mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-04 17:59:18 +08:00
Update vllm example in ReadMe (#819)
* Update README.md * Update README_zh.md
This commit is contained in:
104
README.md
104
README.md
@@ -2516,103 +2516,15 @@ See [our fork of ollama](https://github.com/OpenBMB/ollama/blob/minicpm-v2.6/exa
|
||||
<details>
|
||||
<summary> vLLM now officially supports MiniCPM-V 2.6, MiniCPM-Llama3-V 2.5 and MiniCPM-V 2.0. And you can use our fork to run MiniCPM-o 2.6 for now. Click to see. </summary>
|
||||
|
||||
1. For MiniCPM-o 2.6
|
||||
1. Clone our fork of vLLM:
|
||||
```shell
|
||||
git clone https://github.com/OpenBMB/vllm.git
|
||||
cd vllm
|
||||
git checkout minicpmo
|
||||
```
|
||||
2. Install vLLM from source:
|
||||
```shell
|
||||
VLLM_USE_PRECOMPILED=1 pip install --editable .
|
||||
```
|
||||
3. Run MiniCPM-o 2.6 in the same way as the previous models (shown in the following example).
|
||||
1. Install vLLM(>=0.7.1):
|
||||
```shell
|
||||
pip install vllm
|
||||
```
|
||||
|
||||
2. For previous MiniCPM-V models
|
||||
1. Install vLLM(>=0.5.4):
|
||||
```shell
|
||||
pip install vllm
|
||||
```
|
||||
2. Install timm: (optional, MiniCPM-V 2.0 need timm)
|
||||
```shell
|
||||
pip install timm==0.9.10
|
||||
```
|
||||
3. Run the example(for image):
|
||||
```python
|
||||
from transformers import AutoTokenizer
|
||||
from PIL import Image
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
MODEL_NAME = "openbmb/MiniCPM-V-2_6"
|
||||
# MODEL_NAME = "openbmb/MiniCPM-o-2_6"
|
||||
# Also available for previous models
|
||||
# MODEL_NAME = "openbmb/MiniCPM-Llama3-V-2_5"
|
||||
# MODEL_NAME = "HwwwH/MiniCPM-V-2"
|
||||
|
||||
image = Image.open("xxx.png").convert("RGB")
|
||||
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
||||
llm = LLM(
|
||||
model=MODEL_NAME,
|
||||
trust_remote_code=True,
|
||||
gpu_memory_utilization=1,
|
||||
max_model_len=2048
|
||||
)
|
||||
|
||||
messages = [{
|
||||
"role":
|
||||
"user",
|
||||
"content":
|
||||
# Number of images
|
||||
"(<image>./</image>)" + \
|
||||
"\nWhat is the content of this image?"
|
||||
}]
|
||||
prompt = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
)
|
||||
|
||||
# Single Inference
|
||||
inputs = {
|
||||
"prompt": prompt,
|
||||
"multi_modal_data": {
|
||||
"image": image
|
||||
# Multi images, the number of images should be equal to that of `(<image>./</image>)`
|
||||
# "image": [image, image]
|
||||
},
|
||||
}
|
||||
# Batch Inference
|
||||
# inputs = [{
|
||||
# "prompt": prompt,
|
||||
# "multi_modal_data": {
|
||||
# "image": image
|
||||
# },
|
||||
# } for _ in 2]
|
||||
|
||||
|
||||
# 2.6
|
||||
stop_tokens = ['<|im_end|>', '<|endoftext|>']
|
||||
stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens]
|
||||
# 2.0
|
||||
# stop_token_ids = [tokenizer.eos_id]
|
||||
# 2.5
|
||||
# stop_token_ids = [tokenizer.eos_id, tokenizer.eot_id]
|
||||
|
||||
sampling_params = SamplingParams(
|
||||
stop_token_ids=stop_token_ids,
|
||||
use_beam_search=True,
|
||||
temperature=0,
|
||||
best_of=3,
|
||||
max_tokens=1024
|
||||
)
|
||||
|
||||
outputs = llm.generate(inputs, sampling_params=sampling_params)
|
||||
|
||||
print(outputs[0].outputs[0].text)
|
||||
```
|
||||
4. click [here](https://modelbest.feishu.cn/wiki/C2BWw4ZP0iCDy7kkCPCcX2BHnOf?from=from_copylink) if you want to use it with *video*, or get more details about `vLLM`.
|
||||
</details>
|
||||
2. Run Example:
|
||||
* [Vision Language](https://docs.vllm.ai/en/latest/getting_started/examples/vision_language.html)
|
||||
* [Audio Language](https://docs.vllm.ai/en/latest/getting_started/examples/audio_language.html)
|
||||
</details>
|
||||
|
||||
## Fine-tuning
|
||||
|
||||
|
||||
Reference in New Issue
Block a user