mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-04 17:59:18 +08:00
Best Practice with LLaMA-Factory (#711)
* add llamafactory examples * tiny fix * update doc about inference
This commit is contained in:
@@ -131,8 +131,8 @@ Advancing popular visual capabilites from MiniCPM-V series, MiniCPM-o 2.6 can pr
|
|||||||
In addition to its friendly size, MiniCPM-o 2.6 also shows **state-of-the-art token density** (i.e., number of pixels encoded into each visual token). **It produces only 640 tokens when processing a 1.8M pixel image, which is 75% fewer than most models**. This directly improves the inference speed, first-token latency, memory usage, and power consumption. As a result, MiniCPM-o 2.6 can efficiently support **multimodal live streaming** on end-side devices such as iPad.
|
In addition to its friendly size, MiniCPM-o 2.6 also shows **state-of-the-art token density** (i.e., number of pixels encoded into each visual token). **It produces only 640 tokens when processing a 1.8M pixel image, which is 75% fewer than most models**. This directly improves the inference speed, first-token latency, memory usage, and power consumption. As a result, MiniCPM-o 2.6 can efficiently support **multimodal live streaming** on end-side devices such as iPad.
|
||||||
|
|
||||||
- 💫 **Easy Usage.**
|
- 💫 **Easy Usage.**
|
||||||
MiniCPM-o 2.6 can be easily used in various ways: (1) [llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-omni/examples/llava/README-minicpmo2.6.md) support for efficient CPU inference on local devices, (2) [int4](https://huggingface.co/openbmb/MiniCPM-o-2_6-int4) and [GGUF](https://huggingface.co/openbmb/MiniCPM-o-2_6-gguf) format quantized models in 16 sizes, (3) [vLLM](#efficient-inference-with-llamacpp-ollama-vllm) support for high-throughput and memory-efficient inference, (4) fine-tuning on new domains and tasks with [LLaMA-Factory](./docs/llamafactory_train.md), (5) quick [local WebUI demo](#chat-with-our-demo-on-gradio), and (6) online web demo on [server](https://minicpm-omni-webdemo-us.modelbest.cn/).
|
|
||||||
|
|
||||||
|
MiniCPM-o 2.6 can be easily used in various ways: (1) [llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-omni/examples/llava/README-minicpmo2.6.md) support for efficient CPU inference on local devices, (2) [int4](https://huggingface.co/openbmb/MiniCPM-o-2_6-int4) and [GGUF](https://huggingface.co/openbmb/MiniCPM-o-2_6-gguf) format quantized models in 16 sizes, (3) [vLLM](#efficient-inference-with-llamacpp-ollama-vllm) support for high-throughput and memory-efficient inference, (4) fine-tuning on new domains and tasks with [LLaMA-Factory](./docs/llamafactory_train_and_infer.md), (5) quick [local WebUI demo](#chat-with-our-demo-on-gradio), and (6) online web demo on [server](https://minicpm-omni-webdemo-us.modelbest.cn/).
|
||||||
|
|
||||||
**Model Architecture.**
|
**Model Architecture.**
|
||||||
|
|
||||||
@@ -2488,7 +2488,7 @@ We support simple fine-tuning with Hugging Face for MiniCPM-o 2.6, MiniCPM-V 2.6
|
|||||||
|
|
||||||
We support fine-tuning MiniCPM-o-2.6 and MiniCPM-V 2.6 with the LLaMA-Factory framework. LLaMA-Factory provides a solution for flexibly customizing the fine-tuning (Lora/Full/Qlora) of 200+ LLMs without the need for coding through the built-in web UI LLaMABoard. It supports various training methods like sft/ppo/dpo/kto and advanced algorithms like Galore/BAdam/LLaMA-Pro/Pissa/LongLoRA.
|
We support fine-tuning MiniCPM-o-2.6 and MiniCPM-V 2.6 with the LLaMA-Factory framework. LLaMA-Factory provides a solution for flexibly customizing the fine-tuning (Lora/Full/Qlora) of 200+ LLMs without the need for coding through the built-in web UI LLaMABoard. It supports various training methods like sft/ppo/dpo/kto and advanced algorithms like Galore/BAdam/LLaMA-Pro/Pissa/LongLoRA.
|
||||||
|
|
||||||
Best Practices: [MiniCPM-V-2.6 | MiniCPM-o-2.6](./docs/llamafactory_train.md).
|
Best Practices: [MiniCPM-o-2.6 | MiniCPM-V-2.6](./docs/llamafactory_train_and_infer.md).
|
||||||
|
|
||||||
|
|
||||||
### With the SWIFT Framework <!-- omit in toc -->
|
### With the SWIFT Framework <!-- omit in toc -->
|
||||||
|
|||||||
@@ -121,8 +121,8 @@ MiniCPM-o 2.6 进一步优化了 MiniCPM-V 2.6 的众多视觉理解能力,其
|
|||||||
|
|
||||||
|
|
||||||
- 💫 **易于使用。**
|
- 💫 **易于使用。**
|
||||||
MiniCPM-o 2.6 可以通过多种方式轻松使用:(1) [llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-omni/examples/llava/README-minicpmo2.6.md) 支持在本地设备上进行高效的 CPU 推理,(2) [int4](https://huggingface.co/openbmb/MiniCPM-V-2_6-int4) 和 [GGUF](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf) 格式的量化模型,有 16 种尺寸,(3) [vLLM](#基于-llamacppollamavllm-的高效推理) 支持高吞吐量和内存高效的推理,(4) 通过[LLaMA-Factory](./docs/llamafactory_train.md)框架针对新领域和任务进行微调,(5) 使用 [Gradio](#本地-webui-demo-) 快速设置本地 WebUI 演示,(6) 部署于服务器的在线 [demo](https://minicpm-omni-webdemo-us.modelbest.cn/)。
|
|
||||||
|
|
||||||
|
MiniCPM-o 2.6 可以通过多种方式轻松使用:(1) [llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-omni/examples/llava/README-minicpmo2.6.md) 支持在本地设备上进行高效的 CPU 推理,(2) [int4](https://huggingface.co/openbmb/MiniCPM-V-2_6-int4) 和 [GGUF](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf) 格式的量化模型,有 16 种尺寸,(3) [vLLM](#基于-llamacppollamavllm-的高效推理) 支持高吞吐量和内存高效的推理,(4) 通过[LLaMA-Factory](./docs/llamafactory_train_and_infer.md)框架针对新领域和任务进行微调,(5) 使用 [Gradio](#本地-webui-demo-) 快速设置本地 WebUI 演示,(6) 部署于服务器的在线 [demo](https://minicpm-omni-webdemo-us.modelbest.cn/)。
|
||||||
|
|
||||||
**模型架构。**
|
**模型架构。**
|
||||||
|
|
||||||
@@ -2498,7 +2498,7 @@ ollama 用法请参考[我们的fork ollama](https://github.com/OpenBMB/ollama/b
|
|||||||
|
|
||||||
我们支持使用 LLaMA-Factory 微调 MiniCPM-o-2.6 和 MiniCPM-V 2.6。LLaMA-Factory 提供了一种灵活定制 200 多个大型语言模型(LLM)微调(Lora/Full/Qlora)解决方案,无需编写代码,通过内置的 Web 用户界面 LLaMABoard 即可实现训练/推理/评估。它支持多种训练方法,如 sft/ppo/dpo/kto,并且还支持如 Galore/BAdam/LLaMA-Pro/Pissa/LongLoRA 等高级算法。
|
我们支持使用 LLaMA-Factory 微调 MiniCPM-o-2.6 和 MiniCPM-V 2.6。LLaMA-Factory 提供了一种灵活定制 200 多个大型语言模型(LLM)微调(Lora/Full/Qlora)解决方案,无需编写代码,通过内置的 Web 用户界面 LLaMABoard 即可实现训练/推理/评估。它支持多种训练方法,如 sft/ppo/dpo/kto,并且还支持如 Galore/BAdam/LLaMA-Pro/Pissa/LongLoRA 等高级算法。
|
||||||
|
|
||||||
最佳实践: [MiniCPM-V-2.6 | MiniCPM-o-2.6](https://github.com/openbmb/MiniCPM-V/blob/main/docs/llamafactory_train.md).
|
最佳实践: [MiniCPM-o-2.6 | MiniCPM-V-2.6](./docs/llamafactory_train_and_infer.md).
|
||||||
|
|
||||||
|
|
||||||
### 使用 SWIFT 框架 <!-- omit in toc -->
|
### 使用 SWIFT 框架 <!-- omit in toc -->
|
||||||
|
|||||||
382
docs/llamafactory_train_and_infer.md
Normal file
382
docs/llamafactory_train_and_infer.md
Normal file
@@ -0,0 +1,382 @@
|
|||||||
|
# Best Practice with LLaMA-Factory
|
||||||
|
|
||||||
|
## Contents <!-- omit in toc -->
|
||||||
|
|
||||||
|
- [Support Models](#Support-Models)
|
||||||
|
- [LLaMA-Factory Installation](#LLaMA-Factory-Installation)
|
||||||
|
- [Dataset Prepare](#Dataset-Prepare)
|
||||||
|
- [Lora Fine-Tuning](#Lora-Fine-Tuning)
|
||||||
|
- [Full Parameters Fine-Tuning](#Full-Parameters-Fine-Tuning)
|
||||||
|
- [Inference](#Inference)
|
||||||
|
|
||||||
|
## Support Models
|
||||||
|
* [openbmb/MiniCPM-o-2_6](https://huggingface.co/openbmb/MiniCPM-o-2_6)
|
||||||
|
* [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6)
|
||||||
|
|
||||||
|
## LLaMA-Factory Installation
|
||||||
|
|
||||||
|
You can install LLaMA-Factory using commands below.
|
||||||
|
|
||||||
|
```
|
||||||
|
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
|
||||||
|
cd LLaMA-Factory
|
||||||
|
pip install -e ".[torch,metrics,deepspeed,minicpm_v]"
|
||||||
|
mkdir configs # let's put all yaml files here
|
||||||
|
```
|
||||||
|
|
||||||
|
## Dataset Prepare
|
||||||
|
|
||||||
|
Refer to [data/dataset_info.json](https://github.com/hiyouga/LLaMA-Factory/blob/main/data/dataset_info.json) to add your customised dataset. Let's use the two existing demo datasets `mllm_demo` and `mllm_video_demo` as examples.
|
||||||
|
|
||||||
|
### Image Dataset
|
||||||
|
|
||||||
|
Refer to image sft demo data: [data/mllm_demo.json](https://github.com/hiyouga/LLaMA-Factory/blob/main/data/mllm_demo.json)
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
<b>data/mllm_demo.json</b>
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
```json
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"messages": [
|
||||||
|
{
|
||||||
|
"content": "<image>Who are they?",
|
||||||
|
"role": "user"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"content": "They're Kane and Gretzka from Bayern Munich.",
|
||||||
|
"role": "assistant"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"content": "What are they doing?",
|
||||||
|
"role": "user"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"content": "They are celebrating on the soccer field.",
|
||||||
|
"role": "assistant"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"images": [
|
||||||
|
"mllm_demo_data/1.jpg"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"messages": [
|
||||||
|
{
|
||||||
|
"content": "<image>Who is he?",
|
||||||
|
"role": "user"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"content": "He's Thomas Muller from Bayern Munich.",
|
||||||
|
"role": "assistant"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"content": "Why is he on the ground?",
|
||||||
|
"role": "user"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"content": "Because he's sliding on his knees to celebrate.",
|
||||||
|
"role": "assistant"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"images": [
|
||||||
|
"mllm_demo_data/2.jpg"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"messages": [
|
||||||
|
{
|
||||||
|
"content": "<image>Please describe this image",
|
||||||
|
"role": "user"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"content": "Chinese astronaut Gui Haichao is giving a speech.",
|
||||||
|
"role": "assistant"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"content": "What has he accomplished?",
|
||||||
|
"role": "user"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"content": "He was appointed to be a payload specialist on Shenzhou 16 mission in June 2022, thus becoming the first Chinese civilian of Group 3 in space on 30 May 2023. He is responsible for the on-orbit operation of space science experimental payloads.",
|
||||||
|
"role": "assistant"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"images": [
|
||||||
|
"mllm_demo_data/3.jpg"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
|
||||||
|
### Video Dataset
|
||||||
|
|
||||||
|
Refer to video sft demo data: [data/mllm_video_demo.json](https://github.com/hiyouga/LLaMA-Factory/blob/main/data/mllm_video_demo.json)
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
<b>data/mllm_video_demo.json</b>
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
```json
|
||||||
|
[
|
||||||
|
{
|
||||||
|
"messages": [
|
||||||
|
{
|
||||||
|
"content": "<video>Why is this video funny?",
|
||||||
|
"role": "user"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"content": "Because a baby is reading, and he is so cute!",
|
||||||
|
"role": "assistant"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"videos": [
|
||||||
|
"mllm_demo_data/1.mp4"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"messages": [
|
||||||
|
{
|
||||||
|
"content": "<video>What is she doing?",
|
||||||
|
"role": "user"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"content": "She is cooking.",
|
||||||
|
"role": "assistant"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"videos": [
|
||||||
|
"mllm_demo_data/2.avi"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"messages": [
|
||||||
|
{
|
||||||
|
"content": "<video>What's in the video?",
|
||||||
|
"role": "user"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"content": "A baby is playing in the living room.",
|
||||||
|
"role": "assistant"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"videos": [
|
||||||
|
"mllm_demo_data/3.mp4"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
]
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
|
||||||
|
## Lora Fine-Tuning
|
||||||
|
|
||||||
|
We can use one command to do lora sft:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train configs/minicpmo_2_6_lora_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
<b>configs/minicpmo_2_6_lora_sft.yaml</b>
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
### model
|
||||||
|
model_name_or_path: openbmb/MiniCPM-o-2_6 # MiniCPM-o-2_6 MiniCPM-V-2_6
|
||||||
|
trust_remote_code: true
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: lora
|
||||||
|
lora_target: q_proj,v_proj
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: mllm_demo # mllm_demo mllm_video_demo
|
||||||
|
template: minicpm_v
|
||||||
|
cutoff_len: 3072
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/minicpmo_2_6/lora/sft
|
||||||
|
logging_steps: 1
|
||||||
|
save_steps: 100
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
save_total_limit: 10
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 2
|
||||||
|
gradient_accumulation_steps: 1
|
||||||
|
learning_rate: 1.0e-5
|
||||||
|
num_train_epochs: 20.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
bf16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
save_only_model: true
|
||||||
|
|
||||||
|
### eval
|
||||||
|
do_eval: false
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
### Lora Model Export
|
||||||
|
|
||||||
|
One command to export lora model
|
||||||
|
|
||||||
|
```shell
|
||||||
|
llamafactory-cli export configs/minicpmo_2_6_lora_export.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
<b>configs/minicpmo_2_6_lora_export.yaml</b>
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
### model
|
||||||
|
model_name_or_path: openbmb/MiniCPM-o-2_6 # MiniCPM-o-2_6 MiniCPM-V-2_6
|
||||||
|
adapter_name_or_path: saves/minicpmo_2_6/lora/sft
|
||||||
|
template: minicpm_v
|
||||||
|
finetuning_type: lora
|
||||||
|
trust_remote_code: true
|
||||||
|
|
||||||
|
### export
|
||||||
|
export_dir: models/minicpmo_2_6_lora_sft
|
||||||
|
export_size: 2
|
||||||
|
export_device: cpu
|
||||||
|
export_legacy_format: false
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
## Full Parameters Fine-Tuning
|
||||||
|
|
||||||
|
We can use one command to do full sft:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
llamafactory-cli train configs/minicpmo_2_6_full_sft.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
<b>configs/minicpmo_2_6_full_sft.yaml</b>
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
### model
|
||||||
|
model_name_or_path: openbmb/MiniCPM-o-2_6 # MiniCPM-o-2_6 MiniCPM-V-2_6
|
||||||
|
trust_remote_code: true
|
||||||
|
freeze_vision_tower: true
|
||||||
|
print_param_status: true
|
||||||
|
flash_attn: fa2
|
||||||
|
|
||||||
|
### method
|
||||||
|
stage: sft
|
||||||
|
do_train: true
|
||||||
|
finetuning_type: full
|
||||||
|
deepspeed: configs/deepspeed/ds_z2_config.json
|
||||||
|
|
||||||
|
### dataset
|
||||||
|
dataset: mllm_demo # mllm_demo mllm_video_demo
|
||||||
|
template: minicpm_v
|
||||||
|
cutoff_len: 3072
|
||||||
|
max_samples: 1000
|
||||||
|
overwrite_cache: true
|
||||||
|
preprocessing_num_workers: 16
|
||||||
|
|
||||||
|
### output
|
||||||
|
output_dir: saves/minicpmo_2_6/full/sft
|
||||||
|
logging_steps: 1
|
||||||
|
save_steps: 100
|
||||||
|
plot_loss: true
|
||||||
|
overwrite_output_dir: true
|
||||||
|
save_total_limit: 10
|
||||||
|
|
||||||
|
### train
|
||||||
|
per_device_train_batch_size: 2
|
||||||
|
gradient_accumulation_steps: 1
|
||||||
|
learning_rate: 1.0e-5
|
||||||
|
num_train_epochs: 20.0
|
||||||
|
lr_scheduler_type: cosine
|
||||||
|
warmup_ratio: 0.1
|
||||||
|
bf16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
save_only_model: true
|
||||||
|
|
||||||
|
### eval
|
||||||
|
do_eval: false
|
||||||
|
```
|
||||||
|
</details>
|
||||||
|
|
||||||
|
## Inference
|
||||||
|
|
||||||
|
### Web UI ChatBox
|
||||||
|
|
||||||
|
Refer [LLaMA-Factory doc](https://github.com/hiyouga/LLaMA-Factory/tree/main/examples#inferring-lora-fine-tuned-models) for more inference usages.
|
||||||
|
|
||||||
|
For example, we can use one command to run web chat:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat configs/minicpmo_2_6_infer.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
<b>configs/minicpmo_2_6_infer.yaml</b>
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
```yaml
|
||||||
|
model_name_or_path: saves/minicpmo_2_6/full/sft
|
||||||
|
template: minicpm_v
|
||||||
|
infer_backend: huggingface
|
||||||
|
trust_remote_code: true
|
||||||
|
```
|
||||||
|
</details>
|
||||||
|
|
||||||
|
### Official Code
|
||||||
|
You can also use official code to inference
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>
|
||||||
|
<b>official inference code</b>
|
||||||
|
</summary>
|
||||||
|
|
||||||
|
```python
|
||||||
|
# test.py
|
||||||
|
import torch
|
||||||
|
from PIL import Image
|
||||||
|
from transformers import AutoModel, AutoTokenizer
|
||||||
|
|
||||||
|
model_id = "saves/minicpmo_2_6/full/sft"
|
||||||
|
model = AutoModel.from_pretrained(model_id, trust_remote_code=True,
|
||||||
|
attn_implementation='sdpa', torch_dtype=torch.bfloat16) # sdpa or flash_attention_2, no eager
|
||||||
|
model = model.eval().cuda()
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
||||||
|
|
||||||
|
image = Image.open('data/mllm_demo_data/1.jpg').convert('RGB')
|
||||||
|
question = 'Who are they??'
|
||||||
|
msgs = [{'role': 'user', 'content': [image, question]}]
|
||||||
|
|
||||||
|
res = model.chat(
|
||||||
|
image=None,
|
||||||
|
msgs=msgs,
|
||||||
|
tokenizer=tokenizer
|
||||||
|
)
|
||||||
|
print(res)
|
||||||
|
```
|
||||||
|
|
||||||
|
</details>
|
||||||
Reference in New Issue
Block a user