5.3 KiB
Swift install
You can quickly install Swift using bash commands.
git clone https://github.com/modelscope/swift.git
cd swift
pip install -r requirements.txt
pip install -e '.[llm]'
Swift Infer
Inference using Swift can be carried out in two ways: through a command line interface and via Python code.
Quick start
Here are the steps to launch Swift from the Bash command line:
- Run the bash code will download the model of MiniCPM-Llama3-V-2_5 and run the inference
CUDA_VISIBLE_DEVICES=0 swift infer --model_type minicpm-v-v2_5-chat
- You can also run the code with more arguments below to run the inference:
model_id_or_path # 可以写huggingface的模型id或者本地模型地址
infer_backend ['AUTO', 'vllm', 'pt'] # 后段推理,默认auto
dtype ['bf16', 'fp16', 'fp32', 'AUTO'] # 计算精度
max_length # 最大长度
max_new_tokens: int = 2048 #最多生成多少token
do_sample: bool = True # 是否采样
temperature: float = 0.3 # 生成时的温度系数
top_k: int = 20
top_p: float = 0.7
repetition_penalty: float = 1.
num_beams: int = 1
stop_words: List[str] = None
quant_method ['bnb', 'hqq', 'eetq', 'awq', 'gptq', 'aqlm'] # 模型的量化方式
quantization_bit [0, 1, 2, 3, 4, 8] 默认是0,代表不使用量化
- Example:
CUDA_VISIBLE_DEVICES=0,1 swift infer \
--model_type minicpm-v-v2_5-chat \
--model_id_or_path /root/ld/ld_model_pretrain/MiniCPM-Llama3-V-2_5 \
--dtype bf16
Python code with swift infer
The following demonstrates using Python code to initiate inference with the MiniCPM-Llama3-V-2_5 model through Swift.
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' # 设置显卡数
from swift.llm import (
get_model_tokenizer, get_template, inference, ModelType,
get_default_template_type, inference_stream
) # 导入必要模块
from swift.utils import seed_everything # 设置随机种子
import torch
model_type = ModelType.minicpm_v_v2_5_chat
template_type = get_default_template_type(model_type) # 获取模板类型,主要是用于特殊token的构造和图像的处理流程
print(f'template_type: {template_type}')
model, tokenizer = get_model_tokenizer(model_type, torch.bfloat16,
model_id_or_path='/root/ld/ld_model_pretrain/MiniCPM-Llama3-V-2_5',
model_kwargs={'device_map': 'auto'}) # 加载模型,并设置模型类型,模型路径,模型参数,设备分配等,计算精度等等
model.generation_config.max_new_tokens = 256
template = get_template(template_type, tokenizer) # 根据模版类型构造模板
seed_everything(42)
images = ['http://modelscope-open.oss-cn-hangzhou.aliyuncs.com/images/road.png'] # 图片地址
query = '距离各城市多远?'
response, history = inference(model, template, query, images=images) # 推理获得结果
print(f'query: {query}')
print(f'response: {response}')
# 流式
query = '距离最远的城市是哪?'
gen = inference_stream(model, template, query, history, images=images) # 调用流式输出接口
print_idx = 0
print(f'query: {query}\nresponse: ', end='')
for response, history in gen:
delta = response[print_idx:]
print(delta, end='', flush=True)
print_idx = len(response)
print()
print(f'history: {history}')
Swift train
Swift supports training on the local dataset,the training steps are as follows:
- Make the train data like this:
{"query": "这张图片描述了什么", "response": "这张图片有一个大熊猫", "images": ["local_image_path"]}
{"query": "这张图片描述了什么", "response": "这张图片有一个大熊猫", "history": [], "images": ["image_path"]}
{"query": "竹子好吃么", "response": "看大熊猫的样子挺好吃呢", "history": [["这张图有什么", "这张图片有大熊猫"], ["大熊猫在干嘛", "吃竹子"]], "images": ["image_url"]}
-
Lora Tuning:
The lora target model are k and v weight in llm you should pay attention to the eval_steps,maybe you should set the eval_steps to a large value, like 200000,beacuase in the eval time , swift will return a memory bug so you should set the eval_steps to a very large value.
# Experimental environment: A100
# 32GB GPU memory
CUDA_VISIBLE_DEVICES=0 swift sft \
--model_type minicpm-v-v2_5-chat \
--dataset coco-en-2-mini \
-
All parameters finetune:
When the argument of lora_target_modules is ALL, the model will finetune all the parameters.
CUDA_VISIBLE_DEVICES=0,1 swift sft \
--model_type minicpm-v-v2_5-chat \
--dataset coco-en-2-mini \
--lora_target_modules ALL \
--eval_steps 200000
Lora Merge and Infer
The lora weight can be merge to the base model and then load to infer.
- Load the lora weight to infer run the follow code:
CUDA_VISIBLE_DEVICES=0 swift infer \
--ckpt_dir /your/lora/save/checkpoint
-
Merge the lora weight to the base model:
The code will load and merge the lora weight to the base model, save the merge model to the lora save path and load the merge model to infer
CUDA_VISIBLE_DEVICES=0 swift infer \
--ckpt_dir your/lora/save/checkpoint \
--merge_lora true