mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-04 17:59:18 +08:00
Update README_zh.md
This commit is contained in:
89
README_zh.md
89
README_zh.md
@@ -35,7 +35,7 @@
|
||||
|
||||
* [2024.08.06] 🔥🔥🔥 我们开源了 MiniCPM-V 2.6,该模型在单图、多图和视频理解方面取得了优于 GPT-4V 的表现。我们还进一步提升了 MiniCPM-Llama3-V 2.5 的多项亮点能力,并首次支持了 iPad 上的实时视频理解。欢迎试用!
|
||||
* [2024.08.03] MiniCPM-Llama3-V 2.5 技术报告已发布!欢迎点击[这里](https://arxiv.org/abs/2408.01800)查看。
|
||||
* [2024.07.19] MiniCPM-Llama3-V 2.5 现已支持[vLLM](#vllm) !
|
||||
* [2024.07.19] MiniCPM-Llama3-V 2.5 现已支持[vLLM](#vllm-部署-) !
|
||||
* [2024.05.28] 💥 MiniCPM-Llama3-V 2.5 现在在 llama.cpp 和 ollama 中完全支持其功能!**请拉取我们最新的 fork 来使用**:[llama.cpp](https://github.com/OpenBMB/llama.cpp/blob/minicpm-v2.5/examples/minicpmv/README.md) & [ollama](https://github.com/OpenBMB/ollama/tree/minicpm-v2.5/examples/minicpm-v2.5)。我们还发布了各种大小的 GGUF 版本,请点击[这里](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf/tree/main)查看。请注意,**目前官方仓库尚未支持 MiniCPM-Llama3-V 2.5**,我们也正积极推进将这些功能合并到 llama.cpp & ollama 官方仓库,敬请关注!
|
||||
* [2024.05.28] 💫 我们现在支持 MiniCPM-Llama3-V 2.5 的 LoRA 微调,更多内存使用统计信息可以在[这里](https://github.com/OpenBMB/MiniCPM-V/tree/main/finetune#model-fine-tuning-memory-usage-statistics)找到。
|
||||
* [2024.05.23] 🔍 我们添加了Phi-3-vision-128k-instruct 与 MiniCPM-Llama3-V 2.5的全面对比,包括基准测试评估、多语言能力和推理效率 🌟📊🌍🚀。点击[这里](./docs/compare_with_phi-3_vision.md)查看详细信息。
|
||||
@@ -51,7 +51,7 @@
|
||||
* [2024.05.25] MiniCPM-Llama3-V 2.5 [支持流式输出和自定义系统提示词](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5#usage)了,欢迎试用!
|
||||
* [2024.05.24] 我们开源了 MiniCPM-Llama3-V 2.5 [gguf](https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5-gguf),支持 [llama.cpp](#llamacpp-部署) 推理!实现端侧 6-8 tokens/s 的流畅解码,欢迎试用!
|
||||
* [2024.05.20] 我们开源了 MiniCPM-Llama3-V 2.5,增强了 OCR 能力,支持 30 多种语言,并首次在端侧实现了 GPT-4V 级的多模态能力!我们提供了[高效推理](#手机端部署)和[简易微调](./finetune/readme.md)的支持,欢迎试用!
|
||||
* [2024.04.23] 我们增加了MiniCPM-V 2.0对 [vLLM](#vllm) 的支持,欢迎体验!
|
||||
* [2024.04.23] 我们增加了MiniCPM-V 2.0对 [vLLM](#vllm-部署-) 的支持,欢迎体验!
|
||||
* [2024.04.18] 我们在 HuggingFace Space 新增了 MiniCPM-V 2.0 的 [demo](https://huggingface.co/spaces/openbmb/MiniCPM-V-2),欢迎体验!
|
||||
* [2024.04.17] MiniCPM-V 2.0 现在支持用户部署本地 [WebUI Demo](#本地webui-demo部署) 了,欢迎试用!
|
||||
* [2024.04.15] MiniCPM-V 2.0 现在可以通过 SWIFT 框架 [微调](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md) 了,支持流式输出!
|
||||
@@ -1542,24 +1542,87 @@ MiniCPM-V 2.6 现在支持ollama啦! 用法请参考[我们的fork ollama](https
|
||||
<details>
|
||||
<summary>点击查看, vLLM 现已官方支持MiniCPM-V 2.0 、MiniCPM-Llama3-V 2.5 和 MiniCPM-V 2.6 </summary>
|
||||
|
||||
1. 首先克隆官方的 vLLM 库:
|
||||
1. 安装 vLLM:
|
||||
```shell
|
||||
git clone https://github.com/vllm-project/vllm.git
|
||||
```
|
||||
2. 安装 vLLM 库:
|
||||
```shell
|
||||
cd vllm
|
||||
pip install -e .
|
||||
pip install vllm
|
||||
```
|
||||
3. 安装 timm 库: (可选,MiniCPM-V 2.0需安装)
|
||||
```shell
|
||||
pip install timm=0.9.10
|
||||
```
|
||||
4. 运行示例代码:(注意:如果使用本地路径的模型,请确保模型代码已更新到Hugging Face上的最新版)
|
||||
```shell
|
||||
python examples/minicpmv_example.py
|
||||
```
|
||||
```python
|
||||
from transformers import AutoTokenizer
|
||||
from PIL import Image
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
MODEL_NAME = "openbmb/MiniCPM-V-2_6"
|
||||
# Also available for previous models
|
||||
# MODEL_NAME = "openbmb/MiniCPM-Llama3-V-2_5"
|
||||
# MODEL_NAME = "HwwwH/MiniCPM-V-2"
|
||||
|
||||
image = Image.open("xxx.png").convert("RGB")
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
||||
llm = LLM(
|
||||
model=MODEL_NAME,
|
||||
trust_remote_code=True,
|
||||
gpu_memory_utilization=1,
|
||||
max_model_len=2048
|
||||
)
|
||||
|
||||
messages = [{
|
||||
"role":
|
||||
"user",
|
||||
"content":
|
||||
# Number of images
|
||||
"(<image>./</image>)" + \
|
||||
"\nWhat is the content of this image?"
|
||||
}]
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
)
|
||||
|
||||
# Single Inference
|
||||
inputs = {
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": {
|
||||
"image": image
|
||||
# Multi images, the number of images should be equal to that of `(<image>./</image>)`
|
||||
# "image": [image, image]
|
||||
},
|
||||
}
|
||||
# Batch Inference
|
||||
# inputs = [{
|
||||
# "prompt": prompt,
|
||||
# "multi_modal_data": {
|
||||
# "image": image
|
||||
# },
|
||||
# } for _ in 2]
|
||||
|
||||
|
||||
# 2.6
|
||||
stop_tokens = ['<|im_end|>', '<|endoftext|>']
|
||||
stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
|
||||
# 2.0
|
||||
# stop_token_ids = [tokenizer.eos_id]
|
||||
# 2.5
|
||||
# stop_token_ids = [tokenizer.eos_id, tokenizer.eot_id]
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
stop_token_ids=stop_token_ids,
|
||||
use_beam_search=True,
|
||||
temperature=0,
|
||||
best_of=3,
|
||||
max_tokens=1024
|
||||
)
|
||||
|
||||
outputs = llm.generate(inputs, sampling_params=sampling_params)
|
||||
|
||||
print(outputs[0].outputs[0].text)
|
||||
```
|
||||
4. [点击此处](https://modelbest.feishu.cn/wiki/C2BWw4ZP0iCDy7kkCPCcX2BHnOf?from=from_copylink)查看带视频推理和其他有关 `vLLM` 的信息。
|
||||
|
||||
</details>
|
||||
|
||||
@@ -1650,4 +1713,4 @@ python examples/minicpmv_example.py
|
||||
journal={arXiv preprint 2408.01800},
|
||||
year={2024},
|
||||
}
|
||||
```
|
||||
```
|
||||
|
||||
Reference in New Issue
Block a user