||||
value = str(value) + str(tens)
|
||||
else:
|
||||
if value % 100 == 0:
|
||||
value += tens
|
||||
else:
|
||||
value = str(value) + str(tens)
|
||||
elif current in self.tens_suffixed:
|
||||
# ordinal or cardinal; yield the number right away
|
||||
tens, suffix = self.tens_suffixed[current]
|
||||
if value is None:
|
||||
yield output(str(tens) + suffix)
|
||||
elif isinstance(value, str):
|
||||
yield output(str(value) + str(tens) + suffix)
|
||||
else:
|
||||
if value % 100 == 0:
|
||||
yield output(str(value + tens) + suffix)
|
||||
else:
|
||||
yield output(str(value) + str(tens) + suffix)
|
||||
elif current in self.multipliers:
|
||||
multiplier = self.multipliers[current]
|
||||
if value is None:
|
||||
value = multiplier
|
||||
elif isinstance(value, str) or value == 0:
|
||||
f = to_fraction(value)
|
||||
p = f * multiplier if f is not None else None
|
||||
if f is not None and p.denominator == 1:
|
||||
value = p.numerator
|
||||
else:
|
||||
yield output(value)
|
||||
value = multiplier
|
||||
else:
|
||||
before = value // 1000 * 1000
|
||||
residual = value % 1000
|
||||
value = before + residual * multiplier
|
||||
elif current in self.multipliers_suffixed:
|
||||
multiplier, suffix = self.multipliers_suffixed[current]
|
||||
if value is None:
|
||||
yield output(str(multiplier) + suffix)
|
||||
elif isinstance(value, str):
|
||||
f = to_fraction(value)
|
||||
p = f * multiplier if f is not None else None
|
||||
if f is not None and p.denominator == 1:
|
||||
yield output(str(p.numerator) + suffix)
|
||||
else:
|
||||
yield output(value)
|
||||
yield output(str(multiplier) + suffix)
|
||||
else: # int
|
||||
before = value // 1000 * 1000
|
||||
residual = value % 1000
|
||||
value = before + residual * multiplier
|
||||
yield output(str(value) + suffix)
|
||||
value = None
|
||||
elif current in self.preceding_prefixers:
|
||||
# apply prefix (positive, minus, etc.) if it precedes a number
|
||||
if value is not None:
|
||||
yield output(value)
|
||||
|
||||
if next in self.words or next_is_numeric:
|
||||
prefix = self.preceding_prefixers[current]
|
||||
else:
|
||||
yield output(current)
|
||||
elif current in self.following_prefixers:
|
||||
# apply prefix (dollars, cents, etc.) only after a number
|
||||
if value is not None:
|
||||
prefix = self.following_prefixers[current]
|
||||
yield output(value)
|
||||
else:
|
||||
yield output(current)
|
||||
elif current in self.suffixers:
|
||||
# apply suffix symbols (percent -> '%')
|
||||
if value is not None:
|
||||
suffix = self.suffixers[current]
|
||||
if isinstance(suffix, dict):
|
||||
if next in suffix:
|
||||
yield output(str(value) + suffix[next])
|
||||
skip = True
|
||||
else:
|
||||
yield output(value)
|
||||
yield output(current)
|
||||
else:
|
||||
yield output(str(value) + suffix)
|
||||
else:
|
||||
yield output(current)
|
||||
elif current in self.specials:
|
||||
if next not in self.words and not next_is_numeric:
|
||||
# apply special handling only if the next word can be numeric
|
||||
if value is not None:
|
||||
yield output(value)
|
||||
yield output(current)
|
||||
elif current == "and":
|
||||
# ignore "and" after hundreds, thousands, etc.
|
||||
if prev not in self.multipliers:
|
||||
if value is not None:
|
||||
yield output(value)
|
||||
yield output(current)
|
||||
elif current == "double" or current == "triple":
|
||||
if next in self.ones or next in self.zeros:
|
||||
repeats = 2 if current == "double" else 3
|
||||
ones = self.ones.get(next, 0)
|
||||
value = str(value or "") + str(ones) * repeats
|
||||
skip = True
|
||||
else:
|
||||
if value is not None:
|
||||
yield output(value)
|
||||
yield output(current)
|
||||
elif current == "point":
|
||||
if next in self.decimals or next_is_numeric:
|
||||
value = str(value or "") + "."
|
||||
else:
|
||||
# should all have been covered at this point
|
||||
raise ValueError(f"Unexpected token: {current}")
|
||||
else:
|
||||
# all should have been covered at this point
|
||||
raise ValueError(f"Unexpected token: {current}")
|
||||
|
||||
if value is not None:
|
||||
yield output(value)
|
||||
|
||||
def preprocess(self, s: str):
|
||||
# replace "<number> and a half" with "<number> point five"
|
||||
results = []
|
||||
|
||||
segments = re.split(r"\band\s+a\s+half\b", s)
|
||||
for i, segment in enumerate(segments):
|
||||
if len(segment.strip()) == 0:
|
||||
continue
|
||||
if i == len(segments) - 1:
|
||||
results.append(segment)
|
||||
else:
|
||||
results.append(segment)
|
||||
last_word = segment.rsplit(maxsplit=2)[-1]
|
||||
if last_word in self.decimals or last_word in self.multipliers:
|
||||
results.append("point five")
|
||||
else:
|
||||
results.append("and a half")
|
||||
|
||||
s = " ".join(results)
|
||||
|
||||
# put a space at number/letter boundary
|
||||
s = re.sub(r"([a-z])([0-9])", r"\1 \2", s)
|
||||
s = re.sub(r"([0-9])([a-z])", r"\1 \2", s)
|
||||
|
||||
# but remove spaces which could be a suffix
|
||||
s = re.sub(r"([0-9])\s+(st|nd|rd|th|s)\b", r"\1\2", s)
|
||||
|
||||
return s
|
||||
|
||||
def postprocess(self, s: str):
|
||||
def combine_cents(m: Match):
|
||||
try:
|
||||
currency = m.group(1)
|
||||
integer = m.group(2)
|
||||
cents = int(m.group(3))
|
||||
return f"{currency}{integer}.{cents:02d}"
|
||||
except ValueError:
|
||||
return m.string
|
||||
|
||||
def extract_cents(m: Match):
|
||||
try:
|
||||
return f"¢{int(m.group(1))}"
|
||||
except ValueError:
|
||||
return m.string
|
||||
|
||||
# apply currency postprocessing; "$2 and ¢7" -> "$2.07"
|
||||
s = re.sub(r"([€£$])([0-9]+) (?:and )?¢([0-9]{1,2})\b", combine_cents, s)
|
||||
s = re.sub(r"[€£$]0.([0-9]{1,2})\b", extract_cents, s)
|
||||
|
||||
# write "one(s)" instead of "1(s)", just for the readability
|
||||
s = re.sub(r"\b1(s?)\b", r"one\1", s)
|
||||
|
||||
return s
|
||||
|
||||
def __call__(self, s: str):
|
||||
s = self.preprocess(s)
|
||||
s = " ".join(word for word in self.process_words(s.split()) if word is not None)
|
||||
s = self.postprocess(s)
|
||||
|
||||
return s
|
||||
|
||||
|
||||
class EnglishSpellingNormalizer:
|
||||
"""
|
||||
Applies British-American spelling mappings as listed in [1].
|
||||
|
||||
[1] https://www.tysto.com/uk-us-spelling-list.html
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
mapping_path = os.path.join(os.path.dirname(__file__), "english.json")
|
||||
self.mapping = json.load(open(mapping_path))
|
||||
|
||||
def __call__(self, s: str):
|
||||
return " ".join(self.mapping.get(word, word) for word in s.split())
|
||||
|
||||
|
||||
class EnglishTextNormalizer:
|
||||
def __init__(self):
|
||||
self.ignore_patterns = r"\b(hmm|mm|mhm|mmm|uh|um)\b"
|
||||
self.replacers = {
|
||||
# common contractions
|
||||
r"\bwon't\b": "will not",
|
||||
r"\bcan't\b": "can not",
|
||||
r"\blet's\b": "let us",
|
||||
r"\bain't\b": "aint",
|
||||
r"\by'all\b": "you all",
|
||||
r"\bwanna\b": "want to",
|
||||
r"\bgotta\b": "got to",
|
||||
r"\bgonna\b": "going to",
|
||||
r"\bi'ma\b": "i am going to",
|
||||
r"\bimma\b": "i am going to",
|
||||
r"\bwoulda\b": "would have",
|
||||
r"\bcoulda\b": "could have",
|
||||
r"\bshoulda\b": "should have",
|
||||
r"\bma'am\b": "madam",
|
||||
# contractions in titles/prefixes
|
||||
r"\bmr\b": "mister ",
|
||||
r"\bmrs\b": "missus ",
|
||||
r"\bst\b": "saint ",
|
||||
r"\bdr\b": "doctor ",
|
||||
r"\bprof\b": "professor ",
|
||||
r"\bcapt\b": "captain ",
|
||||
r"\bgov\b": "governor ",
|
||||
r"\bald\b": "alderman ",
|
||||
r"\bgen\b": "general ",
|
||||
r"\bsen\b": "senator ",
|
||||
r"\brep\b": "representative ",
|
||||
r"\bpres\b": "president ",
|
||||
r"\brev\b": "reverend ",
|
||||
r"\bhon\b": "honorable ",
|
||||
r"\basst\b": "assistant ",
|
||||
r"\bassoc\b": "associate ",
|
||||
r"\blt\b": "lieutenant ",
|
||||
r"\bcol\b": "colonel ",
|
||||
r"\bjr\b": "junior ",
|
||||
r"\bsr\b": "senior ",
|
||||
r"\besq\b": "esquire ",
|
||||
# prefect tenses, ideally it should be any past participles, but it's harder..
|
||||
r"'d been\b": " had been",
|
||||
r"'s been\b": " has been",
|
||||
r"'d gone\b": " had gone",
|
||||
r"'s gone\b": " has gone",
|
||||
r"'d done\b": " had done", # "'s done" is ambiguous
|
||||
r"'s got\b": " has got",
|
||||
# general contractions
|
||||
r"n't\b": " not",
|
||||
r"'re\b": " are",
|
||||
r"'s\b": " is",
|
||||
r"'d\b": " would",
|
||||
r"'ll\b": " will",
|
||||
r"'t\b": " not",
|
||||
r"'ve\b": " have",
|
||||
r"'m\b": " am",
|
||||
}
|
||||
self.standardize_numbers = EnglishNumberNormalizer()
|
||||
self.standardize_spellings = EnglishSpellingNormalizer()
|
||||
|
||||
def __call__(self, s: str):
|
||||
s = s.lower()
|
||||
|
||||
s = re.sub(r"[<\[][^>\]]*[>\]]", "", s) # remove words between brackets
|
||||
s = re.sub(r"\(([^)]+?)\)", "", s) # remove words between parenthesis
|
||||
s = re.sub(self.ignore_patterns, "", s)
|
||||
s = re.sub(r"\s+'", "'", s) # standardize when there's a space before an apostrophe
|
||||
|
||||
for pattern, replacement in self.replacers.items():
|
||||
s = re.sub(pattern, replacement, s)
|
||||
|
||||
s = re.sub(r"(\d),(\d)", r"\1\2", s) # remove commas between digits
|
||||
s = re.sub(r"\.([^0-9]|$)", r" \1", s) # remove periods not followed by numbers
|
||||
s = remove_symbols_and_diacritics(s, keep=".%$¢€£") # keep some symbols for numerics
|
||||
|
||||
s = self.standardize_numbers(s)
|
||||
s = self.standardize_spellings(s)
|
||||
|
||||
# now remove prefix/suffix symbols that are not preceded/followed by numbers
|
||||
s = re.sub(r"[.$¢€£]([^0-9])", r" \1", s)
|
||||
s = re.sub(r"([^0-9])%", r"\1 ", s)
|
||||
|
||||
s = re.sub(r"\s+", " ", s) # replace any successive whitespace characters with a space
|
||||
|
||||
return s
|
||||
331
musetalk/whisper/whisper/tokenizer.py
Normal file
331
musetalk/whisper/whisper/tokenizer.py
Normal file
@@ -0,0 +1,331 @@
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
from functools import lru_cache
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import GPT2TokenizerFast
|
||||
|
||||
LANGUAGES = {
|
||||
"en": "english",
|
||||
"zh": "chinese",
|
||||
"de": "german",
|
||||
"es": "spanish",
|
||||
"ru": "russian",
|
||||
"ko": "korean",
|
||||
"fr": "french",
|
||||
"ja": "japanese",
|
||||
"pt": "portuguese",
|
||||
"tr": "turkish",
|
||||
"pl": "polish",
|
||||
"ca": "catalan",
|
||||
"nl": "dutch",
|
||||
"ar": "arabic",
|
||||
"sv": "swedish",
|
||||
"it": "italian",
|
||||
"id": "indonesian",
|
||||
"hi": "hindi",
|
||||
"fi": "finnish",
|
||||
"vi": "vietnamese",
|
||||
"iw": "hebrew",
|
||||
"uk": "ukrainian",
|
||||
"el": "greek",
|
||||
"ms": "malay",
|
||||
"cs": "czech",
|
||||
"ro": "romanian",
|
||||
"da": "danish",
|
||||
"hu": "hungarian",
|
||||
"ta": "tamil",
|
||||
"no": "norwegian",
|
||||
"th": "thai",
|
||||
"ur": "urdu",
|
||||
"hr": "croatian",
|
||||
"bg": "bulgarian",
|
||||
"lt": "lithuanian",
|
||||
"la": "latin",
|
||||
"mi": "maori",
|
||||
"ml": "malayalam",
|
||||
"cy": "welsh",
|
||||
"sk": "slovak",
|
||||
"te": "telugu",
|
||||
"fa": "persian",
|
||||
"lv": "latvian",
|
||||
"bn": "bengali",
|
||||
"sr": "serbian",
|
||||
"az": "azerbaijani",
|
||||
"sl": "slovenian",
|
||||
"kn": "kannada",
|
||||
"et": "estonian",
|
||||
"mk": "macedonian",
|
||||
"br": "breton",
|
||||
"eu": "basque",
|
||||
"is": "icelandic",
|
||||
"hy": "armenian",
|
||||
"ne": "nepali",
|
||||
"mn": "mongolian",
|
||||
"bs": "bosnian",
|
||||
"kk": "kazakh",
|
||||
"sq": "albanian",
|
||||
"sw": "swahili",
|
||||
"gl": "galician",
|
||||
"mr": "marathi",
|
||||
"pa": "punjabi",
|
||||
"si": "sinhala",
|
||||
"km": "khmer",
|
||||
"sn": "shona",
|
||||
"yo": "yoruba",
|
||||
"so": "somali",
|
||||
"af": "afrikaans",
|
||||
"oc": "occitan",
|
||||
"ka": "georgian",
|
||||
"be": "belarusian",
|
||||
"tg": "tajik",
|
||||
"sd": "sindhi",
|
||||
"gu": "gujarati",
|
||||
"am": "amharic",
|
||||
"yi": "yiddish",
|
||||
"lo": "lao",
|
||||
"uz": "uzbek",
|
||||
"fo": "faroese",
|
||||
"ht": "haitian creole",
|
||||
"ps": "pashto",
|
||||
"tk": "turkmen",
|
||||
"nn": "nynorsk",
|
||||
"mt": "maltese",
|
||||
"sa": "sanskrit",
|
||||
"lb": "luxembourgish",
|
||||
"my": "myanmar",
|
||||
"bo": "tibetan",
|
||||
"tl": "tagalog",
|
||||
"mg": "malagasy",
|
||||
"as": "assamese",
|
||||
"tt": "tatar",
|
||||
"haw": "hawaiian",
|
||||
"ln": "lingala",
|
||||
"ha": "hausa",
|
||||
"ba": "bashkir",
|
||||
"jw": "javanese",
|
||||
"su": "sundanese",
|
||||
}
|
||||
|
||||
# language code lookup by name, with a few language aliases
|
||||
TO_LANGUAGE_CODE = {
|
||||
**{language: code for code, language in LANGUAGES.items()},
|
||||
"burmese": "my",
|
||||
"valencian": "ca",
|
||||
"flemish": "nl",
|
||||
"haitian": "ht",
|
||||
"letzeburgesch": "lb",
|
||||
"pushto": "ps",
|
||||
"panjabi": "pa",
|
||||
"moldavian": "ro",
|
||||
"moldovan": "ro",
|
||||
"sinhalese": "si",
|
||||
"castilian": "es",
|
||||
}
|
||||
|
||||
|
||||
@dataclass(frozen=True)
|
||||
class Tokenizer:
|
||||
"""A thin wrapper around `GPT2TokenizerFast` providing quick access to special tokens"""
|
||||
|
||||
tokenizer: "GPT2TokenizerFast"
|
||||
language: Optional[str]
|
||||
sot_sequence: Tuple[int]
|
||||
|
||||
def encode(self, text, **kwargs):
|
||||
return self.tokenizer.encode(text, **kwargs)
|
||||
|
||||
def decode(self, token_ids: Union[int, List[int], np.ndarray, torch.Tensor], **kwargs):
|
||||
return self.tokenizer.decode(token_ids, **kwargs)
|
||||
|
||||
def decode_with_timestamps(self, tokens) -> str:
|
||||
"""
|
||||
Timestamp tokens are above the special tokens' id range and are ignored by `decode()`.
|
||||
This method decodes given tokens with timestamps tokens annotated, e.g. "<|1.08|>".
|
||||
"""
|
||||
outputs = [[]]
|
||||
for token in tokens:
|
||||
if token >= self.timestamp_begin:
|
||||
timestamp = f"<|{(token - self.timestamp_begin) * 0.02:.2f}|>"
|
||||
outputs.append(timestamp)
|
||||
outputs.append([])
|
||||
else:
|
||||
outputs[-1].append(token)
|
||||
outputs = [s if isinstance(s, str) else self.tokenizer.decode(s) for s in outputs]
|
||||
return "".join(outputs)
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def eot(self) -> int:
|
||||
return self.tokenizer.eos_token_id
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def sot(self) -> int:
|
||||
return self._get_single_token_id("<|startoftranscript|>")
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def sot_lm(self) -> int:
|
||||
return self._get_single_token_id("<|startoflm|>")
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def sot_prev(self) -> int:
|
||||
return self._get_single_token_id("<|startofprev|>")
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def no_speech(self) -> int:
|
||||
return self._get_single_token_id("<|nospeech|>")
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def no_timestamps(self) -> int:
|
||||
return self._get_single_token_id("<|notimestamps|>")
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def timestamp_begin(self) -> int:
|
||||
return self.tokenizer.all_special_ids[-1] + 1
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def language_token(self) -> int:
|
||||
"""Returns the token id corresponding to the value of the `language` field"""
|
||||
if self.language is None:
|
||||
raise ValueError(f"This tokenizer does not have language token configured")
|
||||
|
||||
additional_tokens = dict(
|
||||
zip(
|
||||
self.tokenizer.additional_special_tokens,
|
||||
self.tokenizer.additional_special_tokens_ids,
|
||||
)
|
||||
)
|
||||
candidate = f"<|{self.language}|>"
|
||||
if candidate in additional_tokens:
|
||||
return additional_tokens[candidate]
|
||||
|
||||
raise KeyError(f"Language {self.language} not found in tokenizer.")
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def all_language_tokens(self) -> Tuple[int]:
|
||||
result = []
|
||||
for token, token_id in zip(
|
||||
self.tokenizer.additional_special_tokens,
|
||||
self.tokenizer.additional_special_tokens_ids,
|
||||
):
|
||||
if token.strip("<|>") in LANGUAGES:
|
||||
result.append(token_id)
|
||||
return tuple(result)
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def all_language_codes(self) -> Tuple[str]:
|
||||
return tuple(self.decode([l]).strip("<|>") for l in self.all_language_tokens)
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def sot_sequence_including_notimestamps(self) -> Tuple[int]:
|
||||
return tuple(list(self.sot_sequence) + [self.no_timestamps])
|
||||
|
||||
@property
|
||||
@lru_cache()
|
||||
def non_speech_tokens(self) -> Tuple[int]:
|
||||
"""
|
||||
Returns the list of tokens to suppress in order to avoid any speaker tags or non-speech
|
||||
annotations, to prevent sampling texts that are not actually spoken in the audio, e.g.
|
||||
|
||||
- ♪♪♪
|
||||
- ( SPEAKING FOREIGN LANGUAGE )
|
||||
- [DAVID] Hey there,
|
||||
|
||||
keeping basic punctuations like commas, periods, question marks, exclamation points, etc.
|
||||
"""
|
||||
symbols = list("\"#()*+/:;<=>@[\\]^_`{|}~「」『』")
|
||||
symbols += "<< >> <<< >>> -- --- -( -[ (' (\" (( )) ((( ))) [[ ]] {{ }} ♪♪ ♪♪♪".split()
|
||||
|
||||
# symbols that may be a single token or multiple tokens depending on the tokenizer.
|
||||
# In case they're multiple tokens, suppress the first token, which is safe because:
|
||||
# These are between U+2640 and U+267F miscellaneous symbols that are okay to suppress
|
||||
# in generations, and in the 3-byte UTF-8 representation they share the first two bytes.
|
||||
miscellaneous = set("♩♪♫♬♭♮♯")
|
||||
assert all(0x2640 <= ord(c) <= 0x267F for c in miscellaneous)
|
||||
|
||||
# allow hyphens "-" and single quotes "'" between words, but not at the beginning of a word
|
||||
result = {self.tokenizer.encode(" -")[0], self.tokenizer.encode(" '")[0]}
|
||||
for symbol in symbols + list(miscellaneous):
|
||||
for tokens in [self.tokenizer.encode(symbol), self.tokenizer.encode(" " + symbol)]:
|
||||
if len(tokens) == 1 or symbol in miscellaneous:
|
||||
result.add(tokens[0])
|
||||
|
||||
return tuple(sorted(result))
|
||||
|
||||
def _get_single_token_id(self, text) -> int:
|
||||
tokens = self.tokenizer.encode(text)
|
||||
assert len(tokens) == 1, f"{text} is not encoded as a single token"
|
||||
return tokens[0]
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def build_tokenizer(name: str = "gpt2"):
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
path = os.path.join(os.path.dirname(__file__), "assets", name)
|
||||
tokenizer = GPT2TokenizerFast.from_pretrained(path)
|
||||
|
||||
specials = [
|
||||
"<|startoftranscript|>",
|
||||
*[f"<|{lang}|>" for lang in LANGUAGES.keys()],
|
||||
"<|translate|>",
|
||||
"<|transcribe|>",
|
||||
"<|startoflm|>",
|
||||
"<|startofprev|>",
|
||||
"<|nospeech|>",
|
||||
"<|notimestamps|>",
|
||||
]
|
||||
|
||||
tokenizer.add_special_tokens(dict(additional_special_tokens=specials))
|
||||
return tokenizer
|
||||
|
||||
|
||||
@lru_cache(maxsize=None)
|
||||
def get_tokenizer(
|
||||
multilingual: bool,
|
||||
*,
|
||||
task: Optional[str] = None, # Literal["transcribe", "translate", None]
|
||||
language: Optional[str] = None,
|
||||
) -> Tokenizer:
|
||||
if language is not None:
|
||||
language = language.lower()
|
||||
if language not in LANGUAGES:
|
||||
if language in TO_LANGUAGE_CODE:
|
||||
language = TO_LANGUAGE_CODE[language]
|
||||
else:
|
||||
raise ValueError(f"Unsupported language: {language}")
|
||||
|
||||
if multilingual:
|
||||
tokenizer_name = "multilingual"
|
||||
task = task or "transcribe"
|
||||
language = language or "en"
|
||||
else:
|
||||
tokenizer_name = "gpt2"
|
||||
task = None
|
||||
language = None
|
||||
|
||||
tokenizer = build_tokenizer(name=tokenizer_name)
|
||||
all_special_ids: List[int] = tokenizer.all_special_ids
|
||||
sot: int = all_special_ids[1]
|
||||
translate: int = all_special_ids[-6]
|
||||
transcribe: int = all_special_ids[-5]
|
||||
|
||||
langs = tuple(LANGUAGES.keys())
|
||||
sot_sequence = [sot]
|
||||
if language is not None:
|
||||
sot_sequence.append(sot + 1 + langs.index(language))
|
||||
if task is not None:
|
||||
sot_sequence.append(transcribe if task == "transcribe" else translate)
|
||||
|
||||
return Tokenizer(tokenizer=tokenizer, language=language, sot_sequence=tuple(sot_sequence))
|
||||
207
musetalk/whisper/whisper/transcribe.py
Normal file
207
musetalk/whisper/whisper/transcribe.py
Normal file
@@ -0,0 +1,207 @@
|
||||
import argparse
|
||||
import os
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union, TYPE_CHECKING
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import tqdm
|
||||
|
||||
from .audio import SAMPLE_RATE, N_FRAMES, HOP_LENGTH, pad_or_trim, log_mel_spectrogram
|
||||
from .decoding import DecodingOptions, DecodingResult
|
||||
from .tokenizer import LANGUAGES, TO_LANGUAGE_CODE, get_tokenizer
|
||||
from .utils import exact_div, format_timestamp, optional_int, optional_float, str2bool, write_txt, write_vtt, write_srt
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .model import Whisper
|
||||
|
||||
|
||||
def transcribe(
|
||||
model: "Whisper",
|
||||
audio: Union[str, np.ndarray, torch.Tensor],
|
||||
*,
|
||||
verbose: Optional[bool] = None,
|
||||
temperature: Union[float, Tuple[float, ...]] = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
|
||||
compression_ratio_threshold: Optional[float] = 2.4,
|
||||
logprob_threshold: Optional[float] = -1.0,
|
||||
no_speech_threshold: Optional[float] = 0.6,
|
||||
condition_on_previous_text: bool = True,
|
||||
force_extraction: bool = False,
|
||||
**decode_options,
|
||||
):
|
||||
"""
|
||||
Transcribe an audio file using Whisper
|
||||
|
||||
Parameters
|
||||
----------
|
||||
model: Whisper
|
||||
The Whisper model instance
|
||||
|
||||
audio: Union[str, np.ndarray, torch.Tensor]
|
||||
The path to the audio file to open, or the audio waveform
|
||||
|
||||
verbose: bool
|
||||
Whether to display the text being decoded to the console. If True, displays all the details,
|
||||
If False, displays minimal details. If None, does not display anything
|
||||
|
||||
temperature: Union[float, Tuple[float, ...]]
|
||||
Temperature for sampling. It can be a tuple of temperatures, which will be successfully used
|
||||
upon failures according to either `compression_ratio_threshold` or `logprob_threshold`.
|
||||
|
||||
compression_ratio_threshold: float
|
||||
If the gzip compression ratio is above this value, treat as failed
|
||||
|
||||
logprob_threshold: float
|
||||
If the average log probability over sampled tokens is below this value, treat as failed
|
||||
|
||||
no_speech_threshold: float
|
||||
If the no_speech probability is higher than this value AND the average log probability
|
||||
over sampled tokens is below `logprob_threshold`, consider the segment as silent
|
||||
|
||||
condition_on_previous_text: bool
|
||||
if True, the previous output of the model is provided as a prompt for the next window;
|
||||
disabling may make the text inconsistent across windows, but the model becomes less prone to
|
||||
getting stuck in a failure loop, such as repetition looping or timestamps going out of sync.
|
||||
|
||||
decode_options: dict
|
||||
Keyword arguments to construct `DecodingOptions` instances
|
||||
|
||||
Returns
|
||||
-------
|
||||
A dictionary containing the resulting text ("text") and segment-level details ("segments"), and
|
||||
the spoken language ("language"), which is detected when `decode_options["language"]` is None.
|
||||
"""
|
||||
dtype = torch.float16 if decode_options.get("fp16", True) else torch.float32
|
||||
if model.device == torch.device("cpu"):
|
||||
if torch.cuda.is_available():
|
||||
warnings.warn("Performing inference on CPU when CUDA is available")
|
||||
if dtype == torch.float16:
|
||||
warnings.warn("FP16 is not supported on CPU; using FP32 instead")
|
||||
dtype = torch.float32
|
||||
|
||||
if dtype == torch.float32:
|
||||
decode_options["fp16"] = False
|
||||
|
||||
mel = log_mel_spectrogram(audio)
|
||||
|
||||
all_segments = []
|
||||
def add_segment(
|
||||
*, start: float, end: float, encoder_embeddings
|
||||
):
|
||||
|
||||
all_segments.append(
|
||||
{
|
||||
"start": start,
|
||||
"end": end,
|
||||
"encoder_embeddings":encoder_embeddings,
|
||||
}
|
||||
)
|
||||
# show the progress bar when verbose is False (otherwise the transcribed text will be printed)
|
||||
num_frames = mel.shape[-1]
|
||||
seek = 0
|
||||
previous_seek_value = seek
|
||||
sample_skip = 3000 #
|
||||
with tqdm.tqdm(total=num_frames, unit='frames', disable=verbose is not False) as pbar:
|
||||
while seek < num_frames:
|
||||
# seek是开始的帧数
|
||||
end_seek = min(seek + sample_skip, num_frames)
|
||||
segment = pad_or_trim(mel[:,seek:seek+sample_skip], N_FRAMES).to(model.device).to(dtype)
|
||||
|
||||
single = segment.ndim == 2
|
||||
if single:
|
||||
segment = segment.unsqueeze(0)
|
||||
if dtype == torch.float16:
|
||||
segment = segment.half()
|
||||
audio_features, embeddings = model.encoder(segment, include_embeddings = True)
|
||||
|
||||
encoder_embeddings = embeddings
|
||||
#print(f"encoder_embeddings shape {encoder_embeddings.shape}")
|
||||
add_segment(
|
||||
start=seek,
|
||||
end=end_seek,
|
||||
#text_tokens=tokens,
|
||||
#result=result,
|
||||
encoder_embeddings=encoder_embeddings,
|
||||
)
|
||||
seek+=sample_skip
|
||||
|
||||
return dict(segments=all_segments)
|
||||
|
||||
|
||||
def cli():
|
||||
from . import available_models
|
||||
|
||||
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument("audio", nargs="+", type=str, help="audio file(s) to transcribe")
|
||||
parser.add_argument("--model", default="small", choices=available_models(), help="name of the Whisper model to use")
|
||||
parser.add_argument("--model_dir", type=str, default=None, help="the path to save model files; uses ~/.cache/whisper by default")
|
||||
parser.add_argument("--device", default="cuda" if torch.cuda.is_available() else "cpu", help="device to use for PyTorch inference")
|
||||
parser.add_argument("--output_dir", "-o", type=str, default=".", help="directory to save the outputs")
|
||||
parser.add_argument("--verbose", type=str2bool, default=True, help="whether to print out the progress and debug messages")
|
||||
|
||||
parser.add_argument("--task", type=str, default="transcribe", choices=["transcribe", "translate"], help="whether to perform X->X speech recognition ('transcribe') or X->English translation ('translate')")
|
||||
parser.add_argument("--language", type=str, default=None, choices=sorted(LANGUAGES.keys()) + sorted([k.title() for k in TO_LANGUAGE_CODE.keys()]), help="language spoken in the audio, specify None to perform language detection")
|
||||
|
||||
parser.add_argument("--temperature", type=float, default=0, help="temperature to use for sampling")
|
||||
parser.add_argument("--best_of", type=optional_int, default=5, help="number of candidates when sampling with non-zero temperature")
|
||||
parser.add_argument("--beam_size", type=optional_int, default=5, help="number of beams in beam search, only applicable when temperature is zero")
|
||||
parser.add_argument("--patience", type=float, default=None, help="optional patience value to use in beam decoding, as in https://arxiv.org/abs/2204.05424, the default (1.0) is equivalent to conventional beam search")
|
||||
parser.add_argument("--length_penalty", type=float, default=None, help="optional token length penalty coefficient (alpha) as in https://arxiv.org/abs/1609.08144, uses simple length normalization by default")
|
||||
|
||||
parser.add_argument("--suppress_tokens", type=str, default="-1", help="comma-separated list of token ids to suppress during sampling; '-1' will suppress most special characters except common punctuations")
|
||||
parser.add_argument("--initial_prompt", type=str, default=None, help="optional text to provide as a prompt for the first window.")
|
||||
parser.add_argument("--condition_on_previous_text", type=str2bool, default=True, help="if True, provide the previous output of the model as a prompt for the next window; disabling may make the text inconsistent across windows, but the model becomes less prone to getting stuck in a failure loop")
|
||||
parser.add_argument("--fp16", type=str2bool, default=True, help="whether to perform inference in fp16; True by default")
|
||||
|
||||
parser.add_argument("--temperature_increment_on_fallback", type=optional_float, default=0.2, help="temperature to increase when falling back when the decoding fails to meet either of the thresholds below")
|
||||
parser.add_argument("--compression_ratio_threshold", type=optional_float, default=2.4, help="if the gzip compression ratio is higher than this value, treat the decoding as failed")
|
||||
parser.add_argument("--logprob_threshold", type=optional_float, default=-1.0, help="if the average log probability is lower than this value, treat the decoding as failed")
|
||||
parser.add_argument("--no_speech_threshold", type=optional_float, default=0.6, help="if the probability of the <|nospeech|> token is higher than this value AND the decoding has failed due to `logprob_threshold`, consider the segment as silence")
|
||||
parser.add_argument("--threads", type=optional_int, default=0, help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS")
|
||||
|
||||
args = parser.parse_args().__dict__
|
||||
model_name: str = args.pop("model")
|
||||
model_dir: str = args.pop("model_dir")
|
||||
output_dir: str = args.pop("output_dir")
|
||||
device: str = args.pop("device")
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
if model_name.endswith(".en") and args["language"] not in {"en", "English"}:
|
||||
if args["language"] is not None:
|
||||
warnings.warn(f"{model_name} is an English-only model but receipted '{args['language']}'; using English instead.")
|
||||
args["language"] = "en"
|
||||
|
||||
temperature = args.pop("temperature")
|
||||
temperature_increment_on_fallback = args.pop("temperature_increment_on_fallback")
|
||||
if temperature_increment_on_fallback is not None:
|
||||
temperature = tuple(np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback))
|
||||
else:
|
||||
temperature = [temperature]
|
||||
|
||||
threads = args.pop("threads")
|
||||
if threads > 0:
|
||||
torch.set_num_threads(threads)
|
||||
|
||||
from . import load_model
|
||||
model = load_model(model_name, device=device, download_root=model_dir)
|
||||
|
||||
for audio_path in args.pop("audio"):
|
||||
result = transcribe(model, audio_path, temperature=temperature, **args)
|
||||
|
||||
audio_basename = os.path.basename(audio_path)
|
||||
|
||||
# save TXT
|
||||
with open(os.path.join(output_dir, audio_basename + ".txt"), "w", encoding="utf-8") as txt:
|
||||
write_txt(result["segments"], file=txt)
|
||||
|
||||
# save VTT
|
||||
with open(os.path.join(output_dir, audio_basename + ".vtt"), "w", encoding="utf-8") as vtt:
|
||||
write_vtt(result["segments"], file=vtt)
|
||||
|
||||
# save SRT
|
||||
with open(os.path.join(output_dir, audio_basename + ".srt"), "w", encoding="utf-8") as srt:
|
||||
write_srt(result["segments"], file=srt)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
cli()
|
||||
87
musetalk/whisper/whisper/utils.py
Normal file
87
musetalk/whisper/whisper/utils.py
Normal file
@@ -0,0 +1,87 @@
|
||||
import zlib
|
||||
from typing import Iterator, TextIO
|
||||
|
||||
|
||||
def exact_div(x, y):
|
||||
assert x % y == 0
|
||||
return x // y
|
||||
|
||||
|
||||
def str2bool(string):
|
||||
str2val = {"True": True, "False": False}
|
||||
if string in str2val:
|
||||
return str2val[string]
|
||||
else:
|
||||
raise ValueError(f"Expected one of {set(str2val.keys())}, got {string}")
|
||||
|
||||
|
||||
def optional_int(string):
|
||||
return None if string == "None" else int(string)
|
||||
|
||||
|
||||
def optional_float(string):
|
||||
return None if string == "None" else float(string)
|
||||
|
||||
|
||||
def compression_ratio(text) -> float:
|
||||
return len(text) / len(zlib.compress(text.encode("utf-8")))
|
||||
|
||||
|
||||
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = '.'):
|
||||
assert seconds >= 0, "non-negative timestamp expected"
|
||||
milliseconds = round(seconds * 1000.0)
|
||||
|
||||
hours = milliseconds // 3_600_000
|
||||
milliseconds -= hours * 3_600_000
|
||||
|
||||
minutes = milliseconds // 60_000
|
||||
milliseconds -= minutes * 60_000
|
||||
|
||||
seconds = milliseconds // 1_000
|
||||
milliseconds -= seconds * 1_000
|
||||
|
||||
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
|
||||
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
||||
|
||||
|
||||
def write_txt(transcript: Iterator[dict], file: TextIO):
|
||||
for segment in transcript:
|
||||
print(segment['text'].strip(), file=file, flush=True)
|
||||
|
||||
|
||||
def write_vtt(transcript: Iterator[dict], file: TextIO):
|
||||
print("WEBVTT\n", file=file)
|
||||
for segment in transcript:
|
||||
print(
|
||||
f"{format_timestamp(segment['start'])} --> {format_timestamp(segment['end'])}\n"
|
||||
f"{segment['text'].strip().replace('-->', '->')}\n",
|
||||
file=file,
|
||||
flush=True,
|
||||
)
|
||||
|
||||
|
||||
def write_srt(transcript: Iterator[dict], file: TextIO):
|
||||
"""
|
||||
Write a transcript to a file in SRT format.
|
||||
|
||||
Example usage:
|
||||
from pathlib import Path
|
||||
from whisper.utils import write_srt
|
||||
|
||||
result = transcribe(model, audio_path, temperature=temperature, **args)
|
||||
|
||||
# save SRT
|
||||
audio_basename = Path(audio_path).stem
|
||||
with open(Path(output_dir) / (audio_basename + ".srt"), "w", encoding="utf-8") as srt:
|
||||
write_srt(result["segments"], file=srt)
|
||||
"""
|
||||
for i, segment in enumerate(transcript, start=1):
|
||||
# write srt lines
|
||||
print(
|
||||
f"{i}\n"
|
||||
f"{format_timestamp(segment['start'], always_include_hours=True, decimal_marker=',')} --> "
|
||||
f"{format_timestamp(segment['end'], always_include_hours=True, decimal_marker=',')}\n"
|
||||
f"{segment['text'].strip().replace('-->', '->')}\n",
|
||||
file=file,
|
||||
flush=True,
|
||||
)
|
||||
11
requirements.txt
Normal file
11
requirements.txt
Normal file
@@ -0,0 +1,11 @@
|
||||
torch==2.0.1 --index-url https://download.pytorch.org/whl/cu118
|
||||
torchvision==0.15.2 --index-url https://download.pytorch.org/whl/cu118
|
||||
torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118
|
||||
diffusers==0.27.2
|
||||
accelerate==0.28.0
|
||||
tensorflow==2.12.0
|
||||
tensorboard==2.12.0
|
||||
opencv-python==4.9.0.80
|
||||
soundfile==0.12.1
|
||||
transformers==4.39.2
|
||||
|
||||
142
scripts/inference.py
Normal file
142
scripts/inference.py
Normal file
@@ -0,0 +1,142 @@
|
||||
import argparse
|
||||
import os
|
||||
from omegaconf import OmegaConf
|
||||
import numpy as np
|
||||
import cv2
|
||||
import torch
|
||||
import glob
|
||||
import pickle
|
||||
from tqdm import tqdm
|
||||
import copy
|
||||
|
||||
from musetalk.utils.utils import get_file_type,get_video_fps,datagen
|
||||
from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder
|
||||
from musetalk.utils.blending import get_image
|
||||
from musetalk.utils.utils import load_all_model
|
||||
|
||||
# load model weights
|
||||
audio_processor,vae,unet,pe = load_all_model()
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
timesteps = torch.tensor([0], device=device)
|
||||
|
||||
@torch.no_grad()
|
||||
def main(args):
|
||||
inference_config = OmegaConf.load(args.inference_config)
|
||||
print(inference_config)
|
||||
for task_id in inference_config:
|
||||
video_path = inference_config[task_id]["video_path"]
|
||||
audio_path = inference_config[task_id]["audio_path"]
|
||||
|
||||
input_basename = os.path.basename(video_path).split('.')[0]
|
||||
audio_basename = os.path.basename(audio_path).split('.')[0]
|
||||
output_basename = f"{input_basename}_{audio_basename}"
|
||||
crop_coord_save_path = os.path.join(args.result_dir, input_basename+".pkl") # only related to video input
|
||||
result_img_save_path = os.path.join(args.result_dir, output_basename) # related to video & audio inputs
|
||||
os.makedirs(result_img_save_path,exist_ok =True)
|
||||
|
||||
if args.output_vid_name=="":
|
||||
output_vid_name = os.path.join(args.result_dir, output_basename+".mp4")
|
||||
else:
|
||||
output_vid_name = os.path.join(args.result_dir, args.output_vid_name)
|
||||
############################################## extract frames from source video ##############################################
|
||||
if get_file_type(video_path)=="video":
|
||||
save_dir_full = os.path.join(args.result_dir, input_basename)
|
||||
os.makedirs(save_dir_full,exist_ok = True)
|
||||
cmd = f"ffmpeg -i {video_path} -start_number 0 {save_dir_full}/%08d.png"
|
||||
os.system(cmd)
|
||||
input_img_list = sorted(glob.glob(os.path.join(save_dir_full, '*.[jpJP][pnPN]*[gG]')))
|
||||
fps = get_video_fps(video_path)
|
||||
else: # input img folder
|
||||
input_img_list = glob.glob(os.path.join(video_path, '*.[jpJP][pnPN]*[gG]'))
|
||||
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
||||
fps = args.fps
|
||||
#print(input_img_list)
|
||||
############################################## extract audio feature ##############################################
|
||||
whisper_feature = audio_processor.audio2feat(audio_path)
|
||||
whisper_chunks = audio_processor.feature2chunks(feature_array=whisper_feature,fps=fps)
|
||||
############################################## preprocess input image ##############################################
|
||||
if os.path.exists(crop_coord_save_path) and args.use_saved_coord:
|
||||
print("using extracted coordinates")
|
||||
with open(crop_coord_save_path,'rb') as f:
|
||||
coord_list = pickle.load(f)
|
||||
frame_list = read_imgs(input_img_list)
|
||||
else:
|
||||
print("extracting landmarks...time consuming")
|
||||
coord_list, frame_list = get_landmark_and_bbox(input_img_list,args.bbox_shift)
|
||||
with open(crop_coord_save_path, 'wb') as f:
|
||||
pickle.dump(coord_list, f)
|
||||
|
||||
i = 0
|
||||
input_latent_list = []
|
||||
for bbox, frame in zip(coord_list, frame_list):
|
||||
if bbox == coord_placeholder:
|
||||
continue
|
||||
x1, y1, x2, y2 = bbox
|
||||
crop_frame = frame[y1:y2, x1:x2]
|
||||
crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4)
|
||||
latents = vae.get_latents_for_unet(crop_frame)
|
||||
input_latent_list.append(latents)
|
||||
|
||||
# to smooth the first and the last frame
|
||||
frame_list_cycle = frame_list + frame_list[::-1]
|
||||
coord_list_cycle = coord_list + coord_list[::-1]
|
||||
input_latent_list_cycle = input_latent_list + input_latent_list[::-1]
|
||||
############################################## inference batch by batch ##############################################
|
||||
print("start inference")
|
||||
video_num = len(whisper_chunks)
|
||||
batch_size = args.batch_size
|
||||
gen = datagen(whisper_chunks,input_latent_list_cycle,batch_size)
|
||||
res_frame_list = []
|
||||
for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/batch_size)))):
|
||||
|
||||
tensor_list = [torch.FloatTensor(arr) for arr in whisper_batch]
|
||||
audio_feature_batch = torch.stack(tensor_list).to(unet.device) # torch, B, 5*N,384
|
||||
audio_feature_batch = pe(audio_feature_batch)
|
||||
|
||||
pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample
|
||||
recon = vae.decode_latents(pred_latents)
|
||||
for res_frame in recon:
|
||||
res_frame_list.append(res_frame)
|
||||
|
||||
############################################## pad to full image ##############################################
|
||||
print("pad talking image to original video")
|
||||
for i, res_frame in enumerate(tqdm(res_frame_list)):
|
||||
bbox = coord_list_cycle[i%(len(coord_list_cycle))]
|
||||
ori_frame = copy.deepcopy(frame_list_cycle[i%(len(frame_list_cycle))])
|
||||
x1, y1, x2, y2 = bbox
|
||||
try:
|
||||
res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1))
|
||||
except:
|
||||
# print(bbox)
|
||||
continue
|
||||
|
||||
combine_frame = get_image(ori_frame,res_frame,bbox)
|
||||
cv2.imwrite(f"{result_img_save_path}/{str(i).zfill(8)}.png",combine_frame)
|
||||
|
||||
cmd_img2video = f"ffmpeg -y -v fatal -r {fps} -f image2 -i {result_img_save_path}/%08d.png -vcodec libx264 -vf format=rgb24,scale=out_color_matrix=bt709,format=yuv420p -crf 18 temp.mp4"
|
||||
print(cmd_img2video)
|
||||
os.system(cmd_img2video)
|
||||
|
||||
cmd_combine_audio = f"ffmpeg -i {audio_path} -i temp.mp4 {output_vid_name} -y"
|
||||
print(cmd_combine_audio)
|
||||
os.system(cmd_combine_audio)
|
||||
|
||||
os.system("rm temp.mp4")
|
||||
os.system(f"rm -r {result_img_save_path}")
|
||||
print(f"result is save to {output_vid_name}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--inference_config",type=str, default="configs/inference/test_img.yaml")
|
||||
parser.add_argument("--bbox_shift",type=int, default=0)
|
||||
parser.add_argument("--result_dir", default='./results', help="path to output")
|
||||
|
||||
parser.add_argument("--fps",type=int, default=25)
|
||||
parser.add_argument("--batch_size",type=int, default=8)
|
||||
parser.add_argument("--output_vid_name",type=str,default='')
|
||||
parser.add_argument("--use_saved_coord",action="store_true", help='use saved coordinate to save time')
|
||||
|
||||
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
|
||||
Reference in New Issue
Block a user