Files
MiniCPM-o/docs/minicpm_v1.md
2025-01-14 15:33:44 +08:00

215 lines
5.9 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

## MiniCPM-V 1.0
> Archive at2024-05-19
MiniCPM-V 1.0 is an efficient version with promising performance for deployment. The model is built based on SigLip-400M and [MiniCPM-2.4B](https://github.com/OpenBMB/MiniCPM/), connected by a perceiver resampler. Notable features of MiniCPM-V 1.0 include:
- ⚡️ **High Efficiency.**
MiniCPM-V 1.0 can be **efficiently deployed on most GPU cards and personal computers**, and **even on end devices such as mobile phones**. In terms of visual encoding, we compress the image representations into 64 tokens via a perceiver resampler, which is significantly fewer than other LMMs based on MLP architecture (typically > 512 tokens). This allows MiniCPM-V 1.0 to operate with **much less memory cost and higher speed during inference**.
- 🔥 **Promising Performance.**
MiniCPM-V 1.0 achieves **state-of-the-art performance** on multiple benchmarks (including MMMU, MME, and MMbech, etc) among models with comparable sizes, surpassing existing LMMs built on Phi-2. It even **achieves comparable or better performance than the 9.6B Qwen-VL-Chat**.
- 🙌 **Bilingual Support.**
MiniCPM-V 1.0 is **the first end-deployable LMM supporting bilingual multimodal interaction in English and Chinese**. This is achieved by generalizing multimodal capabilities across languages, a technique from the ICLR 2024 spotlight [paper](https://arxiv.org/abs/2308.12038).
### Evaluation
<div align="center">
<table style="margin: 0px auto;">
<thead>
<tr>
<th align="left">Model</th>
<th>Size</th>
<th nowrap="nowrap" >Visual Tokens</th>
<th>MME</th>
<th nowrap="nowrap" >MMB dev (en)</th>
<th nowrap="nowrap" >MMB dev (zh)</th>
<th nowrap="nowrap" >MMMU val</th>
<th nowrap="nowrap" >CMMMU val</th>
</tr>
</thead>
<tbody align="center">
<tr>
<td align="left">LLaVA-Phi</td>
<td align="right">3B</td>
<td>576</td>
<td>1335</td>
<td>59.8</td>
<td>- </td>
<td>- </td>
<td>- </td>
</tr>
<tr>
<td nowrap="nowrap" align="left">MobileVLM</td>
<td align="right">3B</td>
<td>144</td>
<td>1289</td>
<td>59.6</td>
<td>- </td>
<td>- </td>
<td>- </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >Imp-v1</td>
<td align="right">3B</td>
<td>576</td>
<td>1434</td>
<td>66.5</td>
<td>- </td>
<td>- </td>
<td>- </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >Qwen-VL-Chat</td>
<td align="right" >9.6B</td>
<td>256</td>
<td>1487</td>
<td>60.6 </td>
<td>56.7 </td>
<td>35.9 </td>
<td>30.7 </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" >CogVLM</td>
<td align="right">17.4B </td>
<td>1225</td>
<td>1438 </td>
<td>63.7 </td>
<td>53.8 </td>
<td>32.1 </td>
<td>- </td>
</tr>
<tr>
<td nowrap="nowrap" align="left" ><b>MiniCPM-V 1.0</b></td>
<td align="right">3B </td>
<td>64</td>
<td>1452 </td>
<td>67.9 </td>
<td>65.3 </td>
<td>37.2 </td>
<td>32.1 </td>
</tr>
</tbody>
</table>
</div>
### Examples
We deploy MiniCPM-V 1.0 on end devices. The demo video is the raw screen recording on a OnePlus 9R without edition.
<table align="center">
<p align="center">
<img src="assets/gif_cases/蛇_cn.gif" width=36%/>
<img src="assets/gif_cases/Mushroom_en.gif" width=36%/>
</p>
</table>
## Install
1. Clone this repository and navigate to the source folder
```bash
git clone https://github.com/OpenBMB/OmniLMM.git
cd OmniLMM
```
2. Create conda environment
```Shell
conda create -n OmniLMM python=3.10 -y
conda activate OmniLMM
```
3. Install dependencies
```shell
pip install -r requirements.txt
```
## Inference
### Model Zoo
| Model | Description | Download Link |
|:----------------------|:-------------------|:---------------:|
| MiniCPM-V 1.0 | The efficient version for end device deployment. | [🤗](https://huggingface.co/openbmb/MiniCPM-V) &nbsp;&nbsp; [<img src="./assets/modelscope_logo.png" width="20px"></img>](https://modelscope.cn/models/OpenBMB/MiniCPM-V/files) |
### Multi-turn Conversation
Please refer to the following codes to run `MiniCPM-V 1.0`.
<div align="center">
<img src="assets/worldmap_ck.jpg" width="500px">
</div>
```python
from chat import OmniLMMChat, img2base64
chat_model = OmniLMMChat('openbmb/MiniCPM-V')
im_64 = img2base64('./assets/worldmap_ck.jpg')
# First round chat
msgs = [{"role": "user", "content": "What is interesting about this image?"}]
inputs = {"image": im_64, "question": json.dumps(msgs)}
answer = chat_model.chat(inputs)
print(answer)
# Second round chat
# pass history context of multi-turn conversation
msgs.append({"role": "assistant", "content": answer})
msgs.append({"role": "user", "content": "Where is China in the image"})
inputs = {"image": im_64, "question": json.dumps(msgs)}
answer = chat_model.chat(inputs)
print(answer)
```
### Inference on Mac
<details>
<summary>Click to view example, MiniCPM-V 1.0 can run on Mac with MPS (Apple silicon or AMD GPUs). </summary>
```python
# test.py
import torch
from PIL import Image
from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained('openbmb/MiniCPM-V', trust_remote_code=True, torch_dtype=torch.bfloat16)
model = model.to(device='mps', dtype=torch.float16)
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V', trust_remote_code=True)
model.eval()
image = Image.open('./assets/worldmap_ck.jpg').convert('RGB')
question = 'What is interesting about this image?'
msgs = [{'role': 'user', 'content': question}]
answer, context, _ = model.chat(
image=image,
msgs=msgs,
context=None,
tokenizer=tokenizer,
sampling=True
)
print(answer)
```
Run with command:
```shell
PYTORCH_ENABLE_MPS_FALLBACK=1 python test.py
```
</details>
### Deployment on Mobile Phone
Currently MiniCPM-V 1.0 can be deployed on mobile phones with Android and Harmony operating systems. 🚀 Try it out [here](https://github.com/OpenBMB/mlc-MiniCPM).