mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-04 09:49:20 +08:00
178 lines
6.4 KiB
Python
178 lines
6.4 KiB
Python
from ..smp import *
|
|
import os
|
|
import sys
|
|
from .base import BaseAPI
|
|
|
|
APIBASES = {
|
|
'OFFICIAL': 'https://api.openai.com/v1/chat/completions',
|
|
}
|
|
|
|
|
|
def GPT_context_window(model):
|
|
length_map = {
|
|
'gpt-4-1106-preview': 128000,
|
|
'gpt-4-vision-preview': 128000,
|
|
'gpt-4': 8192,
|
|
'gpt-4-32k': 32768,
|
|
'gpt-4-0613': 8192,
|
|
'gpt-4-32k-0613': 32768,
|
|
'gpt-3.5-turbo-1106': 16385,
|
|
'gpt-3.5-turbo': 4096,
|
|
'gpt-3.5-turbo-16k': 16385,
|
|
'gpt-3.5-turbo-instruct': 4096,
|
|
'gpt-3.5-turbo-0613': 4096,
|
|
'gpt-3.5-turbo-16k-0613': 16385,
|
|
}
|
|
if model in length_map:
|
|
return length_map[model]
|
|
else:
|
|
return 128000
|
|
|
|
|
|
class OpenAIWrapper(BaseAPI):
|
|
|
|
is_api: bool = True
|
|
|
|
def __init__(self,
|
|
model: str = 'gpt-3.5-turbo-0613',
|
|
retry: int = 5,
|
|
wait: int = 5,
|
|
key: str = None,
|
|
verbose: bool = True,
|
|
system_prompt: str = None,
|
|
temperature: float = 0,
|
|
timeout: int = 60,
|
|
api_base: str = None,
|
|
max_tokens: int = 1024,
|
|
img_size: int = 512,
|
|
img_detail: str = 'low',
|
|
**kwargs):
|
|
|
|
self.model = model
|
|
self.cur_idx = 0
|
|
self.fail_msg = 'Failed to obtain answer via API. '
|
|
self.max_tokens = max_tokens
|
|
self.temperature = temperature
|
|
|
|
if 'step-1v' in model:
|
|
env_key = os.environ.get('STEPAI_API_KEY', '')
|
|
if key is None:
|
|
key = env_key
|
|
else:
|
|
env_key = os.environ.get('OPENAI_API_KEY', '')
|
|
if key is None:
|
|
key = env_key
|
|
assert isinstance(key, str) and key.startswith('sk-'), (
|
|
f'Illegal openai_key {key}. '
|
|
'Please set the environment variable OPENAI_API_KEY to your openai key. '
|
|
)
|
|
self.key = key
|
|
assert img_size > 0 or img_size == -1
|
|
self.img_size = img_size
|
|
assert img_detail in ['high', 'low']
|
|
self.img_detail = img_detail
|
|
self.timeout = timeout
|
|
|
|
super().__init__(wait=wait, retry=retry, system_prompt=system_prompt, verbose=verbose, **kwargs)
|
|
|
|
if api_base is None:
|
|
if 'OPENAI_API_BASE' in os.environ and os.environ['OPENAI_API_BASE'] != '':
|
|
self.logger.error('Environment variable OPENAI_API_BASE is set. Will use it as api_base. ')
|
|
api_base = os.environ['OPENAI_API_BASE']
|
|
else:
|
|
api_base = 'OFFICIAL'
|
|
|
|
assert api_base is not None
|
|
|
|
if api_base in APIBASES:
|
|
self.api_base = APIBASES[api_base]
|
|
elif api_base.startswith('http'):
|
|
self.api_base = api_base
|
|
else:
|
|
self.logger.error('Unknown API Base. ')
|
|
sys.exit(-1)
|
|
self.logger.info(f'Using API Base: {self.api_base}; API Key: {self.key}')
|
|
|
|
# inputs can be a lvl-2 nested list: [content1, content2, content3, ...]
|
|
# content can be a string or a list of image & text
|
|
def prepare_inputs(self, inputs):
|
|
input_msgs = []
|
|
if self.system_prompt is not None:
|
|
input_msgs.append(dict(role='system', content=self.system_prompt))
|
|
has_images = np.sum([x['type'] == 'image' for x in inputs])
|
|
if has_images:
|
|
content_list = []
|
|
for msg in inputs:
|
|
if msg['type'] == 'text':
|
|
content_list.append(dict(type='text', text=msg['value']))
|
|
elif msg['type'] == 'image':
|
|
from PIL import Image
|
|
img = Image.open(msg['value'])
|
|
b64 = encode_image_to_base64(img, target_size=self.img_size)
|
|
img_struct = dict(url=f'data:image/jpeg;base64,{b64}', detail=self.img_detail)
|
|
content_list.append(dict(type='image_url', image_url=img_struct))
|
|
input_msgs.append(dict(role='user', content=content_list))
|
|
else:
|
|
assert all([x['type'] == 'text' for x in inputs])
|
|
text = '\n'.join([x['value'] for x in inputs])
|
|
input_msgs.append(dict(role='user', content=text))
|
|
return input_msgs
|
|
|
|
def generate_inner(self, inputs, **kwargs) -> str:
|
|
input_msgs = self.prepare_inputs(inputs)
|
|
temperature = kwargs.pop('temperature', self.temperature)
|
|
max_tokens = kwargs.pop('max_tokens', self.max_tokens)
|
|
|
|
context_window = GPT_context_window(self.model)
|
|
max_tokens = min(max_tokens, context_window - self.get_token_len(inputs))
|
|
if 0 < max_tokens <= 100:
|
|
self.logger.warning(
|
|
'Less than 100 tokens left, '
|
|
'may exceed the context window with some additional meta symbols. '
|
|
)
|
|
if max_tokens <= 0:
|
|
return 0, self.fail_msg + 'Input string longer than context window. ', 'Length Exceeded. '
|
|
|
|
headers = {'Content-Type': 'application/json', 'Authorization': f'Bearer {self.key}'}
|
|
payload = dict(
|
|
model=self.model,
|
|
messages=input_msgs,
|
|
max_tokens=max_tokens,
|
|
n=1,
|
|
temperature=temperature,
|
|
**kwargs)
|
|
response = requests.post(self.api_base, headers=headers, data=json.dumps(payload), timeout=self.timeout * 1.1)
|
|
ret_code = response.status_code
|
|
ret_code = 0 if (200 <= int(ret_code) < 300) else ret_code
|
|
answer = self.fail_msg
|
|
try:
|
|
resp_struct = json.loads(response.text)
|
|
answer = resp_struct['choices'][0]['message']['content'].strip()
|
|
except:
|
|
pass
|
|
return ret_code, answer, response
|
|
|
|
def get_token_len(self, inputs) -> int:
|
|
import tiktoken
|
|
try:
|
|
enc = tiktoken.encoding_for_model(self.model)
|
|
except:
|
|
enc = tiktoken.encoding_for_model('gpt-4')
|
|
assert isinstance(inputs, list)
|
|
tot = 0
|
|
for item in inputs:
|
|
if item['type'] == 'text':
|
|
tot += len(enc.encode(item['value']))
|
|
elif item['type'] == 'image':
|
|
tot += 85
|
|
if self.img_detail == 'high':
|
|
img = Image.open(item['value'])
|
|
npatch = np.ceil(img.size[0] / 512) * np.ceil(img.size[1] / 512)
|
|
tot += npatch * 170
|
|
return tot
|
|
|
|
|
|
class GPT4V(OpenAIWrapper):
|
|
|
|
def generate(self, message, dataset=None):
|
|
return super(GPT4V, self).generate(message) |