mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-04 09:49:20 +08:00
update readme
This commit is contained in:
@@ -42,6 +42,12 @@ In most benchmarks, MiniCPM-Llama3-V 2.5 achieves **better performance** compare
|
||||
1: L(ow): 448pxl, M(edium): 896pxl, H(igh): 1344pxl input images.
|
||||
<br>
|
||||
1. Evaluation environment: A800 GPU, flash-attn=2.4.3, batch-size=1.
|
||||
<br>
|
||||
<span style="color:grey">
|
||||
MiniCPM-Llama3-V 2.5 shows better first token latency and throughput performance even though the number of parameters is twice as large as that of Phi-3-vision-128k-instruct due to its efficient image encoding method and adaptive resolution encoding strategy. For example, for an input images with a 448x448 resolution, MiniCPM-Llama3-V 2.5 encodes it into 96 tokens, while Phi-3-vision-128k-instruct encodes it into 2500+ tokens. Longer image token sequence significantly affects the first token latency and throughput. MiniCPM-V series models insist on obtaining stronger performance with more efficient encoding, thus achieves efficient end-device deployment and providing better experience for end users.
|
||||
<br>
|
||||
得益于 MiniCPM-Llama3-V 2.5 高效的图像编码方式和自适应分辨率编码策略,即使参数量比 Phi-3-vision-128k-instruct 大一倍,依然展现出了更出色的首 token 延迟和吞吐量表现。例如两个模型对输入分辨率为448x448 的图像,MiniCPM-Llama3-V 2.5 的图像编码长度为 96, 而Phi-3-vision-128k-instruct 的图像编码长度为 2500+。更长的图像编码长度会显著影响首token延迟和吞吐量,MiniCPM-V系列坚持用更高效的编码方式撬动更强的性能,进而实现高效的终端设备部署,为端侧用户提供更良好的体验。
|
||||
</span>
|
||||
</small>
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user