mirror of
https://github.com/OpenBMB/MiniCPM-V.git
synced 2026-02-04 17:59:18 +08:00
Update readme
This commit is contained in:
14
README.md
14
README.md
@@ -35,7 +35,6 @@
|
||||
|
||||
## 目录 <!-- omit in toc -->
|
||||
|
||||
<!-- TOC -->
|
||||
|
||||
- [MiniCPM-V 2.8B](#minicpm-v-28b)
|
||||
- [OmniLMM-12B](#omnilmm-12b)
|
||||
@@ -46,11 +45,10 @@
|
||||
- [多轮对话](#多轮对话)
|
||||
- [Mac 推理](#mac-推理)
|
||||
- [手机端部署](#手机端部署)
|
||||
- [微调](#微调)
|
||||
- [未来计划](#未来计划)
|
||||
- [引用](#引用)
|
||||
|
||||
<!-- /TOC -->
|
||||
<!-- /TOC -->
|
||||
|
||||
## MiniCPM-V 2.8B
|
||||
|
||||
@@ -607,6 +605,14 @@ PYTORCH_ENABLE_MPS_FALLBACK=1 python test.py
|
||||
MiniCPM-V 2.0 目前可以部署在Android和Harmony操作系统的手机上。 🚀 点击[这里](https://github.com/OpenBMB/mlc-MiniCPM)开始手机端部署。
|
||||
|
||||
|
||||
## 微调
|
||||
|
||||
### MiniCPM-V <!-- omit in toc -->
|
||||
|
||||
我们支持使用 SWIFT 框架微调 MiniCPM-V 系列模型。SWIFT 支持近 200 种 LLM 和 MLLM(多模态大模型)的训练、推理、评测和部署。支持 PEFT 提供的轻量训练方案和完整的 Adapters 库支持的最新训练技术如 NEFTune、LoRA+、LLaMA-PRO 等。
|
||||
|
||||
参考文档:[MiniCPM-V](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v最佳实践.md), [MiniCPM-V-2](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md)
|
||||
|
||||
## 未来计划
|
||||
|
||||
- [ ] 支持模型微调
|
||||
@@ -641,7 +647,7 @@ OmniLMM 模型权重对学术研究完全开放。
|
||||
- <img src="assets/modelbest.png" width="28px"> [面壁智能](https://modelbest.cn/)
|
||||
- <img src="assets/zhihu.webp" width="28px"> [知乎](https://www.zhihu.com/ )
|
||||
|
||||
## 我们的其他多模态项目 <!-- omit in toc -->
|
||||
## 其他多模态项目 <!-- omit in toc -->
|
||||
|
||||
👏 欢迎了解我们更多的多模态项目:
|
||||
|
||||
|
||||
10
README_en.md
10
README_en.md
@@ -43,6 +43,7 @@
|
||||
- [Multi-turn Conversation](#multi-turn-conversation)
|
||||
- [Inference on Mac](#inference-on-mac)
|
||||
- [Deployment on Mobile Phone](#deployment-on-mobile-phone)
|
||||
- [Finetune](#finetune)
|
||||
- [TODO](#todo)
|
||||
- [Citation](#citation)
|
||||
|
||||
@@ -594,6 +595,15 @@ PYTORCH_ENABLE_MPS_FALLBACK=1 python test.py
|
||||
### Deployment on Mobile Phone
|
||||
Currently MiniCPM-V 2.0 can be deployed on mobile phones with Android and Harmony operating systems. 🚀 Try it out [here](https://github.com/OpenBMB/mlc-MiniCPM).
|
||||
|
||||
## Finetune
|
||||
|
||||
### MiniCPM-V <!-- omit in toc -->
|
||||
|
||||
We now support finetune MiniCPM-V series with the SWIFT framework. SWIFT supports training, inference, evaluation and deployment of nearly 200 LLMs and MLLMs (multimodal large models). It supports the lightweight training solutions provided by PEFT and a complete Adapters Library including techniques such as NEFTune, LoRA+ and LLaMA-PRO.
|
||||
|
||||
Best Practices:[MiniCPM-V](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v最佳实践.md), [MiniCPM-V-2](https://github.com/modelscope/swift/blob/main/docs/source/Multi-Modal/minicpm-v-2最佳实践.md)
|
||||
|
||||
|
||||
## TODO
|
||||
|
||||
- [ ] Fine-tuning support
|
||||
|
||||
Reference in New Issue
Block a user