From 0387c39a939082123514b4f716e549324df3d9c7 Mon Sep 17 00:00:00 2001 From: czk32611 Date: Thu, 18 Apr 2024 12:05:22 +0800 Subject: [PATCH] Add codes for real time inference --- README.md | 32 +++- configs/inference/realtime.yaml | 10 ++ musetalk/utils/blending.py | 41 +++++ scripts/realtime_inference.py | 295 ++++++++++++++++++++++++++++++++ 4 files changed, 373 insertions(+), 5 deletions(-) create mode 100644 configs/inference/realtime.yaml create mode 100644 scripts/realtime_inference.py diff --git a/README.md b/README.md index 258f069..deb3d89 100644 --- a/README.md +++ b/README.md @@ -11,7 +11,7 @@ Chao Zhan, Wenjiang Zhou (*Equal Contribution, Corresponding Author, benbinwu@tencent.com) -**[github](https://github.com/TMElyralab/MuseTalk)** **[huggingface](https://huggingface.co/TMElyralab/MuseTalk)** **[gradio](https://huggingface.co/spaces/TMElyralab/MuseTalk)** **Project (comming soon)** **Technical report (comming soon)** +**[github](https://github.com/TMElyralab/MuseTalk)** **[huggingface](https://huggingface.co/TMElyralab/MuseTalk)** **[space](https://huggingface.co/spaces/TMElyralab/MuseTalk)** **Project (comming soon)** **Technical report (comming soon)** We introduce `MuseTalk`, a **real-time high quality** lip-syncing model (30fps+ on an NVIDIA Tesla V100). MuseTalk can be applied with input videos, e.g., generated by [MuseV](https://github.com/TMElyralab/MuseV), as a complete virtual human solution. @@ -28,12 +28,13 @@ We introduce `MuseTalk`, a **real-time high quality** lip-syncing model (30fps+ # News - [04/02/2024] Release MuseTalk project and pretrained models. - [04/16/2024] Release Gradio [demo](https://huggingface.co/spaces/TMElyralab/MuseTalk) on HuggingFace Spaces (thanks to HF team for their community grant) +- [04/17/2024] :mega: We release a pipeline that utilizes MuseTalk for real-time inference. ## Model ![Model Structure](assets/figs/musetalk_arc.jpg) MuseTalk was trained in latent spaces, where the images were encoded by a freezed VAE. The audio was encoded by a freezed `whisper-tiny` model. The architecture of the generation network was borrowed from the UNet of the `stable-diffusion-v1-4`, where the audio embeddings were fused to the image embeddings by cross-attention. -Note that although we use a very similar architecture as Stable Diffusion, MuseTalk is distinct in that it is `Not` a diffusion model. Instead, MuseTalk operates by inpainting in the latent space with `a single step`. +Note that although we use a very similar architecture as Stable Diffusion, MuseTalk is distinct in that it is **NOT** a diffusion model. Instead, MuseTalk operates by inpainting in the latent space with a single step. ## Cases ### MuseV + MuseTalk make human photos alive! @@ -162,7 +163,7 @@ Note that although we use a very similar architecture as Stable Diffusion, MuseT # TODO: - [x] trained models and inference codes. - [x] Huggingface Gradio [demo](https://huggingface.co/spaces/TMElyralab/MuseTalk). -- [ ] codes for real-time inference. +- [x] codes for real-time inference. - [ ] technical report. - [ ] training codes. - [ ] a better model (may take longer). @@ -262,9 +263,30 @@ python -m scripts.inference --inference_config configs/inference/test.yaml --bbo As a complete solution to virtual human generation, you are suggested to first apply [MuseV](https://github.com/TMElyralab/MuseV) to generate a video (text-to-video, image-to-video or pose-to-video) by referring [this](https://github.com/TMElyralab/MuseV?tab=readme-ov-file#text2video). Frame interpolation is suggested to increase frame rate. Then, you can use `MuseTalk` to generate a lip-sync video by referring [this](https://github.com/TMElyralab/MuseTalk?tab=readme-ov-file#inference). -# Note +#### :new: Real-time inference -If you want to launch online video chats, you are suggested to generate videos using MuseV and apply necessary pre-processing such as face detection and face parsing in advance. During online chatting, only UNet and the VAE decoder are involved, which makes MuseTalk real-time. +Here, we provide the inference script. This script first applies necessary pre-processing such as face detection, face parsing and VAE encode in advance. During inference, only UNet and the VAE decoder are involved, which makes MuseTalk real-time. +``` +python -m scripts.realtime_inference --inference_config configs/inference/realtime.yaml +``` +configs/inference/realtime.yaml is the path to the real-time inference configuration file, including `preparation`, `video_path` , `bbox_shift` and `audio_clips`. + +1. Set `preparation` to `True` in `realtime.yaml` to prepare the materials for a new `avatar`. (If the `bbox_shift` has changed, you also need to re-prepare the materials.) +1. After that, the `avatar` will use an audio clip selected from `audio_clips` to generate video. + ``` + Inferring using: data/audio/yongen.wav + ``` +1. While MuseTalk is inferring, sub-threads can simultaneously stream the results to the users. The generation process can achieve up to 50fps on an NVIDIA Tesla V100. + ``` + 2%|██▍ | 3/141 [00:00<00:32, 4.30it/s] # inference process + Generating the 6-th frame with FPS: 48.58 # playing process + Generating the 7-th frame with FPS: 48.74 + Generating the 8-th frame with FPS: 49.17 + 3%|███▎ | 4/141 [00:00<00:32, 4.21it/s] + ``` +1. Set `preparation` to `False` and run this script if you want to genrate more videos using the same avatar. + +If you want to generate multiple videos using the same avatar/video, you can also use this script to **SIGNIFICANTLY** expedite the generation process. # Acknowledgement diff --git a/configs/inference/realtime.yaml b/configs/inference/realtime.yaml new file mode 100644 index 0000000..d4092ac --- /dev/null +++ b/configs/inference/realtime.yaml @@ -0,0 +1,10 @@ +avator_1: + preparation: False + bbox_shift: 5 + video_path: "data/video/sun.mp4" + audio_clips: + audio_0: "data/audio/yongen.wav" + audio_1: "data/audio/sun.wav" + + + diff --git a/musetalk/utils/blending.py b/musetalk/utils/blending.py index 0a9ec3e..d69e435 100644 --- a/musetalk/utils/blending.py +++ b/musetalk/utils/blending.py @@ -57,3 +57,44 @@ def get_image(image,face,face_box,upper_boundary_ratio = 0.5,expand=1.2): body.paste(face_large, crop_box[:2], mask_image) body = np.array(body) return body[:,:,::-1] + +def get_image_prepare_material(image,face_box,upper_boundary_ratio = 0.5,expand=1.2): + body = Image.fromarray(image[:,:,::-1]) + + x, y, x1, y1 = face_box + #print(x1-x,y1-y) + crop_box, s = get_crop_box(face_box, expand) + x_s, y_s, x_e, y_e = crop_box + + face_large = body.crop(crop_box) + ori_shape = face_large.size + + mask_image = face_seg(face_large) + mask_small = mask_image.crop((x-x_s, y-y_s, x1-x_s, y1-y_s)) + mask_image = Image.new('L', ori_shape, 0) + mask_image.paste(mask_small, (x-x_s, y-y_s, x1-x_s, y1-y_s)) + + # keep upper_boundary_ratio of talking area + width, height = mask_image.size + top_boundary = int(height * upper_boundary_ratio) + modified_mask_image = Image.new('L', ori_shape, 0) + modified_mask_image.paste(mask_image.crop((0, top_boundary, width, height)), (0, top_boundary)) + + blur_kernel_size = int(0.1 * ori_shape[0] // 2 * 2) + 1 + mask_array = cv2.GaussianBlur(np.array(modified_mask_image), (blur_kernel_size, blur_kernel_size), 0) + return mask_array,crop_box + +def get_image_blending(image,face,face_box,mask_array,crop_box): + body = Image.fromarray(image[:,:,::-1]) + face = Image.fromarray(face[:,:,::-1]) + + x, y, x1, y1 = face_box + x_s, y_s, x_e, y_e = crop_box + face_large = body.crop(crop_box) + + mask_image = Image.fromarray(mask_array) + mask_image = mask_image.convert("L") + face_large.paste(face, (x-x_s, y-y_s, x1-x_s, y1-y_s)) + body.paste(face_large, crop_box[:2], mask_image) + body = np.array(body) + return body[:,:,::-1] \ No newline at end of file diff --git a/scripts/realtime_inference.py b/scripts/realtime_inference.py new file mode 100644 index 0000000..07874c9 --- /dev/null +++ b/scripts/realtime_inference.py @@ -0,0 +1,295 @@ +import argparse +import os +from omegaconf import OmegaConf +import numpy as np +import cv2 +import torch +import glob +import pickle +import sys +from tqdm import tqdm +import copy +import json +from musetalk.utils.utils import get_file_type,get_video_fps,datagen +from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder +from musetalk.utils.blending import get_image,get_image_prepare_material,get_image_blending +from musetalk.utils.utils import load_all_model +import shutil + +import threading +import queue + +import time + +# load model weights +audio_processor,vae,unet,pe = load_all_model() +device = torch.device("cuda" if torch.cuda.is_available() else "cpu") +timesteps = torch.tensor([0], device=device) + + +def video2imgs(vid_path, save_path, ext = '.png',cut_frame = 10000000): + cap = cv2.VideoCapture(vid_path) + count = 0 + while True: + if count > cut_frame: + break + ret, frame = cap.read() + if ret: + cv2.imwrite(f"{save_path}/{count:08d}.png", frame) + count += 1 + else: + break + +def osmakedirs(path_list): + for path in path_list: + os.makedirs(path) if not os.path.exists(path) else None + + +@torch.no_grad() +class Avatar: + def __init__(self, avatar_id, video_path, bbox_shift, batch_size, preparation): + self.avatar_id = avatar_id + self.video_path = video_path + self.bbox_shift = bbox_shift + self.avatar_path = f"./results/avatars/{avatar_id}" + self.full_imgs_path = f"{self.avatar_path}/full_imgs" + self.coords_path = f"{self.avatar_path}/coords.pkl" + self.latents_out_path= f"{self.avatar_path}/latents.pt" + self.video_out_path = f"{self.avatar_path}/vid_output/" + self.mask_out_path =f"{self.avatar_path}/mask" + self.mask_coords_path =f"{self.avatar_path}/mask_coords.pkl" + self.avatar_info_path = f"{self.avatar_path}/avator_info.json" + self.avatar_info = { + "avatar_id":avatar_id, + "video_path":video_path, + "bbox_shift":bbox_shift + } + self.preparation = preparation + self.batch_size = batch_size + self.idx = 0 + self.init() + + def init(self): + if self.preparation: + if os.path.exists(self.avatar_path): + response = input(f"{self.avatar_id} exists, Do you want to re-create it ? (y/n)") + if response.lower() == "y": + shutil.rmtree(self.avatar_path) + print("*********************************") + print(f" creating avator: {self.avatar_id}") + print("*********************************") + osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path]) + self.prepare_material() + else: + self.input_latent_list_cycle = torch.load(self.latents_out_path) + with open(self.coords_path, 'rb') as f: + self.coord_list_cycle = pickle.load(f) + input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]')) + input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) + self.frame_list_cycle = read_imgs(input_img_list) + with open(self.mask_coords_path, 'rb') as f: + self.mask_coords_list_cycle = pickle.load(f) + input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]')) + input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) + self.mask_list_cycle = read_imgs(input_mask_list) + else: + print("*********************************") + print(f" creating avator: {self.avatar_id}") + print("*********************************") + osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path]) + self.prepare_material() + else: + with open(self.avatar_info_path, "r") as f: + avatar_info = json.load(f) + + if avatar_info['bbox_shift'] != self.avatar_info['bbox_shift']: + response = input(f" 【bbox_shift】 is changed, you need to re-create it ! (c/continue)") + if response.lower() == "c": + shutil.rmtree(self.avatar_path) + print("*********************************") + print(f" creating avator: {self.avatar_id}") + print("*********************************") + osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path]) + self.prepare_material() + else: + sys.exit() + else: + self.input_latent_list_cycle = torch.load(self.latents_out_path) + with open(self.coords_path, 'rb') as f: + self.coord_list_cycle = pickle.load(f) + input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]')) + input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) + self.frame_list_cycle = read_imgs(input_img_list) + with open(self.mask_coords_path, 'rb') as f: + self.mask_coords_list_cycle = pickle.load(f) + input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]')) + input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0])) + self.mask_list_cycle = read_imgs(input_mask_list) + + def prepare_material(self): + print("preparing data materials ... ...") + with open(self.avatar_info_path, "w") as f: + json.dump(self.avatar_info, f) + + if os.path.isfile(self.video_path): + video2imgs(self.video_path, self.full_imgs_path, ext = 'png') + else: + print(f"copy files in {self.video_path}") + files = os.listdir(self.video_path) + files.sort() + files = [file for file in files if file.split(".")[-1]=="png"] + for filename in files: + shutil.copyfile(f"{self.video_path}/{filename}", f"{self.full_imgs_path}/{filename}") + input_img_list = sorted(glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]'))) + + print("extracting landmarks...") + coord_list, frame_list = get_landmark_and_bbox(input_img_list, self.bbox_shift) + input_latent_list = [] + idx = -1 + # maker if the bbox is not sufficient + coord_placeholder = (0.0,0.0,0.0,0.0) + for bbox, frame in zip(coord_list, frame_list): + idx = idx + 1 + if bbox == coord_placeholder: + continue + x1, y1, x2, y2 = bbox + crop_frame = frame[y1:y2, x1:x2] + resized_crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4) + latents = vae.get_latents_for_unet(resized_crop_frame) + input_latent_list.append(latents) + + self.frame_list_cycle = frame_list + frame_list[::-1] + self.coord_list_cycle = coord_list + coord_list[::-1] + self.input_latent_list_cycle = input_latent_list + input_latent_list[::-1] + self.mask_coords_list_cycle = [] + self.mask_list_cycle = [] + + for i,frame in enumerate(tqdm(self.frame_list_cycle)): + cv2.imwrite(f"{self.full_imgs_path}/{str(i).zfill(8)}.png",frame) + + face_box = self.coord_list_cycle[i] + mask,crop_box = get_image_prepare_material(frame,face_box) + cv2.imwrite(f"{self.mask_out_path}/{str(i).zfill(8)}.png",mask) + self.mask_coords_list_cycle += [crop_box] + self.mask_list_cycle.append(mask) + + with open(self.mask_coords_path, 'wb') as f: + pickle.dump(self.mask_coords_list_cycle, f) + + with open(self.coords_path, 'wb') as f: + pickle.dump(self.coord_list_cycle, f) + + torch.save(self.input_latent_list_cycle, os.path.join(self.latents_out_path)) + # + + def process_frames(self, res_frame_queue,video_len): + print(video_len) + while True: + if self.idx>=video_len-1: + break + try: + start = time.time() + res_frame = res_frame_queue.get(block=True, timeout=1) + except queue.Empty: + continue + + bbox = self.coord_list_cycle[self.idx%(len(self.coord_list_cycle))] + ori_frame = copy.deepcopy(self.frame_list_cycle[self.idx%(len(self.frame_list_cycle))]) + x1, y1, x2, y2 = bbox + try: + res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1)) + except: + continue + mask = self.mask_list_cycle[self.idx%(len(self.mask_list_cycle))] + mask_crop_box = self.mask_coords_list_cycle[self.idx%(len(self.mask_coords_list_cycle))] + #combine_frame = get_image(ori_frame,res_frame,bbox) + combine_frame = get_image_blending(ori_frame,res_frame,bbox,mask,mask_crop_box) + + fps = 1/(time.time()-start) + print(f"Generating the {self.idx}-th frame with FPS: {fps:.2f}") + cv2.imwrite(f"{self.avatar_path}/tmp/{str(self.idx).zfill(8)}.png",combine_frame) + self.idx = self.idx + 1 + + def inference(self, audio_path, out_vid_name, fps): + os.makedirs(self.avatar_path+'/tmp',exist_ok =True) + ############################################## extract audio feature ############################################## + whisper_feature = audio_processor.audio2feat(audio_path) + whisper_chunks = audio_processor.feature2chunks(feature_array=whisper_feature,fps=fps) + ############################################## inference batch by batch ############################################## + video_num = len(whisper_chunks) + print("start inference") + res_frame_queue = queue.Queue() + self.idx = 0 + # # Create a sub-thread and start it + process_thread = threading.Thread(target=self.process_frames, args=(res_frame_queue,video_num)) + process_thread.start() + start_time = time.time() + gen = datagen(whisper_chunks,self.input_latent_list_cycle, self.batch_size) + print(f"processing audio:{audio_path} costs {(time.time() - start_time) * 1000}ms") + start_time = time.time() + res_frame_list = [] + + for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/self.batch_size)))): + start_time = time.time() + tensor_list = [torch.FloatTensor(arr) for arr in whisper_batch] + audio_feature_batch = torch.stack(tensor_list).to(unet.device) # torch, B, 5*N,384 + audio_feature_batch = pe(audio_feature_batch) + + pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample + recon = vae.decode_latents(pred_latents) + for res_frame in recon: + res_frame_queue.put(res_frame) + # Close the queue and sub-thread after all tasks are completed + process_thread.join() + + if out_vid_name is not None: + # optional + cmd_img2video = f"ffmpeg -y -v fatal -r {fps} -f image2 -i {self.avatar_path}/tmp/%08d.png -vcodec libx264 -vf format=rgb24,scale=out_color_matrix=bt709,format=yuv420p -crf 18 {self.avatar_path}/temp.mp4" + print(cmd_img2video) + os.system(cmd_img2video) + + output_vid = os.path.join(self.video_out_path, out_vid_name+".mp4") # on + cmd_combine_audio = f"ffmpeg -y -v fatal -i {audio_path} -i {self.avatar_path}/temp.mp4 {output_vid}" + print(cmd_combine_audio) + os.system(cmd_combine_audio) + + os.remove(f"{self.avatar_path}/temp.mp4") + shutil.rmtree(f"{self.avatar_path}/tmp") + print(f"result is save to {output_vid}") + + + + + +if __name__ == "__main__": + ''' + This script is used to simulate online chatting and applies necessary pre-processing such as face detection and face parsing in advance. During online chatting, only UNet and the VAE decoder are involved, which makes MuseTalk real-time. + ''' + + parser = argparse.ArgumentParser() + parser.add_argument("--inference_config", type=str, default="configs/inference/realtime.yaml") + parser.add_argument("--fps", type=int, default=25) + parser.add_argument("--batch_size", type=int, default=4) + + args = parser.parse_args() + + inference_config = OmegaConf.load(args.inference_config) + print(inference_config) + + + for avatar_id in inference_config: + data_preparation = inference_config[avatar_id]["preparation"] + video_path = inference_config[avatar_id]["video_path"] + bbox_shift = inference_config[avatar_id]["bbox_shift"] + avatar = Avatar( + avatar_id = avatar_id, + video_path = video_path, + bbox_shift = bbox_shift, + batch_size = args.batch_size, + preparation= data_preparation) + + audio_clips = inference_config[avatar_id]["audio_clips"] + for audio_num, audio_path in audio_clips.items(): + print("Inferring using:",audio_path) + avatar.inference(audio_path, audio_num, args.fps) + \ No newline at end of file