mirror of
https://github.com/TMElyralab/MuseTalk.git
synced 2026-02-05 01:49:20 +08:00
feat: data preprocessing and training (#294)
* docs: update readme * docs: update readme * feat: training codes * feat: data preprocess * docs: release training
This commit is contained in:
@@ -2,6 +2,11 @@ import os
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
from typing import Union, List
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
import shutil
|
||||
import os.path as osp
|
||||
|
||||
ffmpeg_path = os.getenv('FFMPEG_PATH')
|
||||
if ffmpeg_path is None:
|
||||
@@ -11,7 +16,6 @@ elif ffmpeg_path not in os.getenv('PATH'):
|
||||
os.environ["PATH"] = f"{ffmpeg_path}:{os.environ['PATH']}"
|
||||
|
||||
|
||||
from musetalk.whisper.audio2feature import Audio2Feature
|
||||
from musetalk.models.vae import VAE
|
||||
from musetalk.models.unet import UNet,PositionalEncoding
|
||||
|
||||
@@ -76,3 +80,248 @@ def datagen(
|
||||
latent_batch = torch.cat(latent_batch, dim=0)
|
||||
|
||||
yield whisper_batch.to(device), latent_batch.to(device)
|
||||
|
||||
def cast_training_params(
|
||||
model: Union[torch.nn.Module, List[torch.nn.Module]],
|
||||
dtype=torch.float32,
|
||||
):
|
||||
if not isinstance(model, list):
|
||||
model = [model]
|
||||
for m in model:
|
||||
for param in m.parameters():
|
||||
# only upcast trainable parameters into fp32
|
||||
if param.requires_grad:
|
||||
param.data = param.to(dtype)
|
||||
|
||||
def rand_log_normal(
|
||||
shape,
|
||||
loc=0.,
|
||||
scale=1.,
|
||||
device='cpu',
|
||||
dtype=torch.float32,
|
||||
generator=None
|
||||
):
|
||||
"""Draws samples from an lognormal distribution."""
|
||||
rnd_normal = torch.randn(
|
||||
shape, device=device, dtype=dtype, generator=generator) # N(0, I)
|
||||
sigma = (rnd_normal * scale + loc).exp()
|
||||
return sigma
|
||||
|
||||
def get_mouth_region(frames, image_pred, pixel_values_face_mask):
|
||||
# Initialize lists to store the results for each image in the batch
|
||||
mouth_real_list = []
|
||||
mouth_generated_list = []
|
||||
|
||||
# Process each image in the batch
|
||||
for b in range(frames.shape[0]):
|
||||
# Find the non-zero area in the face mask
|
||||
non_zero_indices = torch.nonzero(pixel_values_face_mask[b])
|
||||
# If there are no non-zero indices, skip this image
|
||||
if non_zero_indices.numel() == 0:
|
||||
continue
|
||||
|
||||
min_y, max_y = torch.min(non_zero_indices[:, 1]), torch.max(
|
||||
non_zero_indices[:, 1])
|
||||
min_x, max_x = torch.min(non_zero_indices[:, 2]), torch.max(
|
||||
non_zero_indices[:, 2])
|
||||
|
||||
# Crop the frames and image_pred according to the non-zero area
|
||||
frames_cropped = frames[b, :, min_y:max_y, min_x:max_x]
|
||||
image_pred_cropped = image_pred[b, :, min_y:max_y, min_x:max_x]
|
||||
# Resize the cropped images to 256*256
|
||||
frames_resized = F.interpolate(frames_cropped.unsqueeze(
|
||||
0), size=(256, 256), mode='bilinear', align_corners=False)
|
||||
image_pred_resized = F.interpolate(image_pred_cropped.unsqueeze(
|
||||
0), size=(256, 256), mode='bilinear', align_corners=False)
|
||||
|
||||
# Append the resized images to the result lists
|
||||
mouth_real_list.append(frames_resized)
|
||||
mouth_generated_list.append(image_pred_resized)
|
||||
|
||||
# Convert the lists to tensors if they are not empty
|
||||
mouth_real = torch.cat(mouth_real_list, dim=0) if mouth_real_list else None
|
||||
mouth_generated = torch.cat(
|
||||
mouth_generated_list, dim=0) if mouth_generated_list else None
|
||||
|
||||
return mouth_real, mouth_generated
|
||||
|
||||
def get_image_pred(pixel_values,
|
||||
ref_pixel_values,
|
||||
audio_prompts,
|
||||
vae,
|
||||
net,
|
||||
weight_dtype):
|
||||
with torch.no_grad():
|
||||
bsz, num_frames, c, h, w = pixel_values.shape
|
||||
|
||||
masked_pixel_values = pixel_values.clone()
|
||||
masked_pixel_values[:, :, :, h//2:, :] = -1
|
||||
|
||||
masked_frames = rearrange(
|
||||
masked_pixel_values, 'b f c h w -> (b f) c h w')
|
||||
masked_latents = vae.encode(masked_frames).latent_dist.mode()
|
||||
masked_latents = masked_latents * vae.config.scaling_factor
|
||||
masked_latents = masked_latents.float()
|
||||
|
||||
ref_frames = rearrange(ref_pixel_values, 'b f c h w-> (b f) c h w')
|
||||
ref_latents = vae.encode(ref_frames).latent_dist.mode()
|
||||
ref_latents = ref_latents * vae.config.scaling_factor
|
||||
ref_latents = ref_latents.float()
|
||||
|
||||
input_latents = torch.cat([masked_latents, ref_latents], dim=1)
|
||||
input_latents = input_latents.to(weight_dtype)
|
||||
timesteps = torch.tensor([0], device=input_latents.device)
|
||||
latents_pred = net(
|
||||
input_latents,
|
||||
timesteps,
|
||||
audio_prompts,
|
||||
)
|
||||
latents_pred = (1 / vae.config.scaling_factor) * latents_pred
|
||||
image_pred = vae.decode(latents_pred).sample
|
||||
image_pred = image_pred.float()
|
||||
|
||||
return image_pred
|
||||
|
||||
def process_audio_features(cfg, batch, wav2vec, bsz, num_frames, weight_dtype):
|
||||
with torch.no_grad():
|
||||
audio_feature_length_per_frame = 2 * \
|
||||
(cfg.data.audio_padding_length_left +
|
||||
cfg.data.audio_padding_length_right + 1)
|
||||
audio_feats = batch['audio_feature'].to(weight_dtype)
|
||||
audio_feats = wav2vec.encoder(
|
||||
audio_feats, output_hidden_states=True).hidden_states
|
||||
audio_feats = torch.stack(audio_feats, dim=2).to(weight_dtype) # [B, T, 10, 5, 384]
|
||||
|
||||
start_ts = batch['audio_offset']
|
||||
step_ts = batch['audio_step']
|
||||
audio_feats = torch.cat([torch.zeros_like(audio_feats[:, :2*cfg.data.audio_padding_length_left]),
|
||||
audio_feats,
|
||||
torch.zeros_like(audio_feats[:, :2*cfg.data.audio_padding_length_right])], 1)
|
||||
audio_prompts = []
|
||||
for bb in range(bsz):
|
||||
audio_feats_list = []
|
||||
for f in range(num_frames):
|
||||
cur_t = (start_ts[bb] + f * step_ts[bb]) * 2
|
||||
audio_clip = audio_feats[bb:bb+1,
|
||||
cur_t: cur_t+audio_feature_length_per_frame]
|
||||
|
||||
audio_feats_list.append(audio_clip)
|
||||
audio_feats_list = torch.stack(audio_feats_list, 1)
|
||||
audio_prompts.append(audio_feats_list)
|
||||
audio_prompts = torch.cat(audio_prompts) # B, T, 10, 5, 384
|
||||
return audio_prompts
|
||||
|
||||
def save_checkpoint(model, save_dir, ckpt_num, name="appearance_net", total_limit=None, logger=None):
|
||||
save_path = os.path.join(save_dir, f"{name}-{ckpt_num}.pth")
|
||||
|
||||
if total_limit is not None:
|
||||
checkpoints = os.listdir(save_dir)
|
||||
checkpoints = [d for d in checkpoints if d.endswith(".pth")]
|
||||
checkpoints = [d for d in checkpoints if name in d]
|
||||
checkpoints = sorted(
|
||||
checkpoints, key=lambda x: int(x.split("-")[1].split(".")[0])
|
||||
)
|
||||
|
||||
if len(checkpoints) >= total_limit:
|
||||
num_to_remove = len(checkpoints) - total_limit + 1
|
||||
removing_checkpoints = checkpoints[0:num_to_remove]
|
||||
logger.info(
|
||||
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
|
||||
)
|
||||
logger.info(
|
||||
f"removing checkpoints: {', '.join(removing_checkpoints)}")
|
||||
|
||||
for removing_checkpoint in removing_checkpoints:
|
||||
removing_checkpoint = os.path.join(
|
||||
save_dir, removing_checkpoint)
|
||||
os.remove(removing_checkpoint)
|
||||
|
||||
state_dict = model.state_dict()
|
||||
torch.save(state_dict, save_path)
|
||||
|
||||
def save_models(accelerator, net, save_dir, global_step, cfg, logger=None):
|
||||
unwarp_net = accelerator.unwrap_model(net)
|
||||
save_checkpoint(
|
||||
unwarp_net.unet,
|
||||
save_dir,
|
||||
global_step,
|
||||
name="unet",
|
||||
total_limit=cfg.total_limit,
|
||||
logger=logger
|
||||
)
|
||||
|
||||
def delete_additional_ckpt(base_path, num_keep):
|
||||
dirs = []
|
||||
for d in os.listdir(base_path):
|
||||
if d.startswith("checkpoint-"):
|
||||
dirs.append(d)
|
||||
num_tot = len(dirs)
|
||||
if num_tot <= num_keep:
|
||||
return
|
||||
# ensure ckpt is sorted and delete the ealier!
|
||||
del_dirs = sorted(dirs, key=lambda x: int(x.split("-")[-1]))[: num_tot - num_keep]
|
||||
for d in del_dirs:
|
||||
path_to_dir = osp.join(base_path, d)
|
||||
if osp.exists(path_to_dir):
|
||||
shutil.rmtree(path_to_dir)
|
||||
|
||||
def seed_everything(seed):
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed_all(seed)
|
||||
np.random.seed(seed % (2**32))
|
||||
random.seed(seed)
|
||||
|
||||
def process_and_save_images(
|
||||
batch,
|
||||
image_pred,
|
||||
image_pred_infer,
|
||||
save_dir,
|
||||
global_step,
|
||||
accelerator,
|
||||
num_images_to_keep=10,
|
||||
syncnet_score=1
|
||||
):
|
||||
# Rearrange the tensors
|
||||
print("image_pred.shape: ", image_pred.shape)
|
||||
pixel_values_ref_img = rearrange(batch['pixel_values_ref_img'], "b f c h w -> (b f) c h w")
|
||||
pixel_values = rearrange(batch["pixel_values_vid"], 'b f c h w -> (b f) c h w')
|
||||
|
||||
# Create masked pixel values
|
||||
masked_pixel_values = batch["pixel_values_vid"].clone()
|
||||
_, _, _, h, _ = batch["pixel_values_vid"].shape
|
||||
masked_pixel_values[:, :, :, h//2:, :] = -1
|
||||
masked_pixel_values = rearrange(masked_pixel_values, 'b f c h w -> (b f) c h w')
|
||||
|
||||
# Keep only the specified number of images
|
||||
pixel_values = pixel_values[:num_images_to_keep, :, :, :]
|
||||
masked_pixel_values = masked_pixel_values[:num_images_to_keep, :, :, :]
|
||||
pixel_values_ref_img = pixel_values_ref_img[:num_images_to_keep, :, :, :]
|
||||
image_pred = image_pred.detach()[:num_images_to_keep, :, :, :]
|
||||
image_pred_infer = image_pred_infer.detach()[:num_images_to_keep, :, :, :]
|
||||
|
||||
# Concatenate images
|
||||
concat = torch.cat([
|
||||
masked_pixel_values * 0.5 + 0.5,
|
||||
pixel_values_ref_img * 0.5 + 0.5,
|
||||
image_pred * 0.5 + 0.5,
|
||||
pixel_values * 0.5 + 0.5,
|
||||
image_pred_infer * 0.5 + 0.5,
|
||||
], dim=2)
|
||||
print("concat.shape: ", concat.shape)
|
||||
|
||||
# Create the save directory if it doesn't exist
|
||||
os.makedirs(f'{save_dir}/samples/', exist_ok=True)
|
||||
|
||||
# Try to save the concatenated image
|
||||
try:
|
||||
# Concatenate images horizontally and convert to numpy array
|
||||
final_image = torch.cat([concat[i] for i in range(concat.shape[0])], dim=-1).permute(1, 2, 0).cpu().numpy()[:, :, [2, 1, 0]] * 255
|
||||
# Save the image
|
||||
cv2.imwrite(f'{save_dir}/samples/sample_{global_step}_{accelerator.device}_SyncNetScore_{syncnet_score}.jpg', final_image)
|
||||
print(f"Image saved successfully: {save_dir}/samples/sample_{global_step}_{accelerator.device}_SyncNetScore_{syncnet_score}.jpg")
|
||||
except Exception as e:
|
||||
print(f"Failed to save image: {e}")
|
||||
Reference in New Issue
Block a user