mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-04 17:59:18 +08:00
177 lines
5.7 KiB
Markdown
177 lines
5.7 KiB
Markdown
# Evaluation
|
|
|
|
## opencompass
|
|
First, enter the `vlmevalkit` directory and install all dependencies:
|
|
```bash
|
|
cd vlmevalkit
|
|
pip install -r requirements.txt
|
|
```
|
|
<br />
|
|
|
|
Then, run `script/run_inference.sh`, which receives three input parameters in sequence: `MODELNAME`, `DATALIST`, and `MODE`. `MODELNAME` represents the name of the model, `DATALIST` represents the datasets used for inference, and `MODE` represents evaluation mode:
|
|
```bash
|
|
chmod +x ./script/run_inference.sh
|
|
./script/run_inference.sh $MODELNAME $DATALIST $MODE
|
|
```
|
|
<br />
|
|
|
|
The three available choices for `MODELNAME` are listed in `vlmeval/config.py`:
|
|
```bash
|
|
ungrouped = {
|
|
'MiniCPM-V':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V'),
|
|
'MiniCPM-V-2':partial(MiniCPM_V, model_path='openbmb/MiniCPM-V-2'),
|
|
'MiniCPM-Llama3-V-2_5':partial(MiniCPM_Llama3_V, model_path='openbmb/MiniCPM-Llama3-V-2_5'),
|
|
}
|
|
```
|
|
<br />
|
|
|
|
All available choices for `DATALIST` are listed in `vlmeval/utils/dataset_config.py`. While evaluating on a single dataset, call the dataset name directly without quotation marks; while evaluating on multiple datasets, separate the names of different datasets with spaces and add quotation marks at both ends:
|
|
```bash
|
|
$DATALIST="POPE ScienceQA_TEST ChartQA_TEST"
|
|
```
|
|
<br />
|
|
|
|
While scoring on each benchmark directly, set `MODE=all`. If only inference results are required, set `MODE=infer`. In order to reproduce the results in the table displayed on the homepage (columns between MME and RealWorldQA), you need to run the script according to the following settings:
|
|
```bash
|
|
# run on all 7 datasets
|
|
./script/run_inference.sh MiniCPM-Llama3-V-2_5 "MME MMBench_TEST_EN MMBench_TEST_CN MMMU_DEV_VAL MathVista_MINI LLaVABench RealWorldQA" all
|
|
|
|
# The following are instructions for running on a single dataset
|
|
# MME
|
|
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MME all
|
|
# MMBench_TEST_EN
|
|
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_EN all
|
|
# MMBench_TEST_CN
|
|
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MMBench_TEST_CN all
|
|
# MMMU_DEV_VAL
|
|
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MMMU_DEV_VAL all
|
|
# MathVista_MINI
|
|
./script/run_inference.sh MiniCPM-Llama3-V-2_5 MathVista_MINI all
|
|
# LLaVABench
|
|
./script/run_inference.sh MiniCPM-Llama3-V-2_5 LLaVABench all
|
|
# RealWorldQA
|
|
./script/run_inference.sh MiniCPM-Llama3-V-2_5 RealWorldQA all
|
|
```
|
|
<br />
|
|
|
|
## vqadataset
|
|
First, enter the `vqaeval` directory and install all dependencies. Then, create `downloads` subdirectory to store the downloaded dataset for all tasks:
|
|
```bash
|
|
cd vqaeval
|
|
pip install -r requirements.txt
|
|
mkdir downloads
|
|
```
|
|
<br />
|
|
|
|
Download the datasets from the following links and place it in the specified directories:
|
|
###### TextVQA
|
|
```bash
|
|
cd downloads
|
|
mkdir TextVQA && cd TextVQA
|
|
wget https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip
|
|
unzip train_val_images.zip && rm train_val_images.zip
|
|
mv train_val_images/train_images . && rm -rf train_val_images
|
|
wget https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_val.json
|
|
cd ../..
|
|
```
|
|
|
|
###### DocVQA / DocVQATest
|
|
|
|
```bash
|
|
cd downloads
|
|
mkdir DocVQA && cd DocVQA && mkdir spdocvqa_images
|
|
# Download Images and Annotations from Task 1 - Single Page Document Visual Question Answering at https://rrc.cvc.uab.es/?ch=17&com=downloads
|
|
# Move the spdocvqa_images.tar.gz and spdocvqa_qas.zip to DocVQA directory
|
|
tar -zxvf spdocvqa_images.tar.gz -C spdocvqa_images && rm spdocvqa_images.tar.gz
|
|
unzip spdocvqa_qas.zip && rm spdocvqa_qas.zip
|
|
cp spdocvqa_qas/val_v1.0_withQT.json . && cp spdocvqa_qas/test_v1.0.json . && rm -rf spdocvqa_qas
|
|
cd ../..
|
|
```
|
|
<br />
|
|
|
|
The `downloads` directory should be organized according to the following structure:
|
|
```bash
|
|
downloads
|
|
├── TextVQA
|
|
│ ├── train_images
|
|
│ │ ├── ...
|
|
│ ├── TextVQA_0.5.1_val.json
|
|
├── DocVQA
|
|
│ ├── spdocvqa_images
|
|
│ │ ├── ...
|
|
│ ├── val_v1.0_withQT.json
|
|
│ ├── test_v1.0.json
|
|
```
|
|
<br />
|
|
|
|
Modify the parameters in `shell/run_inference.sh` and run inference:
|
|
|
|
```bash
|
|
chmod +x ./shell/run_inference.sh
|
|
./shell/run_inference.sh
|
|
```
|
|
<br />
|
|
|
|
All optional parameters are listed in `eval_utils/getargs.py`. The meanings of some major parameters are listed as follows:
|
|
```bash
|
|
# path to images and their corresponding questions
|
|
# TextVQA
|
|
--textVQA_image_dir
|
|
--textVQA_ann_path
|
|
# DocVQA
|
|
--docVQA_image_dir
|
|
--docVQA_ann_path
|
|
# DocVQATest
|
|
--docVQATest_image_dir
|
|
--docVQATest_ann_path
|
|
|
|
# whether to eval on certain task
|
|
--eval_textVQA
|
|
--eval_docVQA
|
|
--eval_docVQATest
|
|
--eval_all
|
|
|
|
# model name and model path
|
|
--model_name
|
|
--model_path
|
|
# load model from ckpt
|
|
--ckpt
|
|
# the way the model processes input data, "interleave" represents interleaved image-text form, while "old" represents non-interleaved.
|
|
--generate_method
|
|
|
|
--batchsize
|
|
|
|
# path to save the outputs
|
|
--answer_path
|
|
```
|
|
<br />
|
|
|
|
While evaluating on different tasks, parameters need to be set as follows:
|
|
###### TextVQA
|
|
```bash
|
|
--eval_textVQA
|
|
--textVQA_image_dir ./downloads/TextVQA/train_images
|
|
--textVQA_ann_path ./downloads/TextVQA/TextVQA_0.5.1_val.json
|
|
```
|
|
|
|
###### DocVQA
|
|
```bash
|
|
--eval_docVQA
|
|
--docVQA_image_dir ./downloads/DocVQA/spdocvqa_images
|
|
--docVQA_ann_path ./downloads/DocVQA/val_v1.0_withQT.json
|
|
```
|
|
|
|
###### DocVQATest
|
|
```bash
|
|
--eval_docVQATest
|
|
--docVQATest_image_dir ./downloads/DocVQA/spdocvqa_images
|
|
--docVQATest_ann_path ./downloads/DocVQA/test_v1.0.json
|
|
```
|
|
|
|
<br />
|
|
|
|
For the DocVQATest task, in order to upload the inference results to the [official website](https://rrc.cvc.uab.es/?ch=17) for evaluation, run `shell/run_transform.sh` for format transformation after inference. `input_file_path` represents the path to the original output json, `output_file_path` represents the path to the transformed json:
|
|
```bash
|
|
chmod +x ./shell/run_transform.sh
|
|
./shell/run_transform.sh
|
|
``` |