Add eval_mm dir

This commit is contained in:
trainfanlhy
2024-05-28 01:21:34 +08:00
parent 7e12387362
commit 65f5567a3a
49 changed files with 5610 additions and 0 deletions

View File

@@ -0,0 +1,6 @@
from .gpt import OpenAIWrapper, GPT4V
from .gpt_int import OpenAIWrapperInternal, GPT4V_Internal
__all__ = [
'OpenAIWrapper', 'OpenAIWrapperInternal', 'GPT4V', 'GPT4V_Internal'
]

View File

@@ -0,0 +1,195 @@
import time
import random as rd
from abc import abstractmethod
import os.path as osp
import copy as cp
from ..smp import get_logger, parse_file
class BaseAPI:
allowed_types = ['text', 'image']
INTERLEAVE = True
INSTALL_REQ = False
def __init__(self,
retry=10,
wait=3,
system_prompt=None,
verbose=True,
fail_msg='Failed to obtain answer via API.',
**kwargs):
"""Base Class for all APIs.
Args:
retry (int, optional): The retry times for `generate_inner`. Defaults to 10.
wait (int, optional): The wait time after each failed retry of `generate_inner`. Defaults to 3.
system_prompt (str, optional): Defaults to None.
verbose (bool, optional): Defaults to True.
fail_msg (str, optional): The message to return when failed to obtain answer.
Defaults to 'Failed to obtain answer via API.'.
**kwargs: Other kwargs for `generate_inner`.
"""
self.wait = wait
self.retry = retry
self.system_prompt = system_prompt
self.verbose = verbose
self.fail_msg = fail_msg
self.logger = get_logger('ChatAPI')
if len(kwargs):
self.logger.info(f'BaseAPI received the following kwargs: {kwargs}')
self.logger.info('Will try to use them as kwargs for `generate`. ')
self.default_kwargs = kwargs
@abstractmethod
def generate_inner(self, inputs, **kwargs):
"""The inner function to generate the answer.
Returns:
tuple(int, str, str): ret_code, response, log
"""
self.logger.warning('For APIBase, generate_inner is an abstract method. ')
assert 0, 'generate_inner not defined'
ret_code, answer, log = None, None, None
# if ret_code is 0, means succeed
return ret_code, answer, log
def working(self):
"""If the API model is working, return True, else return False.
Returns:
bool: If the API model is working, return True, else return False.
"""
retry = 3
while retry > 0:
ret = self.generate('hello')
if ret is not None and ret != '' and self.fail_msg not in ret:
return True
retry -= 1
return False
def check_content(self, msgs):
"""Check the content type of the input. Four types are allowed: str, dict, liststr, listdict.
Args:
msgs: Raw input messages.
Returns:
str: The message type.
"""
if isinstance(msgs, str):
return 'str'
if isinstance(msgs, dict):
return 'dict'
if isinstance(msgs, list):
types = [self.check_content(m) for m in msgs]
if all(t == 'str' for t in types):
return 'liststr'
if all(t == 'dict' for t in types):
return 'listdict'
return 'unknown'
def preproc_content(self, inputs):
"""Convert the raw input messages to a list of dicts.
Args:
inputs: raw input messages.
Returns:
list(dict): The preprocessed input messages. Will return None if failed to preprocess the input.
"""
if self.check_content(inputs) == 'str':
return [dict(type='text', value=inputs)]
elif self.check_content(inputs) == 'dict':
assert 'type' in inputs and 'value' in inputs
return [inputs]
elif self.check_content(inputs) == 'liststr':
res = []
for s in inputs:
mime, pth = parse_file(s)
if mime is None or mime == 'unknown':
res.append(dict(type='text', value=s))
else:
res.append(dict(type=mime.split('/')[0], value=pth))
return res
elif self.check_content(inputs) == 'listdict':
for item in inputs:
assert 'type' in item and 'value' in item
mime, s = parse_file(item['value'])
if mime is None:
assert item['type'] == 'text', item['value']
else:
assert mime.split('/')[0] == item['type']
item['value'] = s
return inputs
else:
return None
def generate(self, message, **kwargs1):
"""The main function to generate the answer. Will call `generate_inner` with the preprocessed input messages.
Args:
message: raw input messages.
Returns:
str: The generated answer of the Failed Message if failed to obtain answer.
"""
assert self.check_content(message) in ['str', 'dict', 'liststr', 'listdict'], f'Invalid input type: {message}'
message = self.preproc_content(message)
assert message is not None and self.check_content(message) == 'listdict'
for item in message:
assert item['type'] in self.allowed_types, f'Invalid input type: {item["type"]}'
# merge kwargs
kwargs = cp.deepcopy(self.default_kwargs)
kwargs.update(kwargs1)
answer = None
# a very small random delay [0s - 0.5s]
T = rd.random() * 0.5
time.sleep(T)
for i in range(self.retry):
try:
ret_code, answer, log = self.generate_inner(message, **kwargs)
if ret_code == 0 and self.fail_msg not in answer and answer != '':
if self.verbose:
print(answer)
return answer
elif self.verbose:
if not isinstance(log, str):
try:
log = log.text
except:
self.logger.warning(f'Failed to parse {log} as an http response. ')
self.logger.info(f'RetCode: {ret_code}\nAnswer: {answer}\nLog: {log}')
except Exception as err:
if self.verbose:
self.logger.error(f'An error occured during try {i}:')
self.logger.error(err)
# delay before each retry
T = rd.random() * self.wait * 2
time.sleep(T)
return self.fail_msg if answer in ['', None] else answer
def message_to_promptimg(self, message):
assert not self.INTERLEAVE
model_name = self.__class__.__name__
import warnings
warnings.warn(
f'Model {model_name} does not support interleaved input. '
'Will use the first image and aggregated texts as prompt. ')
num_images = len([x for x in message if x['type'] == 'image'])
if num_images == 0:
prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text'])
image = None
elif num_images == 1:
prompt = '\n'.join([x['value'] for x in message if x['type'] == 'text'])
image = [x['value'] for x in message if x['type'] == 'image'][0]
else:
prompt = '\n'.join([x['value'] if x['type'] == 'text' else '<image>' for x in message])
image = [x['value'] for x in message if x['type'] == 'image'][0]
return prompt, image

View File

@@ -0,0 +1,178 @@
from ..smp import *
import os
import sys
from .base import BaseAPI
APIBASES = {
'OFFICIAL': 'https://api.openai.com/v1/chat/completions',
}
def GPT_context_window(model):
length_map = {
'gpt-4-1106-preview': 128000,
'gpt-4-vision-preview': 128000,
'gpt-4': 8192,
'gpt-4-32k': 32768,
'gpt-4-0613': 8192,
'gpt-4-32k-0613': 32768,
'gpt-3.5-turbo-1106': 16385,
'gpt-3.5-turbo': 4096,
'gpt-3.5-turbo-16k': 16385,
'gpt-3.5-turbo-instruct': 4096,
'gpt-3.5-turbo-0613': 4096,
'gpt-3.5-turbo-16k-0613': 16385,
}
if model in length_map:
return length_map[model]
else:
return 128000
class OpenAIWrapper(BaseAPI):
is_api: bool = True
def __init__(self,
model: str = 'gpt-3.5-turbo-0613',
retry: int = 5,
wait: int = 5,
key: str = None,
verbose: bool = True,
system_prompt: str = None,
temperature: float = 0,
timeout: int = 60,
api_base: str = None,
max_tokens: int = 1024,
img_size: int = 512,
img_detail: str = 'low',
**kwargs):
self.model = model
self.cur_idx = 0
self.fail_msg = 'Failed to obtain answer via API. '
self.max_tokens = max_tokens
self.temperature = temperature
if 'step-1v' in model:
env_key = os.environ.get('STEPAI_API_KEY', '')
if key is None:
key = env_key
else:
env_key = os.environ.get('OPENAI_API_KEY', '')
if key is None:
key = env_key
assert isinstance(key, str) and key.startswith('sk-'), (
f'Illegal openai_key {key}. '
'Please set the environment variable OPENAI_API_KEY to your openai key. '
)
self.key = key
assert img_size > 0 or img_size == -1
self.img_size = img_size
assert img_detail in ['high', 'low']
self.img_detail = img_detail
self.timeout = timeout
super().__init__(wait=wait, retry=retry, system_prompt=system_prompt, verbose=verbose, **kwargs)
if api_base is None:
if 'OPENAI_API_BASE' in os.environ and os.environ['OPENAI_API_BASE'] != '':
self.logger.error('Environment variable OPENAI_API_BASE is set. Will use it as api_base. ')
api_base = os.environ['OPENAI_API_BASE']
else:
api_base = 'OFFICIAL'
assert api_base is not None
if api_base in APIBASES:
self.api_base = APIBASES[api_base]
elif api_base.startswith('http'):
self.api_base = api_base
else:
self.logger.error('Unknown API Base. ')
sys.exit(-1)
self.logger.info(f'Using API Base: {self.api_base}; API Key: {self.key}')
# inputs can be a lvl-2 nested list: [content1, content2, content3, ...]
# content can be a string or a list of image & text
def prepare_inputs(self, inputs):
input_msgs = []
if self.system_prompt is not None:
input_msgs.append(dict(role='system', content=self.system_prompt))
has_images = np.sum([x['type'] == 'image' for x in inputs])
if has_images:
content_list = []
for msg in inputs:
if msg['type'] == 'text':
content_list.append(dict(type='text', text=msg['value']))
elif msg['type'] == 'image':
from PIL import Image
img = Image.open(msg['value'])
b64 = encode_image_to_base64(img, target_size=self.img_size)
img_struct = dict(url=f'data:image/jpeg;base64,{b64}', detail=self.img_detail)
content_list.append(dict(type='image_url', image_url=img_struct))
input_msgs.append(dict(role='user', content=content_list))
else:
assert all([x['type'] == 'text' for x in inputs])
text = '\n'.join([x['value'] for x in inputs])
input_msgs.append(dict(role='user', content=text))
return input_msgs
def generate_inner(self, inputs, **kwargs) -> str:
input_msgs = self.prepare_inputs(inputs)
temperature = kwargs.pop('temperature', self.temperature)
max_tokens = kwargs.pop('max_tokens', self.max_tokens)
context_window = GPT_context_window(self.model)
max_tokens = min(max_tokens, context_window - self.get_token_len(inputs))
if 0 < max_tokens <= 100:
self.logger.warning(
'Less than 100 tokens left, '
'may exceed the context window with some additional meta symbols. '
)
if max_tokens <= 0:
return 0, self.fail_msg + 'Input string longer than context window. ', 'Length Exceeded. '
headers = {'Content-Type': 'application/json', 'Authorization': f'Bearer {self.key}'}
payload = dict(
model=self.model,
messages=input_msgs,
max_tokens=max_tokens,
n=1,
temperature=temperature,
**kwargs)
response = requests.post(self.api_base, headers=headers, data=json.dumps(payload), timeout=self.timeout * 1.1)
ret_code = response.status_code
ret_code = 0 if (200 <= int(ret_code) < 300) else ret_code
answer = self.fail_msg
try:
resp_struct = json.loads(response.text)
answer = resp_struct['choices'][0]['message']['content'].strip()
except:
pass
return ret_code, answer, response
def get_token_len(self, inputs) -> int:
import tiktoken
try:
enc = tiktoken.encoding_for_model(self.model)
except:
enc = tiktoken.encoding_for_model('gpt-4')
assert isinstance(inputs, list)
tot = 0
for item in inputs:
if item['type'] == 'text':
tot += len(enc.encode(item['value']))
elif item['type'] == 'image':
tot += 85
if self.img_detail == 'high':
img = Image.open(item['value'])
npatch = np.ceil(img.size[0] / 512) * np.ceil(img.size[1] / 512)
tot += npatch * 170
return tot
class GPT4V(OpenAIWrapper):
def generate(self, message, dataset=None):
return super(GPT4V, self).generate(message)

View File

@@ -0,0 +1,90 @@
import json
import warnings
import requests
from ..smp import *
from .gpt import GPT_context_window, OpenAIWrapper
url = 'http://ecs.sv.us.alles-apin.openxlab.org.cn/v1/openai/v2/text/chat'
headers = {
'Content-Type': 'application/json'
}
class OpenAIWrapperInternal(OpenAIWrapper):
is_api: bool = True
def __init__(self,
model: str = 'gpt-3.5-turbo-0613',
retry: int = 5,
wait: int = 3,
verbose: bool = True,
system_prompt: str = None,
temperature: float = 0,
timeout: int = 60,
max_tokens: int = 1024,
img_size: int = 512,
img_detail: str = 'low',
**kwargs):
self.model = model
if 'KEYS' in os.environ and osp.exists(os.environ['KEYS']):
keys = load(os.environ['KEYS'])
headers['alles-apin-token'] = keys.get('alles-apin-token', '')
elif 'ALLES' in os.environ:
headers['alles-apin-token'] = os.environ['ALLES']
self.headers = headers
self.temperature = temperature
self.timeout = timeout
self.max_tokens = max_tokens
assert img_size > 0 or img_size == -1
self.img_size = img_size
assert img_detail in ['high', 'low']
self.img_detail = img_detail
super(OpenAIWrapper, self).__init__(
wait=wait, retry=retry, system_prompt=system_prompt, verbose=verbose, **kwargs)
def generate_inner(self, inputs, **kwargs) -> str:
input_msgs = self.prepare_inputs(inputs)
temperature = kwargs.pop('temperature', self.temperature)
max_tokens = kwargs.pop('max_tokens', self.max_tokens)
# Held out 100 tokens as buffer
context_window = GPT_context_window(self.model)
max_tokens = min(max_tokens, context_window - self.get_token_len(inputs))
if 0 < max_tokens <= 100:
print('Less than 100 tokens left, may exceed the context window with some additional meta symbols. ')
if max_tokens <= 0:
return 0, self.fail_msg + 'Input string longer than context window. ', 'Length Exceeded. '
payload = dict(
model=self.model,
messages=input_msgs,
max_tokens=max_tokens,
n=1,
stop=None,
timeout=self.timeout,
temperature=temperature,
**kwargs)
response = requests.post(url, headers=headers, data=json.dumps(payload), timeout=self.timeout * 1.1)
ret_code = response.status_code
ret_code = 0 if (200 <= int(ret_code) < 300) else ret_code
answer = self.fail_msg
try:
resp_struct = json.loads(response.text)
assert resp_struct['msg'] == 'ok' and resp_struct['msgCode'] == '10000', resp_struct
answer = resp_struct['data']['choices'][0]['message']['content'].strip()
except:
pass
return ret_code, answer, response
class GPT4V_Internal(OpenAIWrapperInternal):
def generate(self, message, dataset=None):
return super(GPT4V_Internal, self).generate(message)