mirror of
https://github.com/TMElyralab/MuseTalk.git
synced 2026-02-05 09:59:18 +08:00
feat: data preprocessing and training (#294)
* docs: update readme * docs: update readme * feat: training codes * feat: data preprocess * docs: release training
This commit is contained in:
168
musetalk/data/audio.py
Executable file
168
musetalk/data/audio.py
Executable file
@@ -0,0 +1,168 @@
|
||||
import librosa
|
||||
import librosa.filters
|
||||
import numpy as np
|
||||
from scipy import signal
|
||||
from scipy.io import wavfile
|
||||
|
||||
class HParams:
|
||||
# copy from wav2lip
|
||||
def __init__(self):
|
||||
self.n_fft = 800
|
||||
self.hop_size = 200
|
||||
self.win_size = 800
|
||||
self.sample_rate = 16000
|
||||
self.frame_shift_ms = None
|
||||
self.signal_normalization = True
|
||||
|
||||
self.allow_clipping_in_normalization = True
|
||||
self.symmetric_mels = True
|
||||
self.max_abs_value = 4.0
|
||||
self.preemphasize = True
|
||||
self.preemphasis = 0.97
|
||||
self.min_level_db = -100
|
||||
self.ref_level_db = 20
|
||||
self.fmin = 55
|
||||
self.fmax=7600
|
||||
|
||||
self.use_lws=False
|
||||
self.num_mels=80 # Number of mel-spectrogram channels and local conditioning dimensionality
|
||||
self.rescale=True # Whether to rescale audio prior to preprocessing
|
||||
self.rescaling_max=0.9 # Rescaling value
|
||||
self.use_lws=False
|
||||
|
||||
|
||||
hp = HParams()
|
||||
|
||||
def load_wav(path, sr):
|
||||
return librosa.core.load(path, sr=sr)[0]
|
||||
#def load_wav(path, sr):
|
||||
# audio, sr_native = sf.read(path)
|
||||
# if sr != sr_native:
|
||||
# audio = librosa.resample(audio.T, sr_native, sr).T
|
||||
# return audio
|
||||
|
||||
def save_wav(wav, path, sr):
|
||||
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
|
||||
#proposed by @dsmiller
|
||||
wavfile.write(path, sr, wav.astype(np.int16))
|
||||
|
||||
def save_wavenet_wav(wav, path, sr):
|
||||
librosa.output.write_wav(path, wav, sr=sr)
|
||||
|
||||
def preemphasis(wav, k, preemphasize=True):
|
||||
if preemphasize:
|
||||
return signal.lfilter([1, -k], [1], wav)
|
||||
return wav
|
||||
|
||||
def inv_preemphasis(wav, k, inv_preemphasize=True):
|
||||
if inv_preemphasize:
|
||||
return signal.lfilter([1], [1, -k], wav)
|
||||
return wav
|
||||
|
||||
def get_hop_size():
|
||||
hop_size = hp.hop_size
|
||||
if hop_size is None:
|
||||
assert hp.frame_shift_ms is not None
|
||||
hop_size = int(hp.frame_shift_ms / 1000 * hp.sample_rate)
|
||||
return hop_size
|
||||
|
||||
def linearspectrogram(wav):
|
||||
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
|
||||
S = _amp_to_db(np.abs(D)) - hp.ref_level_db
|
||||
|
||||
if hp.signal_normalization:
|
||||
return _normalize(S)
|
||||
return S
|
||||
|
||||
def melspectrogram(wav):
|
||||
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
|
||||
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp.ref_level_db
|
||||
|
||||
if hp.signal_normalization:
|
||||
return _normalize(S)
|
||||
return S
|
||||
|
||||
def _lws_processor():
|
||||
import lws
|
||||
return lws.lws(hp.n_fft, get_hop_size(), fftsize=hp.win_size, mode="speech")
|
||||
|
||||
def _stft(y):
|
||||
if hp.use_lws:
|
||||
return _lws_processor(hp).stft(y).T
|
||||
else:
|
||||
return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=get_hop_size(), win_length=hp.win_size)
|
||||
|
||||
##########################################################
|
||||
#Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
|
||||
def num_frames(length, fsize, fshift):
|
||||
"""Compute number of time frames of spectrogram
|
||||
"""
|
||||
pad = (fsize - fshift)
|
||||
if length % fshift == 0:
|
||||
M = (length + pad * 2 - fsize) // fshift + 1
|
||||
else:
|
||||
M = (length + pad * 2 - fsize) // fshift + 2
|
||||
return M
|
||||
|
||||
|
||||
def pad_lr(x, fsize, fshift):
|
||||
"""Compute left and right padding
|
||||
"""
|
||||
M = num_frames(len(x), fsize, fshift)
|
||||
pad = (fsize - fshift)
|
||||
T = len(x) + 2 * pad
|
||||
r = (M - 1) * fshift + fsize - T
|
||||
return pad, pad + r
|
||||
##########################################################
|
||||
#Librosa correct padding
|
||||
def librosa_pad_lr(x, fsize, fshift):
|
||||
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
|
||||
|
||||
# Conversions
|
||||
_mel_basis = None
|
||||
|
||||
def _linear_to_mel(spectogram):
|
||||
global _mel_basis
|
||||
if _mel_basis is None:
|
||||
_mel_basis = _build_mel_basis()
|
||||
return np.dot(_mel_basis, spectogram)
|
||||
|
||||
def _build_mel_basis():
|
||||
assert hp.fmax <= hp.sample_rate // 2
|
||||
return librosa.filters.mel(sr=hp.sample_rate, n_fft=hp.n_fft, n_mels=hp.num_mels,
|
||||
fmin=hp.fmin, fmax=hp.fmax)
|
||||
|
||||
def _amp_to_db(x):
|
||||
min_level = np.exp(hp.min_level_db / 20 * np.log(10))
|
||||
return 20 * np.log10(np.maximum(min_level, x))
|
||||
|
||||
def _db_to_amp(x):
|
||||
return np.power(10.0, (x) * 0.05)
|
||||
|
||||
def _normalize(S):
|
||||
if hp.allow_clipping_in_normalization:
|
||||
if hp.symmetric_mels:
|
||||
return np.clip((2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value,
|
||||
-hp.max_abs_value, hp.max_abs_value)
|
||||
else:
|
||||
return np.clip(hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)), 0, hp.max_abs_value)
|
||||
|
||||
assert S.max() <= 0 and S.min() - hp.min_level_db >= 0
|
||||
if hp.symmetric_mels:
|
||||
return (2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value
|
||||
else:
|
||||
return hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db))
|
||||
|
||||
def _denormalize(D):
|
||||
if hp.allow_clipping_in_normalization:
|
||||
if hp.symmetric_mels:
|
||||
return (((np.clip(D, -hp.max_abs_value,
|
||||
hp.max_abs_value) + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value))
|
||||
+ hp.min_level_db)
|
||||
else:
|
||||
return ((np.clip(D, 0, hp.max_abs_value) * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
|
||||
|
||||
if hp.symmetric_mels:
|
||||
return (((D + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + hp.min_level_db)
|
||||
else:
|
||||
return ((D * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
|
||||
Reference in New Issue
Block a user