mirror of
https://github.com/TMElyralab/MuseTalk.git
synced 2026-02-04 17:39:20 +08:00
Add codes for real time inference
This commit is contained in:
32
README.md
32
README.md
@@ -11,7 +11,7 @@ Chao Zhan,
|
|||||||
Wenjiang Zhou
|
Wenjiang Zhou
|
||||||
(<sup>*</sup>Equal Contribution, <sup>†</sup>Corresponding Author, benbinwu@tencent.com)
|
(<sup>*</sup>Equal Contribution, <sup>†</sup>Corresponding Author, benbinwu@tencent.com)
|
||||||
|
|
||||||
**[github](https://github.com/TMElyralab/MuseTalk)** **[huggingface](https://huggingface.co/TMElyralab/MuseTalk)** **[gradio](https://huggingface.co/spaces/TMElyralab/MuseTalk)** **Project (comming soon)** **Technical report (comming soon)**
|
**[github](https://github.com/TMElyralab/MuseTalk)** **[huggingface](https://huggingface.co/TMElyralab/MuseTalk)** **[space](https://huggingface.co/spaces/TMElyralab/MuseTalk)** **Project (comming soon)** **Technical report (comming soon)**
|
||||||
|
|
||||||
We introduce `MuseTalk`, a **real-time high quality** lip-syncing model (30fps+ on an NVIDIA Tesla V100). MuseTalk can be applied with input videos, e.g., generated by [MuseV](https://github.com/TMElyralab/MuseV), as a complete virtual human solution.
|
We introduce `MuseTalk`, a **real-time high quality** lip-syncing model (30fps+ on an NVIDIA Tesla V100). MuseTalk can be applied with input videos, e.g., generated by [MuseV](https://github.com/TMElyralab/MuseV), as a complete virtual human solution.
|
||||||
|
|
||||||
@@ -28,12 +28,13 @@ We introduce `MuseTalk`, a **real-time high quality** lip-syncing model (30fps+
|
|||||||
# News
|
# News
|
||||||
- [04/02/2024] Release MuseTalk project and pretrained models.
|
- [04/02/2024] Release MuseTalk project and pretrained models.
|
||||||
- [04/16/2024] Release Gradio [demo](https://huggingface.co/spaces/TMElyralab/MuseTalk) on HuggingFace Spaces (thanks to HF team for their community grant)
|
- [04/16/2024] Release Gradio [demo](https://huggingface.co/spaces/TMElyralab/MuseTalk) on HuggingFace Spaces (thanks to HF team for their community grant)
|
||||||
|
- [04/17/2024] :mega: We release a pipeline that utilizes MuseTalk for real-time inference.
|
||||||
|
|
||||||
## Model
|
## Model
|
||||||

|

|
||||||
MuseTalk was trained in latent spaces, where the images were encoded by a freezed VAE. The audio was encoded by a freezed `whisper-tiny` model. The architecture of the generation network was borrowed from the UNet of the `stable-diffusion-v1-4`, where the audio embeddings were fused to the image embeddings by cross-attention.
|
MuseTalk was trained in latent spaces, where the images were encoded by a freezed VAE. The audio was encoded by a freezed `whisper-tiny` model. The architecture of the generation network was borrowed from the UNet of the `stable-diffusion-v1-4`, where the audio embeddings were fused to the image embeddings by cross-attention.
|
||||||
|
|
||||||
Note that although we use a very similar architecture as Stable Diffusion, MuseTalk is distinct in that it is `Not` a diffusion model. Instead, MuseTalk operates by inpainting in the latent space with `a single step`.
|
Note that although we use a very similar architecture as Stable Diffusion, MuseTalk is distinct in that it is **NOT** a diffusion model. Instead, MuseTalk operates by inpainting in the latent space with a single step.
|
||||||
|
|
||||||
## Cases
|
## Cases
|
||||||
### MuseV + MuseTalk make human photos alive!
|
### MuseV + MuseTalk make human photos alive!
|
||||||
@@ -162,7 +163,7 @@ Note that although we use a very similar architecture as Stable Diffusion, MuseT
|
|||||||
# TODO:
|
# TODO:
|
||||||
- [x] trained models and inference codes.
|
- [x] trained models and inference codes.
|
||||||
- [x] Huggingface Gradio [demo](https://huggingface.co/spaces/TMElyralab/MuseTalk).
|
- [x] Huggingface Gradio [demo](https://huggingface.co/spaces/TMElyralab/MuseTalk).
|
||||||
- [ ] codes for real-time inference.
|
- [x] codes for real-time inference.
|
||||||
- [ ] technical report.
|
- [ ] technical report.
|
||||||
- [ ] training codes.
|
- [ ] training codes.
|
||||||
- [ ] a better model (may take longer).
|
- [ ] a better model (may take longer).
|
||||||
@@ -262,9 +263,30 @@ python -m scripts.inference --inference_config configs/inference/test.yaml --bbo
|
|||||||
|
|
||||||
As a complete solution to virtual human generation, you are suggested to first apply [MuseV](https://github.com/TMElyralab/MuseV) to generate a video (text-to-video, image-to-video or pose-to-video) by referring [this](https://github.com/TMElyralab/MuseV?tab=readme-ov-file#text2video). Frame interpolation is suggested to increase frame rate. Then, you can use `MuseTalk` to generate a lip-sync video by referring [this](https://github.com/TMElyralab/MuseTalk?tab=readme-ov-file#inference).
|
As a complete solution to virtual human generation, you are suggested to first apply [MuseV](https://github.com/TMElyralab/MuseV) to generate a video (text-to-video, image-to-video or pose-to-video) by referring [this](https://github.com/TMElyralab/MuseV?tab=readme-ov-file#text2video). Frame interpolation is suggested to increase frame rate. Then, you can use `MuseTalk` to generate a lip-sync video by referring [this](https://github.com/TMElyralab/MuseTalk?tab=readme-ov-file#inference).
|
||||||
|
|
||||||
# Note
|
#### :new: Real-time inference
|
||||||
|
|
||||||
If you want to launch online video chats, you are suggested to generate videos using MuseV and apply necessary pre-processing such as face detection and face parsing in advance. During online chatting, only UNet and the VAE decoder are involved, which makes MuseTalk real-time.
|
Here, we provide the inference script. This script first applies necessary pre-processing such as face detection, face parsing and VAE encode in advance. During inference, only UNet and the VAE decoder are involved, which makes MuseTalk real-time.
|
||||||
|
```
|
||||||
|
python -m scripts.realtime_inference --inference_config configs/inference/realtime.yaml
|
||||||
|
```
|
||||||
|
configs/inference/realtime.yaml is the path to the real-time inference configuration file, including `preparation`, `video_path` , `bbox_shift` and `audio_clips`.
|
||||||
|
|
||||||
|
1. Set `preparation` to `True` in `realtime.yaml` to prepare the materials for a new `avatar`. (If the `bbox_shift` has changed, you also need to re-prepare the materials.)
|
||||||
|
1. After that, the `avatar` will use an audio clip selected from `audio_clips` to generate video.
|
||||||
|
```
|
||||||
|
Inferring using: data/audio/yongen.wav
|
||||||
|
```
|
||||||
|
1. While MuseTalk is inferring, sub-threads can simultaneously stream the results to the users. The generation process can achieve up to 50fps on an NVIDIA Tesla V100.
|
||||||
|
```
|
||||||
|
2%|██▍ | 3/141 [00:00<00:32, 4.30it/s] # inference process
|
||||||
|
Generating the 6-th frame with FPS: 48.58 # playing process
|
||||||
|
Generating the 7-th frame with FPS: 48.74
|
||||||
|
Generating the 8-th frame with FPS: 49.17
|
||||||
|
3%|███▎ | 4/141 [00:00<00:32, 4.21it/s]
|
||||||
|
```
|
||||||
|
1. Set `preparation` to `False` and run this script if you want to genrate more videos using the same avatar.
|
||||||
|
|
||||||
|
If you want to generate multiple videos using the same avatar/video, you can also use this script to **SIGNIFICANTLY** expedite the generation process.
|
||||||
|
|
||||||
|
|
||||||
# Acknowledgement
|
# Acknowledgement
|
||||||
|
|||||||
10
configs/inference/realtime.yaml
Normal file
10
configs/inference/realtime.yaml
Normal file
@@ -0,0 +1,10 @@
|
|||||||
|
avator_1:
|
||||||
|
preparation: False
|
||||||
|
bbox_shift: 5
|
||||||
|
video_path: "data/video/sun.mp4"
|
||||||
|
audio_clips:
|
||||||
|
audio_0: "data/audio/yongen.wav"
|
||||||
|
audio_1: "data/audio/sun.wav"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@@ -57,3 +57,44 @@ def get_image(image,face,face_box,upper_boundary_ratio = 0.5,expand=1.2):
|
|||||||
body.paste(face_large, crop_box[:2], mask_image)
|
body.paste(face_large, crop_box[:2], mask_image)
|
||||||
body = np.array(body)
|
body = np.array(body)
|
||||||
return body[:,:,::-1]
|
return body[:,:,::-1]
|
||||||
|
|
||||||
|
def get_image_prepare_material(image,face_box,upper_boundary_ratio = 0.5,expand=1.2):
|
||||||
|
body = Image.fromarray(image[:,:,::-1])
|
||||||
|
|
||||||
|
x, y, x1, y1 = face_box
|
||||||
|
#print(x1-x,y1-y)
|
||||||
|
crop_box, s = get_crop_box(face_box, expand)
|
||||||
|
x_s, y_s, x_e, y_e = crop_box
|
||||||
|
|
||||||
|
face_large = body.crop(crop_box)
|
||||||
|
ori_shape = face_large.size
|
||||||
|
|
||||||
|
mask_image = face_seg(face_large)
|
||||||
|
mask_small = mask_image.crop((x-x_s, y-y_s, x1-x_s, y1-y_s))
|
||||||
|
mask_image = Image.new('L', ori_shape, 0)
|
||||||
|
mask_image.paste(mask_small, (x-x_s, y-y_s, x1-x_s, y1-y_s))
|
||||||
|
|
||||||
|
# keep upper_boundary_ratio of talking area
|
||||||
|
width, height = mask_image.size
|
||||||
|
top_boundary = int(height * upper_boundary_ratio)
|
||||||
|
modified_mask_image = Image.new('L', ori_shape, 0)
|
||||||
|
modified_mask_image.paste(mask_image.crop((0, top_boundary, width, height)), (0, top_boundary))
|
||||||
|
|
||||||
|
blur_kernel_size = int(0.1 * ori_shape[0] // 2 * 2) + 1
|
||||||
|
mask_array = cv2.GaussianBlur(np.array(modified_mask_image), (blur_kernel_size, blur_kernel_size), 0)
|
||||||
|
return mask_array,crop_box
|
||||||
|
|
||||||
|
def get_image_blending(image,face,face_box,mask_array,crop_box):
|
||||||
|
body = Image.fromarray(image[:,:,::-1])
|
||||||
|
face = Image.fromarray(face[:,:,::-1])
|
||||||
|
|
||||||
|
x, y, x1, y1 = face_box
|
||||||
|
x_s, y_s, x_e, y_e = crop_box
|
||||||
|
face_large = body.crop(crop_box)
|
||||||
|
|
||||||
|
mask_image = Image.fromarray(mask_array)
|
||||||
|
mask_image = mask_image.convert("L")
|
||||||
|
face_large.paste(face, (x-x_s, y-y_s, x1-x_s, y1-y_s))
|
||||||
|
body.paste(face_large, crop_box[:2], mask_image)
|
||||||
|
body = np.array(body)
|
||||||
|
return body[:,:,::-1]
|
||||||
295
scripts/realtime_inference.py
Normal file
295
scripts/realtime_inference.py
Normal file
@@ -0,0 +1,295 @@
|
|||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
from omegaconf import OmegaConf
|
||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
import torch
|
||||||
|
import glob
|
||||||
|
import pickle
|
||||||
|
import sys
|
||||||
|
from tqdm import tqdm
|
||||||
|
import copy
|
||||||
|
import json
|
||||||
|
from musetalk.utils.utils import get_file_type,get_video_fps,datagen
|
||||||
|
from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder
|
||||||
|
from musetalk.utils.blending import get_image,get_image_prepare_material,get_image_blending
|
||||||
|
from musetalk.utils.utils import load_all_model
|
||||||
|
import shutil
|
||||||
|
|
||||||
|
import threading
|
||||||
|
import queue
|
||||||
|
|
||||||
|
import time
|
||||||
|
|
||||||
|
# load model weights
|
||||||
|
audio_processor,vae,unet,pe = load_all_model()
|
||||||
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||||
|
timesteps = torch.tensor([0], device=device)
|
||||||
|
|
||||||
|
|
||||||
|
def video2imgs(vid_path, save_path, ext = '.png',cut_frame = 10000000):
|
||||||
|
cap = cv2.VideoCapture(vid_path)
|
||||||
|
count = 0
|
||||||
|
while True:
|
||||||
|
if count > cut_frame:
|
||||||
|
break
|
||||||
|
ret, frame = cap.read()
|
||||||
|
if ret:
|
||||||
|
cv2.imwrite(f"{save_path}/{count:08d}.png", frame)
|
||||||
|
count += 1
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
|
||||||
|
def osmakedirs(path_list):
|
||||||
|
for path in path_list:
|
||||||
|
os.makedirs(path) if not os.path.exists(path) else None
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
class Avatar:
|
||||||
|
def __init__(self, avatar_id, video_path, bbox_shift, batch_size, preparation):
|
||||||
|
self.avatar_id = avatar_id
|
||||||
|
self.video_path = video_path
|
||||||
|
self.bbox_shift = bbox_shift
|
||||||
|
self.avatar_path = f"./results/avatars/{avatar_id}"
|
||||||
|
self.full_imgs_path = f"{self.avatar_path}/full_imgs"
|
||||||
|
self.coords_path = f"{self.avatar_path}/coords.pkl"
|
||||||
|
self.latents_out_path= f"{self.avatar_path}/latents.pt"
|
||||||
|
self.video_out_path = f"{self.avatar_path}/vid_output/"
|
||||||
|
self.mask_out_path =f"{self.avatar_path}/mask"
|
||||||
|
self.mask_coords_path =f"{self.avatar_path}/mask_coords.pkl"
|
||||||
|
self.avatar_info_path = f"{self.avatar_path}/avator_info.json"
|
||||||
|
self.avatar_info = {
|
||||||
|
"avatar_id":avatar_id,
|
||||||
|
"video_path":video_path,
|
||||||
|
"bbox_shift":bbox_shift
|
||||||
|
}
|
||||||
|
self.preparation = preparation
|
||||||
|
self.batch_size = batch_size
|
||||||
|
self.idx = 0
|
||||||
|
self.init()
|
||||||
|
|
||||||
|
def init(self):
|
||||||
|
if self.preparation:
|
||||||
|
if os.path.exists(self.avatar_path):
|
||||||
|
response = input(f"{self.avatar_id} exists, Do you want to re-create it ? (y/n)")
|
||||||
|
if response.lower() == "y":
|
||||||
|
shutil.rmtree(self.avatar_path)
|
||||||
|
print("*********************************")
|
||||||
|
print(f" creating avator: {self.avatar_id}")
|
||||||
|
print("*********************************")
|
||||||
|
osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path])
|
||||||
|
self.prepare_material()
|
||||||
|
else:
|
||||||
|
self.input_latent_list_cycle = torch.load(self.latents_out_path)
|
||||||
|
with open(self.coords_path, 'rb') as f:
|
||||||
|
self.coord_list_cycle = pickle.load(f)
|
||||||
|
input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]'))
|
||||||
|
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
||||||
|
self.frame_list_cycle = read_imgs(input_img_list)
|
||||||
|
with open(self.mask_coords_path, 'rb') as f:
|
||||||
|
self.mask_coords_list_cycle = pickle.load(f)
|
||||||
|
input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]'))
|
||||||
|
input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
||||||
|
self.mask_list_cycle = read_imgs(input_mask_list)
|
||||||
|
else:
|
||||||
|
print("*********************************")
|
||||||
|
print(f" creating avator: {self.avatar_id}")
|
||||||
|
print("*********************************")
|
||||||
|
osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path])
|
||||||
|
self.prepare_material()
|
||||||
|
else:
|
||||||
|
with open(self.avatar_info_path, "r") as f:
|
||||||
|
avatar_info = json.load(f)
|
||||||
|
|
||||||
|
if avatar_info['bbox_shift'] != self.avatar_info['bbox_shift']:
|
||||||
|
response = input(f" 【bbox_shift】 is changed, you need to re-create it ! (c/continue)")
|
||||||
|
if response.lower() == "c":
|
||||||
|
shutil.rmtree(self.avatar_path)
|
||||||
|
print("*********************************")
|
||||||
|
print(f" creating avator: {self.avatar_id}")
|
||||||
|
print("*********************************")
|
||||||
|
osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path])
|
||||||
|
self.prepare_material()
|
||||||
|
else:
|
||||||
|
sys.exit()
|
||||||
|
else:
|
||||||
|
self.input_latent_list_cycle = torch.load(self.latents_out_path)
|
||||||
|
with open(self.coords_path, 'rb') as f:
|
||||||
|
self.coord_list_cycle = pickle.load(f)
|
||||||
|
input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]'))
|
||||||
|
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
||||||
|
self.frame_list_cycle = read_imgs(input_img_list)
|
||||||
|
with open(self.mask_coords_path, 'rb') as f:
|
||||||
|
self.mask_coords_list_cycle = pickle.load(f)
|
||||||
|
input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]'))
|
||||||
|
input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
||||||
|
self.mask_list_cycle = read_imgs(input_mask_list)
|
||||||
|
|
||||||
|
def prepare_material(self):
|
||||||
|
print("preparing data materials ... ...")
|
||||||
|
with open(self.avatar_info_path, "w") as f:
|
||||||
|
json.dump(self.avatar_info, f)
|
||||||
|
|
||||||
|
if os.path.isfile(self.video_path):
|
||||||
|
video2imgs(self.video_path, self.full_imgs_path, ext = 'png')
|
||||||
|
else:
|
||||||
|
print(f"copy files in {self.video_path}")
|
||||||
|
files = os.listdir(self.video_path)
|
||||||
|
files.sort()
|
||||||
|
files = [file for file in files if file.split(".")[-1]=="png"]
|
||||||
|
for filename in files:
|
||||||
|
shutil.copyfile(f"{self.video_path}/{filename}", f"{self.full_imgs_path}/{filename}")
|
||||||
|
input_img_list = sorted(glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]')))
|
||||||
|
|
||||||
|
print("extracting landmarks...")
|
||||||
|
coord_list, frame_list = get_landmark_and_bbox(input_img_list, self.bbox_shift)
|
||||||
|
input_latent_list = []
|
||||||
|
idx = -1
|
||||||
|
# maker if the bbox is not sufficient
|
||||||
|
coord_placeholder = (0.0,0.0,0.0,0.0)
|
||||||
|
for bbox, frame in zip(coord_list, frame_list):
|
||||||
|
idx = idx + 1
|
||||||
|
if bbox == coord_placeholder:
|
||||||
|
continue
|
||||||
|
x1, y1, x2, y2 = bbox
|
||||||
|
crop_frame = frame[y1:y2, x1:x2]
|
||||||
|
resized_crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4)
|
||||||
|
latents = vae.get_latents_for_unet(resized_crop_frame)
|
||||||
|
input_latent_list.append(latents)
|
||||||
|
|
||||||
|
self.frame_list_cycle = frame_list + frame_list[::-1]
|
||||||
|
self.coord_list_cycle = coord_list + coord_list[::-1]
|
||||||
|
self.input_latent_list_cycle = input_latent_list + input_latent_list[::-1]
|
||||||
|
self.mask_coords_list_cycle = []
|
||||||
|
self.mask_list_cycle = []
|
||||||
|
|
||||||
|
for i,frame in enumerate(tqdm(self.frame_list_cycle)):
|
||||||
|
cv2.imwrite(f"{self.full_imgs_path}/{str(i).zfill(8)}.png",frame)
|
||||||
|
|
||||||
|
face_box = self.coord_list_cycle[i]
|
||||||
|
mask,crop_box = get_image_prepare_material(frame,face_box)
|
||||||
|
cv2.imwrite(f"{self.mask_out_path}/{str(i).zfill(8)}.png",mask)
|
||||||
|
self.mask_coords_list_cycle += [crop_box]
|
||||||
|
self.mask_list_cycle.append(mask)
|
||||||
|
|
||||||
|
with open(self.mask_coords_path, 'wb') as f:
|
||||||
|
pickle.dump(self.mask_coords_list_cycle, f)
|
||||||
|
|
||||||
|
with open(self.coords_path, 'wb') as f:
|
||||||
|
pickle.dump(self.coord_list_cycle, f)
|
||||||
|
|
||||||
|
torch.save(self.input_latent_list_cycle, os.path.join(self.latents_out_path))
|
||||||
|
#
|
||||||
|
|
||||||
|
def process_frames(self, res_frame_queue,video_len):
|
||||||
|
print(video_len)
|
||||||
|
while True:
|
||||||
|
if self.idx>=video_len-1:
|
||||||
|
break
|
||||||
|
try:
|
||||||
|
start = time.time()
|
||||||
|
res_frame = res_frame_queue.get(block=True, timeout=1)
|
||||||
|
except queue.Empty:
|
||||||
|
continue
|
||||||
|
|
||||||
|
bbox = self.coord_list_cycle[self.idx%(len(self.coord_list_cycle))]
|
||||||
|
ori_frame = copy.deepcopy(self.frame_list_cycle[self.idx%(len(self.frame_list_cycle))])
|
||||||
|
x1, y1, x2, y2 = bbox
|
||||||
|
try:
|
||||||
|
res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1))
|
||||||
|
except:
|
||||||
|
continue
|
||||||
|
mask = self.mask_list_cycle[self.idx%(len(self.mask_list_cycle))]
|
||||||
|
mask_crop_box = self.mask_coords_list_cycle[self.idx%(len(self.mask_coords_list_cycle))]
|
||||||
|
#combine_frame = get_image(ori_frame,res_frame,bbox)
|
||||||
|
combine_frame = get_image_blending(ori_frame,res_frame,bbox,mask,mask_crop_box)
|
||||||
|
|
||||||
|
fps = 1/(time.time()-start)
|
||||||
|
print(f"Generating the {self.idx}-th frame with FPS: {fps:.2f}")
|
||||||
|
cv2.imwrite(f"{self.avatar_path}/tmp/{str(self.idx).zfill(8)}.png",combine_frame)
|
||||||
|
self.idx = self.idx + 1
|
||||||
|
|
||||||
|
def inference(self, audio_path, out_vid_name, fps):
|
||||||
|
os.makedirs(self.avatar_path+'/tmp',exist_ok =True)
|
||||||
|
############################################## extract audio feature ##############################################
|
||||||
|
whisper_feature = audio_processor.audio2feat(audio_path)
|
||||||
|
whisper_chunks = audio_processor.feature2chunks(feature_array=whisper_feature,fps=fps)
|
||||||
|
############################################## inference batch by batch ##############################################
|
||||||
|
video_num = len(whisper_chunks)
|
||||||
|
print("start inference")
|
||||||
|
res_frame_queue = queue.Queue()
|
||||||
|
self.idx = 0
|
||||||
|
# # Create a sub-thread and start it
|
||||||
|
process_thread = threading.Thread(target=self.process_frames, args=(res_frame_queue,video_num))
|
||||||
|
process_thread.start()
|
||||||
|
start_time = time.time()
|
||||||
|
gen = datagen(whisper_chunks,self.input_latent_list_cycle, self.batch_size)
|
||||||
|
print(f"processing audio:{audio_path} costs {(time.time() - start_time) * 1000}ms")
|
||||||
|
start_time = time.time()
|
||||||
|
res_frame_list = []
|
||||||
|
|
||||||
|
for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/self.batch_size)))):
|
||||||
|
start_time = time.time()
|
||||||
|
tensor_list = [torch.FloatTensor(arr) for arr in whisper_batch]
|
||||||
|
audio_feature_batch = torch.stack(tensor_list).to(unet.device) # torch, B, 5*N,384
|
||||||
|
audio_feature_batch = pe(audio_feature_batch)
|
||||||
|
|
||||||
|
pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample
|
||||||
|
recon = vae.decode_latents(pred_latents)
|
||||||
|
for res_frame in recon:
|
||||||
|
res_frame_queue.put(res_frame)
|
||||||
|
# Close the queue and sub-thread after all tasks are completed
|
||||||
|
process_thread.join()
|
||||||
|
|
||||||
|
if out_vid_name is not None:
|
||||||
|
# optional
|
||||||
|
cmd_img2video = f"ffmpeg -y -v fatal -r {fps} -f image2 -i {self.avatar_path}/tmp/%08d.png -vcodec libx264 -vf format=rgb24,scale=out_color_matrix=bt709,format=yuv420p -crf 18 {self.avatar_path}/temp.mp4"
|
||||||
|
print(cmd_img2video)
|
||||||
|
os.system(cmd_img2video)
|
||||||
|
|
||||||
|
output_vid = os.path.join(self.video_out_path, out_vid_name+".mp4") # on
|
||||||
|
cmd_combine_audio = f"ffmpeg -y -v fatal -i {audio_path} -i {self.avatar_path}/temp.mp4 {output_vid}"
|
||||||
|
print(cmd_combine_audio)
|
||||||
|
os.system(cmd_combine_audio)
|
||||||
|
|
||||||
|
os.remove(f"{self.avatar_path}/temp.mp4")
|
||||||
|
shutil.rmtree(f"{self.avatar_path}/tmp")
|
||||||
|
print(f"result is save to {output_vid}")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
'''
|
||||||
|
This script is used to simulate online chatting and applies necessary pre-processing such as face detection and face parsing in advance. During online chatting, only UNet and the VAE decoder are involved, which makes MuseTalk real-time.
|
||||||
|
'''
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("--inference_config", type=str, default="configs/inference/realtime.yaml")
|
||||||
|
parser.add_argument("--fps", type=int, default=25)
|
||||||
|
parser.add_argument("--batch_size", type=int, default=4)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
inference_config = OmegaConf.load(args.inference_config)
|
||||||
|
print(inference_config)
|
||||||
|
|
||||||
|
|
||||||
|
for avatar_id in inference_config:
|
||||||
|
data_preparation = inference_config[avatar_id]["preparation"]
|
||||||
|
video_path = inference_config[avatar_id]["video_path"]
|
||||||
|
bbox_shift = inference_config[avatar_id]["bbox_shift"]
|
||||||
|
avatar = Avatar(
|
||||||
|
avatar_id = avatar_id,
|
||||||
|
video_path = video_path,
|
||||||
|
bbox_shift = bbox_shift,
|
||||||
|
batch_size = args.batch_size,
|
||||||
|
preparation= data_preparation)
|
||||||
|
|
||||||
|
audio_clips = inference_config[avatar_id]["audio_clips"]
|
||||||
|
for audio_num, audio_path in audio_clips.items():
|
||||||
|
print("Inferring using:",audio_path)
|
||||||
|
avatar.inference(audio_path, audio_num, args.fps)
|
||||||
|
|
||||||
Reference in New Issue
Block a user