diff --git a/README.md b/README.md
index 282f427..9c68497 100644
--- a/README.md
+++ b/README.md
@@ -131,8 +131,8 @@ Advancing popular visual capabilites from MiniCPM-V series, MiniCPM-o 2.6 can pr
In addition to its friendly size, MiniCPM-o 2.6 also shows **state-of-the-art token density** (i.e., number of pixels encoded into each visual token). **It produces only 640 tokens when processing a 1.8M pixel image, which is 75% fewer than most models**. This directly improves the inference speed, first-token latency, memory usage, and power consumption. As a result, MiniCPM-o 2.6 can efficiently support **multimodal live streaming** on end-side devices such as iPad.
- 💫 **Easy Usage.**
-MiniCPM-o 2.6 can be easily used in various ways: (1) [llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-omni/examples/llava/README-minicpmo2.6.md) support for efficient CPU inference on local devices, (2) [int4](https://huggingface.co/openbmb/MiniCPM-o-2_6-int4) and [GGUF](https://huggingface.co/openbmb/MiniCPM-o-2_6-gguf) format quantized models in 16 sizes, (3) [vLLM](#efficient-inference-with-llamacpp-ollama-vllm) support for high-throughput and memory-efficient inference, (4) fine-tuning on new domains and tasks with [LLaMA-Factory](./docs/llamafactory_train.md), (5) quick [local WebUI demo](#chat-with-our-demo-on-gradio), and (6) online web demo on [server](https://minicpm-omni-webdemo-us.modelbest.cn/).
+MiniCPM-o 2.6 can be easily used in various ways: (1) [llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-omni/examples/llava/README-minicpmo2.6.md) support for efficient CPU inference on local devices, (2) [int4](https://huggingface.co/openbmb/MiniCPM-o-2_6-int4) and [GGUF](https://huggingface.co/openbmb/MiniCPM-o-2_6-gguf) format quantized models in 16 sizes, (3) [vLLM](#efficient-inference-with-llamacpp-ollama-vllm) support for high-throughput and memory-efficient inference, (4) fine-tuning on new domains and tasks with [LLaMA-Factory](./docs/llamafactory_train_and_infer.md), (5) quick [local WebUI demo](#chat-with-our-demo-on-gradio), and (6) online web demo on [server](https://minicpm-omni-webdemo-us.modelbest.cn/).
**Model Architecture.**
@@ -2488,7 +2488,7 @@ We support simple fine-tuning with Hugging Face for MiniCPM-o 2.6, MiniCPM-V 2.6
We support fine-tuning MiniCPM-o-2.6 and MiniCPM-V 2.6 with the LLaMA-Factory framework. LLaMA-Factory provides a solution for flexibly customizing the fine-tuning (Lora/Full/Qlora) of 200+ LLMs without the need for coding through the built-in web UI LLaMABoard. It supports various training methods like sft/ppo/dpo/kto and advanced algorithms like Galore/BAdam/LLaMA-Pro/Pissa/LongLoRA.
-Best Practices: [MiniCPM-V-2.6 | MiniCPM-o-2.6](./docs/llamafactory_train.md).
+Best Practices: [MiniCPM-o-2.6 | MiniCPM-V-2.6](./docs/llamafactory_train_and_infer.md).
### With the SWIFT Framework
@@ -2574,4 +2574,4 @@ If you find our model/code/paper helpful, please consider citing our papers 📝
journal={arXiv preprint arXiv:2408.01800},
year={2024}
}
-```
+```
\ No newline at end of file
diff --git a/README_zh.md b/README_zh.md
index 4609706..d245f12 100644
--- a/README_zh.md
+++ b/README_zh.md
@@ -121,8 +121,8 @@ MiniCPM-o 2.6 进一步优化了 MiniCPM-V 2.6 的众多视觉理解能力,其
- 💫 **易于使用。**
-MiniCPM-o 2.6 可以通过多种方式轻松使用:(1) [llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-omni/examples/llava/README-minicpmo2.6.md) 支持在本地设备上进行高效的 CPU 推理,(2) [int4](https://huggingface.co/openbmb/MiniCPM-V-2_6-int4) 和 [GGUF](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf) 格式的量化模型,有 16 种尺寸,(3) [vLLM](#基于-llamacppollamavllm-的高效推理) 支持高吞吐量和内存高效的推理,(4) 通过[LLaMA-Factory](./docs/llamafactory_train.md)框架针对新领域和任务进行微调,(5) 使用 [Gradio](#本地-webui-demo-) 快速设置本地 WebUI 演示,(6) 部署于服务器的在线 [demo](https://minicpm-omni-webdemo-us.modelbest.cn/)。
+MiniCPM-o 2.6 可以通过多种方式轻松使用:(1) [llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-omni/examples/llava/README-minicpmo2.6.md) 支持在本地设备上进行高效的 CPU 推理,(2) [int4](https://huggingface.co/openbmb/MiniCPM-V-2_6-int4) 和 [GGUF](https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf) 格式的量化模型,有 16 种尺寸,(3) [vLLM](#基于-llamacppollamavllm-的高效推理) 支持高吞吐量和内存高效的推理,(4) 通过[LLaMA-Factory](./docs/llamafactory_train_and_infer.md)框架针对新领域和任务进行微调,(5) 使用 [Gradio](#本地-webui-demo-) 快速设置本地 WebUI 演示,(6) 部署于服务器的在线 [demo](https://minicpm-omni-webdemo-us.modelbest.cn/)。
**模型架构。**
@@ -2498,7 +2498,7 @@ ollama 用法请参考[我们的fork ollama](https://github.com/OpenBMB/ollama/b
我们支持使用 LLaMA-Factory 微调 MiniCPM-o-2.6 和 MiniCPM-V 2.6。LLaMA-Factory 提供了一种灵活定制 200 多个大型语言模型(LLM)微调(Lora/Full/Qlora)解决方案,无需编写代码,通过内置的 Web 用户界面 LLaMABoard 即可实现训练/推理/评估。它支持多种训练方法,如 sft/ppo/dpo/kto,并且还支持如 Galore/BAdam/LLaMA-Pro/Pissa/LongLoRA 等高级算法。
-最佳实践: [MiniCPM-V-2.6 | MiniCPM-o-2.6](https://github.com/openbmb/MiniCPM-V/blob/main/docs/llamafactory_train.md).
+最佳实践: [MiniCPM-o-2.6 | MiniCPM-V-2.6](./docs/llamafactory_train_and_infer.md).
### 使用 SWIFT 框架
@@ -2586,4 +2586,4 @@ ollama 用法请参考[我们的fork ollama](https://github.com/OpenBMB/ollama/b
journal={arXiv preprint arXiv:2408.01800},
year={2024}
}
-```
+```
\ No newline at end of file
diff --git a/docs/llamafactory_train_and_infer.md b/docs/llamafactory_train_and_infer.md
new file mode 100644
index 0000000..108d1e9
--- /dev/null
+++ b/docs/llamafactory_train_and_infer.md
@@ -0,0 +1,382 @@
+# Best Practice with LLaMA-Factory
+
+## Contents
+
+- [Support Models](#Support-Models)
+- [LLaMA-Factory Installation](#LLaMA-Factory-Installation)
+- [Dataset Prepare](#Dataset-Prepare)
+- [Lora Fine-Tuning](#Lora-Fine-Tuning)
+- [Full Parameters Fine-Tuning](#Full-Parameters-Fine-Tuning)
+- [Inference](#Inference)
+
+## Support Models
+* [openbmb/MiniCPM-o-2_6](https://huggingface.co/openbmb/MiniCPM-o-2_6)
+* [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6)
+
+## LLaMA-Factory Installation
+
+You can install LLaMA-Factory using commands below.
+
+```
+git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
+cd LLaMA-Factory
+pip install -e ".[torch,metrics,deepspeed,minicpm_v]"
+mkdir configs # let's put all yaml files here
+```
+
+## Dataset Prepare
+
+Refer to [data/dataset_info.json](https://github.com/hiyouga/LLaMA-Factory/blob/main/data/dataset_info.json) to add your customised dataset. Let's use the two existing demo datasets `mllm_demo` and `mllm_video_demo` as examples.
+
+### Image Dataset
+
+Refer to image sft demo data: [data/mllm_demo.json](https://github.com/hiyouga/LLaMA-Factory/blob/main/data/mllm_demo.json)
+
+
+
+ data/mllm_demo.json
+
+
+```json
+[
+ {
+ "messages": [
+ {
+ "content": "Who are they?",
+ "role": "user"
+ },
+ {
+ "content": "They're Kane and Gretzka from Bayern Munich.",
+ "role": "assistant"
+ },
+ {
+ "content": "What are they doing?",
+ "role": "user"
+ },
+ {
+ "content": "They are celebrating on the soccer field.",
+ "role": "assistant"
+ }
+ ],
+ "images": [
+ "mllm_demo_data/1.jpg"
+ ]
+ },
+ {
+ "messages": [
+ {
+ "content": "Who is he?",
+ "role": "user"
+ },
+ {
+ "content": "He's Thomas Muller from Bayern Munich.",
+ "role": "assistant"
+ },
+ {
+ "content": "Why is he on the ground?",
+ "role": "user"
+ },
+ {
+ "content": "Because he's sliding on his knees to celebrate.",
+ "role": "assistant"
+ }
+ ],
+ "images": [
+ "mllm_demo_data/2.jpg"
+ ]
+ },
+ {
+ "messages": [
+ {
+ "content": "Please describe this image",
+ "role": "user"
+ },
+ {
+ "content": "Chinese astronaut Gui Haichao is giving a speech.",
+ "role": "assistant"
+ },
+ {
+ "content": "What has he accomplished?",
+ "role": "user"
+ },
+ {
+ "content": "He was appointed to be a payload specialist on Shenzhou 16 mission in June 2022, thus becoming the first Chinese civilian of Group 3 in space on 30 May 2023. He is responsible for the on-orbit operation of space science experimental payloads.",
+ "role": "assistant"
+ }
+ ],
+ "images": [
+ "mllm_demo_data/3.jpg"
+ ]
+ }
+]
+```
+
+
+
+
+### Video Dataset
+
+Refer to video sft demo data: [data/mllm_video_demo.json](https://github.com/hiyouga/LLaMA-Factory/blob/main/data/mllm_video_demo.json)
+
+
+
+ data/mllm_video_demo.json
+
+
+```json
+[
+ {
+ "messages": [
+ {
+ "content": "
+
+
+## Lora Fine-Tuning
+
+We can use one command to do lora sft:
+
+```shell
+CUDA_VISIBLE_DEVICES=0 llamafactory-cli train configs/minicpmo_2_6_lora_sft.yaml
+```
+
+
+
+ configs/minicpmo_2_6_lora_sft.yaml
+
+
+```yaml
+### model
+model_name_or_path: openbmb/MiniCPM-o-2_6 # MiniCPM-o-2_6 MiniCPM-V-2_6
+trust_remote_code: true
+
+### method
+stage: sft
+do_train: true
+finetuning_type: lora
+lora_target: q_proj,v_proj
+
+### dataset
+dataset: mllm_demo # mllm_demo mllm_video_demo
+template: minicpm_v
+cutoff_len: 3072
+max_samples: 1000
+overwrite_cache: true
+preprocessing_num_workers: 16
+
+### output
+output_dir: saves/minicpmo_2_6/lora/sft
+logging_steps: 1
+save_steps: 100
+plot_loss: true
+overwrite_output_dir: true
+save_total_limit: 10
+
+### train
+per_device_train_batch_size: 2
+gradient_accumulation_steps: 1
+learning_rate: 1.0e-5
+num_train_epochs: 20.0
+lr_scheduler_type: cosine
+warmup_ratio: 0.1
+bf16: true
+ddp_timeout: 180000000
+save_only_model: true
+
+### eval
+do_eval: false
+```
+
+
+
+### Lora Model Export
+
+One command to export lora model
+
+```shell
+llamafactory-cli export configs/minicpmo_2_6_lora_export.yaml
+```
+
+
+
+ configs/minicpmo_2_6_lora_export.yaml
+
+
+```yaml
+### model
+model_name_or_path: openbmb/MiniCPM-o-2_6 # MiniCPM-o-2_6 MiniCPM-V-2_6
+adapter_name_or_path: saves/minicpmo_2_6/lora/sft
+template: minicpm_v
+finetuning_type: lora
+trust_remote_code: true
+
+### export
+export_dir: models/minicpmo_2_6_lora_sft
+export_size: 2
+export_device: cpu
+export_legacy_format: false
+```
+
+
+
+## Full Parameters Fine-Tuning
+
+We can use one command to do full sft:
+
+```shell
+llamafactory-cli train configs/minicpmo_2_6_full_sft.yaml
+```
+
+
+
+ configs/minicpmo_2_6_full_sft.yaml
+
+
+```yaml
+### model
+model_name_or_path: openbmb/MiniCPM-o-2_6 # MiniCPM-o-2_6 MiniCPM-V-2_6
+trust_remote_code: true
+freeze_vision_tower: true
+print_param_status: true
+flash_attn: fa2
+
+### method
+stage: sft
+do_train: true
+finetuning_type: full
+deepspeed: configs/deepspeed/ds_z2_config.json
+
+### dataset
+dataset: mllm_demo # mllm_demo mllm_video_demo
+template: minicpm_v
+cutoff_len: 3072
+max_samples: 1000
+overwrite_cache: true
+preprocessing_num_workers: 16
+
+### output
+output_dir: saves/minicpmo_2_6/full/sft
+logging_steps: 1
+save_steps: 100
+plot_loss: true
+overwrite_output_dir: true
+save_total_limit: 10
+
+### train
+per_device_train_batch_size: 2
+gradient_accumulation_steps: 1
+learning_rate: 1.0e-5
+num_train_epochs: 20.0
+lr_scheduler_type: cosine
+warmup_ratio: 0.1
+bf16: true
+ddp_timeout: 180000000
+save_only_model: true
+
+### eval
+do_eval: false
+```
+
+
+## Inference
+
+### Web UI ChatBox
+
+Refer [LLaMA-Factory doc](https://github.com/hiyouga/LLaMA-Factory/tree/main/examples#inferring-lora-fine-tuned-models) for more inference usages.
+
+For example, we can use one command to run web chat:
+
+```shell
+CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat configs/minicpmo_2_6_infer.yaml
+```
+
+
+
+ configs/minicpmo_2_6_infer.yaml
+
+
+```yaml
+model_name_or_path: saves/minicpmo_2_6/full/sft
+template: minicpm_v
+infer_backend: huggingface
+trust_remote_code: true
+```
+
+
+### Official Code
+You can also use official code to inference
+
+
+
+ official inference code
+
+
+```python
+# test.py
+import torch
+from PIL import Image
+from transformers import AutoModel, AutoTokenizer
+
+model_id = "saves/minicpmo_2_6/full/sft"
+model = AutoModel.from_pretrained(model_id, trust_remote_code=True,
+ attn_implementation='sdpa', torch_dtype=torch.bfloat16) # sdpa or flash_attention_2, no eager
+model = model.eval().cuda()
+tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
+
+image = Image.open('data/mllm_demo_data/1.jpg').convert('RGB')
+question = 'Who are they??'
+msgs = [{'role': 'user', 'content': [image, question]}]
+
+res = model.chat(
+ image=None,
+ msgs=msgs,
+ tokenizer=tokenizer
+)
+print(res)
+```
+
+
\ No newline at end of file