mirror of
https://github.com/TMElyralab/MuseTalk.git
synced 2026-02-04 17:39:20 +08:00
Add codes for real time inference
This commit is contained in:
295
scripts/realtime_inference.py
Normal file
295
scripts/realtime_inference.py
Normal file
@@ -0,0 +1,295 @@
|
||||
import argparse
|
||||
import os
|
||||
from omegaconf import OmegaConf
|
||||
import numpy as np
|
||||
import cv2
|
||||
import torch
|
||||
import glob
|
||||
import pickle
|
||||
import sys
|
||||
from tqdm import tqdm
|
||||
import copy
|
||||
import json
|
||||
from musetalk.utils.utils import get_file_type,get_video_fps,datagen
|
||||
from musetalk.utils.preprocessing import get_landmark_and_bbox,read_imgs,coord_placeholder
|
||||
from musetalk.utils.blending import get_image,get_image_prepare_material,get_image_blending
|
||||
from musetalk.utils.utils import load_all_model
|
||||
import shutil
|
||||
|
||||
import threading
|
||||
import queue
|
||||
|
||||
import time
|
||||
|
||||
# load model weights
|
||||
audio_processor,vae,unet,pe = load_all_model()
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
timesteps = torch.tensor([0], device=device)
|
||||
|
||||
|
||||
def video2imgs(vid_path, save_path, ext = '.png',cut_frame = 10000000):
|
||||
cap = cv2.VideoCapture(vid_path)
|
||||
count = 0
|
||||
while True:
|
||||
if count > cut_frame:
|
||||
break
|
||||
ret, frame = cap.read()
|
||||
if ret:
|
||||
cv2.imwrite(f"{save_path}/{count:08d}.png", frame)
|
||||
count += 1
|
||||
else:
|
||||
break
|
||||
|
||||
def osmakedirs(path_list):
|
||||
for path in path_list:
|
||||
os.makedirs(path) if not os.path.exists(path) else None
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
class Avatar:
|
||||
def __init__(self, avatar_id, video_path, bbox_shift, batch_size, preparation):
|
||||
self.avatar_id = avatar_id
|
||||
self.video_path = video_path
|
||||
self.bbox_shift = bbox_shift
|
||||
self.avatar_path = f"./results/avatars/{avatar_id}"
|
||||
self.full_imgs_path = f"{self.avatar_path}/full_imgs"
|
||||
self.coords_path = f"{self.avatar_path}/coords.pkl"
|
||||
self.latents_out_path= f"{self.avatar_path}/latents.pt"
|
||||
self.video_out_path = f"{self.avatar_path}/vid_output/"
|
||||
self.mask_out_path =f"{self.avatar_path}/mask"
|
||||
self.mask_coords_path =f"{self.avatar_path}/mask_coords.pkl"
|
||||
self.avatar_info_path = f"{self.avatar_path}/avator_info.json"
|
||||
self.avatar_info = {
|
||||
"avatar_id":avatar_id,
|
||||
"video_path":video_path,
|
||||
"bbox_shift":bbox_shift
|
||||
}
|
||||
self.preparation = preparation
|
||||
self.batch_size = batch_size
|
||||
self.idx = 0
|
||||
self.init()
|
||||
|
||||
def init(self):
|
||||
if self.preparation:
|
||||
if os.path.exists(self.avatar_path):
|
||||
response = input(f"{self.avatar_id} exists, Do you want to re-create it ? (y/n)")
|
||||
if response.lower() == "y":
|
||||
shutil.rmtree(self.avatar_path)
|
||||
print("*********************************")
|
||||
print(f" creating avator: {self.avatar_id}")
|
||||
print("*********************************")
|
||||
osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path])
|
||||
self.prepare_material()
|
||||
else:
|
||||
self.input_latent_list_cycle = torch.load(self.latents_out_path)
|
||||
with open(self.coords_path, 'rb') as f:
|
||||
self.coord_list_cycle = pickle.load(f)
|
||||
input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]'))
|
||||
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
||||
self.frame_list_cycle = read_imgs(input_img_list)
|
||||
with open(self.mask_coords_path, 'rb') as f:
|
||||
self.mask_coords_list_cycle = pickle.load(f)
|
||||
input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]'))
|
||||
input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
||||
self.mask_list_cycle = read_imgs(input_mask_list)
|
||||
else:
|
||||
print("*********************************")
|
||||
print(f" creating avator: {self.avatar_id}")
|
||||
print("*********************************")
|
||||
osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path])
|
||||
self.prepare_material()
|
||||
else:
|
||||
with open(self.avatar_info_path, "r") as f:
|
||||
avatar_info = json.load(f)
|
||||
|
||||
if avatar_info['bbox_shift'] != self.avatar_info['bbox_shift']:
|
||||
response = input(f" 【bbox_shift】 is changed, you need to re-create it ! (c/continue)")
|
||||
if response.lower() == "c":
|
||||
shutil.rmtree(self.avatar_path)
|
||||
print("*********************************")
|
||||
print(f" creating avator: {self.avatar_id}")
|
||||
print("*********************************")
|
||||
osmakedirs([self.avatar_path,self.full_imgs_path,self.video_out_path,self.mask_out_path])
|
||||
self.prepare_material()
|
||||
else:
|
||||
sys.exit()
|
||||
else:
|
||||
self.input_latent_list_cycle = torch.load(self.latents_out_path)
|
||||
with open(self.coords_path, 'rb') as f:
|
||||
self.coord_list_cycle = pickle.load(f)
|
||||
input_img_list = glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]'))
|
||||
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
||||
self.frame_list_cycle = read_imgs(input_img_list)
|
||||
with open(self.mask_coords_path, 'rb') as f:
|
||||
self.mask_coords_list_cycle = pickle.load(f)
|
||||
input_mask_list = glob.glob(os.path.join(self.mask_out_path, '*.[jpJP][pnPN]*[gG]'))
|
||||
input_mask_list = sorted(input_mask_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
|
||||
self.mask_list_cycle = read_imgs(input_mask_list)
|
||||
|
||||
def prepare_material(self):
|
||||
print("preparing data materials ... ...")
|
||||
with open(self.avatar_info_path, "w") as f:
|
||||
json.dump(self.avatar_info, f)
|
||||
|
||||
if os.path.isfile(self.video_path):
|
||||
video2imgs(self.video_path, self.full_imgs_path, ext = 'png')
|
||||
else:
|
||||
print(f"copy files in {self.video_path}")
|
||||
files = os.listdir(self.video_path)
|
||||
files.sort()
|
||||
files = [file for file in files if file.split(".")[-1]=="png"]
|
||||
for filename in files:
|
||||
shutil.copyfile(f"{self.video_path}/{filename}", f"{self.full_imgs_path}/{filename}")
|
||||
input_img_list = sorted(glob.glob(os.path.join(self.full_imgs_path, '*.[jpJP][pnPN]*[gG]')))
|
||||
|
||||
print("extracting landmarks...")
|
||||
coord_list, frame_list = get_landmark_and_bbox(input_img_list, self.bbox_shift)
|
||||
input_latent_list = []
|
||||
idx = -1
|
||||
# maker if the bbox is not sufficient
|
||||
coord_placeholder = (0.0,0.0,0.0,0.0)
|
||||
for bbox, frame in zip(coord_list, frame_list):
|
||||
idx = idx + 1
|
||||
if bbox == coord_placeholder:
|
||||
continue
|
||||
x1, y1, x2, y2 = bbox
|
||||
crop_frame = frame[y1:y2, x1:x2]
|
||||
resized_crop_frame = cv2.resize(crop_frame,(256,256),interpolation = cv2.INTER_LANCZOS4)
|
||||
latents = vae.get_latents_for_unet(resized_crop_frame)
|
||||
input_latent_list.append(latents)
|
||||
|
||||
self.frame_list_cycle = frame_list + frame_list[::-1]
|
||||
self.coord_list_cycle = coord_list + coord_list[::-1]
|
||||
self.input_latent_list_cycle = input_latent_list + input_latent_list[::-1]
|
||||
self.mask_coords_list_cycle = []
|
||||
self.mask_list_cycle = []
|
||||
|
||||
for i,frame in enumerate(tqdm(self.frame_list_cycle)):
|
||||
cv2.imwrite(f"{self.full_imgs_path}/{str(i).zfill(8)}.png",frame)
|
||||
|
||||
face_box = self.coord_list_cycle[i]
|
||||
mask,crop_box = get_image_prepare_material(frame,face_box)
|
||||
cv2.imwrite(f"{self.mask_out_path}/{str(i).zfill(8)}.png",mask)
|
||||
self.mask_coords_list_cycle += [crop_box]
|
||||
self.mask_list_cycle.append(mask)
|
||||
|
||||
with open(self.mask_coords_path, 'wb') as f:
|
||||
pickle.dump(self.mask_coords_list_cycle, f)
|
||||
|
||||
with open(self.coords_path, 'wb') as f:
|
||||
pickle.dump(self.coord_list_cycle, f)
|
||||
|
||||
torch.save(self.input_latent_list_cycle, os.path.join(self.latents_out_path))
|
||||
#
|
||||
|
||||
def process_frames(self, res_frame_queue,video_len):
|
||||
print(video_len)
|
||||
while True:
|
||||
if self.idx>=video_len-1:
|
||||
break
|
||||
try:
|
||||
start = time.time()
|
||||
res_frame = res_frame_queue.get(block=True, timeout=1)
|
||||
except queue.Empty:
|
||||
continue
|
||||
|
||||
bbox = self.coord_list_cycle[self.idx%(len(self.coord_list_cycle))]
|
||||
ori_frame = copy.deepcopy(self.frame_list_cycle[self.idx%(len(self.frame_list_cycle))])
|
||||
x1, y1, x2, y2 = bbox
|
||||
try:
|
||||
res_frame = cv2.resize(res_frame.astype(np.uint8),(x2-x1,y2-y1))
|
||||
except:
|
||||
continue
|
||||
mask = self.mask_list_cycle[self.idx%(len(self.mask_list_cycle))]
|
||||
mask_crop_box = self.mask_coords_list_cycle[self.idx%(len(self.mask_coords_list_cycle))]
|
||||
#combine_frame = get_image(ori_frame,res_frame,bbox)
|
||||
combine_frame = get_image_blending(ori_frame,res_frame,bbox,mask,mask_crop_box)
|
||||
|
||||
fps = 1/(time.time()-start)
|
||||
print(f"Generating the {self.idx}-th frame with FPS: {fps:.2f}")
|
||||
cv2.imwrite(f"{self.avatar_path}/tmp/{str(self.idx).zfill(8)}.png",combine_frame)
|
||||
self.idx = self.idx + 1
|
||||
|
||||
def inference(self, audio_path, out_vid_name, fps):
|
||||
os.makedirs(self.avatar_path+'/tmp',exist_ok =True)
|
||||
############################################## extract audio feature ##############################################
|
||||
whisper_feature = audio_processor.audio2feat(audio_path)
|
||||
whisper_chunks = audio_processor.feature2chunks(feature_array=whisper_feature,fps=fps)
|
||||
############################################## inference batch by batch ##############################################
|
||||
video_num = len(whisper_chunks)
|
||||
print("start inference")
|
||||
res_frame_queue = queue.Queue()
|
||||
self.idx = 0
|
||||
# # Create a sub-thread and start it
|
||||
process_thread = threading.Thread(target=self.process_frames, args=(res_frame_queue,video_num))
|
||||
process_thread.start()
|
||||
start_time = time.time()
|
||||
gen = datagen(whisper_chunks,self.input_latent_list_cycle, self.batch_size)
|
||||
print(f"processing audio:{audio_path} costs {(time.time() - start_time) * 1000}ms")
|
||||
start_time = time.time()
|
||||
res_frame_list = []
|
||||
|
||||
for i, (whisper_batch,latent_batch) in enumerate(tqdm(gen,total=int(np.ceil(float(video_num)/self.batch_size)))):
|
||||
start_time = time.time()
|
||||
tensor_list = [torch.FloatTensor(arr) for arr in whisper_batch]
|
||||
audio_feature_batch = torch.stack(tensor_list).to(unet.device) # torch, B, 5*N,384
|
||||
audio_feature_batch = pe(audio_feature_batch)
|
||||
|
||||
pred_latents = unet.model(latent_batch, timesteps, encoder_hidden_states=audio_feature_batch).sample
|
||||
recon = vae.decode_latents(pred_latents)
|
||||
for res_frame in recon:
|
||||
res_frame_queue.put(res_frame)
|
||||
# Close the queue and sub-thread after all tasks are completed
|
||||
process_thread.join()
|
||||
|
||||
if out_vid_name is not None:
|
||||
# optional
|
||||
cmd_img2video = f"ffmpeg -y -v fatal -r {fps} -f image2 -i {self.avatar_path}/tmp/%08d.png -vcodec libx264 -vf format=rgb24,scale=out_color_matrix=bt709,format=yuv420p -crf 18 {self.avatar_path}/temp.mp4"
|
||||
print(cmd_img2video)
|
||||
os.system(cmd_img2video)
|
||||
|
||||
output_vid = os.path.join(self.video_out_path, out_vid_name+".mp4") # on
|
||||
cmd_combine_audio = f"ffmpeg -y -v fatal -i {audio_path} -i {self.avatar_path}/temp.mp4 {output_vid}"
|
||||
print(cmd_combine_audio)
|
||||
os.system(cmd_combine_audio)
|
||||
|
||||
os.remove(f"{self.avatar_path}/temp.mp4")
|
||||
shutil.rmtree(f"{self.avatar_path}/tmp")
|
||||
print(f"result is save to {output_vid}")
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
'''
|
||||
This script is used to simulate online chatting and applies necessary pre-processing such as face detection and face parsing in advance. During online chatting, only UNet and the VAE decoder are involved, which makes MuseTalk real-time.
|
||||
'''
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--inference_config", type=str, default="configs/inference/realtime.yaml")
|
||||
parser.add_argument("--fps", type=int, default=25)
|
||||
parser.add_argument("--batch_size", type=int, default=4)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
inference_config = OmegaConf.load(args.inference_config)
|
||||
print(inference_config)
|
||||
|
||||
|
||||
for avatar_id in inference_config:
|
||||
data_preparation = inference_config[avatar_id]["preparation"]
|
||||
video_path = inference_config[avatar_id]["video_path"]
|
||||
bbox_shift = inference_config[avatar_id]["bbox_shift"]
|
||||
avatar = Avatar(
|
||||
avatar_id = avatar_id,
|
||||
video_path = video_path,
|
||||
bbox_shift = bbox_shift,
|
||||
batch_size = args.batch_size,
|
||||
preparation= data_preparation)
|
||||
|
||||
audio_clips = inference_config[avatar_id]["audio_clips"]
|
||||
for audio_num, audio_path in audio_clips.items():
|
||||
print("Inferring using:",audio_path)
|
||||
avatar.inference(audio_path, audio_num, args.fps)
|
||||
|
||||
Reference in New Issue
Block a user