mirror of
https://github.com/shivammehta25/Matcha-TTS.git
synced 2026-02-05 02:09:21 +08:00
Compare commits
53 Commits
v0.0.1.dev
...
dependabot
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
0c0bcaf69f | ||
|
|
fb7b954de5 | ||
|
|
5a52a67cf7 | ||
|
|
39cbd85236 | ||
|
|
95ec24b599 | ||
|
|
13ca33fbe5 | ||
|
|
19bea20928 | ||
|
|
8268360674 | ||
|
|
a0bf4e9e9a | ||
|
|
f1e8efdec2 | ||
|
|
4ec245e61e | ||
|
|
254a8e05ce | ||
|
|
0ed9290c31 | ||
|
|
f39ee6cf3b | ||
|
|
6e71dc8b8f | ||
|
|
ae2417c175 | ||
|
|
6c7a82a516 | ||
|
|
009b09a8b2 | ||
|
|
a18db17330 | ||
|
|
263d5c4d4e | ||
|
|
df896301ca | ||
|
|
c8d0d60f87 | ||
|
|
e540794e7e | ||
|
|
b756809a32 | ||
|
|
1ead4303f3 | ||
|
|
7a29fef719 | ||
|
|
9ace522249 | ||
|
|
ed6e6bbf6c | ||
|
|
51ea36d271 | ||
|
|
269609003b | ||
|
|
2a81800825 | ||
|
|
336dd20d5b | ||
|
|
01c99161c4 | ||
|
|
2c21a0edac | ||
|
|
25767f76a8 | ||
|
|
1b204ed42c | ||
|
|
2cd057187b | ||
|
|
d373e9a5b1 | ||
|
|
f12be190a4 | ||
|
|
be998ae31f | ||
|
|
a49af19f48 | ||
|
|
7850aa0910 | ||
|
|
309739b7cc | ||
|
|
0aaabf90c4 | ||
|
|
c5dab67d9f | ||
|
|
d098f32730 | ||
|
|
281a098337 | ||
|
|
db95158043 | ||
|
|
267bf96651 | ||
|
|
72635012b0 | ||
|
|
9ceee279f0 | ||
|
|
d7b9a37359 | ||
|
|
ec43ef0732 |
1
.github/dependabot.yml
vendored
1
.github/dependabot.yml
vendored
@@ -7,6 +7,7 @@ version: 2
|
|||||||
updates:
|
updates:
|
||||||
- package-ecosystem: "pip" # See documentation for possible values
|
- package-ecosystem: "pip" # See documentation for possible values
|
||||||
directory: "/" # Location of package manifests
|
directory: "/" # Location of package manifests
|
||||||
|
target-branch: "dev"
|
||||||
schedule:
|
schedule:
|
||||||
interval: "daily"
|
interval: "daily"
|
||||||
ignore:
|
ignore:
|
||||||
|
|||||||
@@ -18,7 +18,7 @@ repos:
|
|||||||
|
|
||||||
# python code formatting
|
# python code formatting
|
||||||
- repo: https://github.com/psf/black
|
- repo: https://github.com/psf/black
|
||||||
rev: 23.1.0
|
rev: 23.9.1
|
||||||
hooks:
|
hooks:
|
||||||
- id: black
|
- id: black
|
||||||
args: [--line-length, "120"]
|
args: [--line-length, "120"]
|
||||||
@@ -32,14 +32,14 @@ repos:
|
|||||||
|
|
||||||
# python upgrading syntax to newer version
|
# python upgrading syntax to newer version
|
||||||
- repo: https://github.com/asottile/pyupgrade
|
- repo: https://github.com/asottile/pyupgrade
|
||||||
rev: v3.3.1
|
rev: v3.14.0
|
||||||
hooks:
|
hooks:
|
||||||
- id: pyupgrade
|
- id: pyupgrade
|
||||||
args: [--py38-plus]
|
args: [--py38-plus]
|
||||||
|
|
||||||
# python check (PEP8), programming errors and code complexity
|
# python check (PEP8), programming errors and code complexity
|
||||||
- repo: https://github.com/PyCQA/flake8
|
- repo: https://github.com/PyCQA/flake8
|
||||||
rev: 6.0.0
|
rev: 6.1.0
|
||||||
hooks:
|
hooks:
|
||||||
- id: flake8
|
- id: flake8
|
||||||
args:
|
args:
|
||||||
@@ -54,6 +54,6 @@ repos:
|
|||||||
|
|
||||||
# pylint
|
# pylint
|
||||||
- repo: https://github.com/pycqa/pylint
|
- repo: https://github.com/pycqa/pylint
|
||||||
rev: v2.8.2
|
rev: v3.0.0
|
||||||
hooks:
|
hooks:
|
||||||
- id: pylint
|
- id: pylint
|
||||||
|
|||||||
82
.pylintrc
82
.pylintrc
@@ -82,16 +82,6 @@ disable=missing-docstring,
|
|||||||
no-name-in-module,
|
no-name-in-module,
|
||||||
no-member,
|
no-member,
|
||||||
unsubscriptable-object,
|
unsubscriptable-object,
|
||||||
print-statement,
|
|
||||||
parameter-unpacking,
|
|
||||||
unpacking-in-except,
|
|
||||||
old-raise-syntax,
|
|
||||||
backtick,
|
|
||||||
long-suffix,
|
|
||||||
old-ne-operator,
|
|
||||||
old-octal-literal,
|
|
||||||
import-star-module-level,
|
|
||||||
non-ascii-bytes-literal,
|
|
||||||
raw-checker-failed,
|
raw-checker-failed,
|
||||||
bad-inline-option,
|
bad-inline-option,
|
||||||
locally-disabled,
|
locally-disabled,
|
||||||
@@ -106,67 +96,6 @@ disable=missing-docstring,
|
|||||||
too-many-arguments,
|
too-many-arguments,
|
||||||
too-many-locals,
|
too-many-locals,
|
||||||
too-many-statements,
|
too-many-statements,
|
||||||
apply-builtin,
|
|
||||||
basestring-builtin,
|
|
||||||
buffer-builtin,
|
|
||||||
cmp-builtin,
|
|
||||||
coerce-builtin,
|
|
||||||
execfile-builtin,
|
|
||||||
file-builtin,
|
|
||||||
long-builtin,
|
|
||||||
raw_input-builtin,
|
|
||||||
reduce-builtin,
|
|
||||||
standarderror-builtin,
|
|
||||||
unicode-builtin,
|
|
||||||
xrange-builtin,
|
|
||||||
coerce-method,
|
|
||||||
delslice-method,
|
|
||||||
getslice-method,
|
|
||||||
setslice-method,
|
|
||||||
no-absolute-import,
|
|
||||||
old-division,
|
|
||||||
dict-iter-method,
|
|
||||||
dict-view-method,
|
|
||||||
next-method-called,
|
|
||||||
metaclass-assignment,
|
|
||||||
indexing-exception,
|
|
||||||
raising-string,
|
|
||||||
reload-builtin,
|
|
||||||
oct-method,
|
|
||||||
hex-method,
|
|
||||||
nonzero-method,
|
|
||||||
cmp-method,
|
|
||||||
input-builtin,
|
|
||||||
round-builtin,
|
|
||||||
intern-builtin,
|
|
||||||
unichr-builtin,
|
|
||||||
map-builtin-not-iterating,
|
|
||||||
zip-builtin-not-iterating,
|
|
||||||
range-builtin-not-iterating,
|
|
||||||
filter-builtin-not-iterating,
|
|
||||||
using-cmp-argument,
|
|
||||||
eq-without-hash,
|
|
||||||
div-method,
|
|
||||||
idiv-method,
|
|
||||||
rdiv-method,
|
|
||||||
exception-message-attribute,
|
|
||||||
invalid-str-codec,
|
|
||||||
sys-max-int,
|
|
||||||
bad-python3-import,
|
|
||||||
deprecated-string-function,
|
|
||||||
deprecated-str-translate-call,
|
|
||||||
deprecated-itertools-function,
|
|
||||||
deprecated-types-field,
|
|
||||||
next-method-defined,
|
|
||||||
dict-items-not-iterating,
|
|
||||||
dict-keys-not-iterating,
|
|
||||||
dict-values-not-iterating,
|
|
||||||
deprecated-operator-function,
|
|
||||||
deprecated-urllib-function,
|
|
||||||
xreadlines-attribute,
|
|
||||||
deprecated-sys-function,
|
|
||||||
exception-escape,
|
|
||||||
comprehension-escape,
|
|
||||||
duplicate-code,
|
duplicate-code,
|
||||||
not-callable,
|
not-callable,
|
||||||
import-outside-toplevel,
|
import-outside-toplevel,
|
||||||
@@ -363,13 +292,6 @@ max-line-length=120
|
|||||||
# Maximum number of lines in a module.
|
# Maximum number of lines in a module.
|
||||||
max-module-lines=1000
|
max-module-lines=1000
|
||||||
|
|
||||||
# List of optional constructs for which whitespace checking is disabled. `dict-
|
|
||||||
# separator` is used to allow tabulation in dicts, etc.: {1 : 1,\n222: 2}.
|
|
||||||
# `trailing-comma` allows a space between comma and closing bracket: (a, ).
|
|
||||||
# `empty-line` allows space-only lines.
|
|
||||||
no-space-check=trailing-comma,
|
|
||||||
dict-separator
|
|
||||||
|
|
||||||
# Allow the body of a class to be on the same line as the declaration if body
|
# Allow the body of a class to be on the same line as the declaration if body
|
||||||
# contains single statement.
|
# contains single statement.
|
||||||
single-line-class-stmt=no
|
single-line-class-stmt=no
|
||||||
@@ -599,5 +521,5 @@ min-public-methods=2
|
|||||||
|
|
||||||
# Exceptions that will emit a warning when being caught. Defaults to
|
# Exceptions that will emit a warning when being caught. Defaults to
|
||||||
# "BaseException, Exception".
|
# "BaseException, Exception".
|
||||||
overgeneral-exceptions=BaseException,
|
overgeneral-exceptions=builtins.BaseException,
|
||||||
Exception
|
builtins.Exception
|
||||||
|
|||||||
2
Makefile
2
Makefile
@@ -17,7 +17,7 @@ create-package: ## Create wheel and tar gz
|
|||||||
rm -rf dist/
|
rm -rf dist/
|
||||||
python setup.py bdist_wheel --plat-name=manylinux1_x86_64
|
python setup.py bdist_wheel --plat-name=manylinux1_x86_64
|
||||||
python setup.py sdist
|
python setup.py sdist
|
||||||
python -m twine upload dist/* --verbose
|
python -m twine upload dist/* --verbose --skip-existing
|
||||||
|
|
||||||
format: ## Run pre-commit hooks
|
format: ## Run pre-commit hooks
|
||||||
pre-commit run -a
|
pre-commit run -a
|
||||||
|
|||||||
124
README.md
124
README.md
@@ -19,20 +19,22 @@
|
|||||||
|
|
||||||
> This is the official code implementation of 🍵 Matcha-TTS.
|
> This is the official code implementation of 🍵 Matcha-TTS.
|
||||||
|
|
||||||
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up ODE-based speech synthesis. Our method:
|
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses [conditional flow matching](https://arxiv.org/abs/2210.02747) (similar to [rectified flows](https://arxiv.org/abs/2209.03003)) to speed up ODE-based speech synthesis. Our method:
|
||||||
|
|
||||||
- Is probabilistic
|
- Is probabilistic
|
||||||
- Has compact memory footprint
|
- Has compact memory footprint
|
||||||
- Sounds highly natural
|
- Sounds highly natural
|
||||||
- Is very fast to synthesise from
|
- Is very fast to synthesise from
|
||||||
|
|
||||||
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS). Read our [arXiv preprint for more details](https://arxiv.org/abs/2309.03199).
|
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS) and read [our ICASSP 2024 paper](https://arxiv.org/abs/2309.03199) for more details.
|
||||||
|
|
||||||
[Pretrained models](https://drive.google.com/drive/folders/17C_gYgEHOxI5ZypcfE_k1piKCtyR0isJ?usp=sharing) will be auto downloaded with the CLI or gradio interface.
|
[Pre-trained models](https://drive.google.com/drive/folders/17C_gYgEHOxI5ZypcfE_k1piKCtyR0isJ?usp=sharing) will be automatically downloaded with the CLI or gradio interface.
|
||||||
|
|
||||||
[Try 🍵 Matcha-TTS on HuggingFace 🤗 spaces!](https://huggingface.co/spaces/shivammehta25/Matcha-TTS)
|
You can also [try 🍵 Matcha-TTS in your browser on HuggingFace 🤗 spaces](https://huggingface.co/spaces/shivammehta25/Matcha-TTS).
|
||||||
|
|
||||||
<br>
|
## Teaser video
|
||||||
|
|
||||||
|
[](https://youtu.be/xmvJkz3bqw0)
|
||||||
|
|
||||||
## Installation
|
## Installation
|
||||||
|
|
||||||
@@ -53,6 +55,8 @@ from source
|
|||||||
|
|
||||||
```bash
|
```bash
|
||||||
pip install git+https://github.com/shivammehta25/Matcha-TTS.git
|
pip install git+https://github.com/shivammehta25/Matcha-TTS.git
|
||||||
|
cd Matcha-TTS
|
||||||
|
pip install -e .
|
||||||
```
|
```
|
||||||
|
|
||||||
3. Run CLI / gradio app / jupyter notebook
|
3. Run CLI / gradio app / jupyter notebook
|
||||||
@@ -110,26 +114,13 @@ matcha-tts --text "<INPUT TEXT>" --temperature 0.667
|
|||||||
matcha-tts --text "<INPUT TEXT>" --steps 10
|
matcha-tts --text "<INPUT TEXT>" --steps 10
|
||||||
```
|
```
|
||||||
|
|
||||||
## Citation information
|
|
||||||
|
|
||||||
If you find this work useful, please cite our paper:
|
|
||||||
|
|
||||||
```text
|
|
||||||
@article{mehta2023matcha,
|
|
||||||
title={Matcha-TTS: A fast TTS architecture with conditional flow matching},
|
|
||||||
author={Mehta, Shivam and Tu, Ruibo and Beskow, Jonas and Sz{\'e}kely, {\'E}va and Henter, Gustav Eje},
|
|
||||||
journal={arXiv preprint arXiv:2309.03199},
|
|
||||||
year={2023}
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
## Train with your own dataset
|
## Train with your own dataset
|
||||||
|
|
||||||
Let's assume we are training with LJSpeech
|
Let's assume we are training with LJ Speech
|
||||||
|
|
||||||
1. Download the dataset from [here](https://keithito.com/LJ-Speech-Dataset/), extract it to `data/LJSpeech-1.1`, and prepare the filelists to point to the extracted data like the [5th point of setup in Tacotron2 repo](https://github.com/NVIDIA/tacotron2#setup).
|
1. Download the dataset from [here](https://keithito.com/LJ-Speech-Dataset/), extract it to `data/LJSpeech-1.1`, and prepare the file lists to point to the extracted data like for [item 5 in the setup of the NVIDIA Tacotron 2 repo](https://github.com/NVIDIA/tacotron2#setup).
|
||||||
|
|
||||||
2. Clone and enter this repository
|
2. Clone and enter the Matcha-TTS repository
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
git clone https://github.com/shivammehta25/Matcha-TTS.git
|
git clone https://github.com/shivammehta25/Matcha-TTS.git
|
||||||
@@ -167,7 +158,7 @@ data_statistics: # Computed for ljspeech dataset
|
|||||||
|
|
||||||
to the paths of your train and validation filelists.
|
to the paths of your train and validation filelists.
|
||||||
|
|
||||||
5. Run the training script
|
6. Run the training script
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
make train-ljspeech
|
make train-ljspeech
|
||||||
@@ -191,20 +182,97 @@ python matcha/train.py experiment=ljspeech_min_memory
|
|||||||
python matcha/train.py experiment=ljspeech trainer.devices=[0,1]
|
python matcha/train.py experiment=ljspeech trainer.devices=[0,1]
|
||||||
```
|
```
|
||||||
|
|
||||||
6. Synthesise from the custom trained model
|
7. Synthesise from the custom trained model
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
matcha-tts --text "<INPUT TEXT>" --checkpoint_path <PATH TO CHECKPOINT>
|
matcha-tts --text "<INPUT TEXT>" --checkpoint_path <PATH TO CHECKPOINT>
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## ONNX support
|
||||||
|
|
||||||
|
> Special thanks to [@mush42](https://github.com/mush42) for implementing ONNX export and inference support.
|
||||||
|
|
||||||
|
It is possible to export Matcha checkpoints to [ONNX](https://onnx.ai/), and run inference on the exported ONNX graph.
|
||||||
|
|
||||||
|
### ONNX export
|
||||||
|
|
||||||
|
To export a checkpoint to ONNX, first install ONNX with
|
||||||
|
|
||||||
|
```bash
|
||||||
|
pip install onnx
|
||||||
|
```
|
||||||
|
|
||||||
|
then run the following:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python3 -m matcha.onnx.export matcha.ckpt model.onnx --n-timesteps 5
|
||||||
|
```
|
||||||
|
|
||||||
|
Optionally, the ONNX exporter accepts **vocoder-name** and **vocoder-checkpoint** arguments. This enables you to embed the vocoder in the exported graph and generate waveforms in a single run (similar to end-to-end TTS systems).
|
||||||
|
|
||||||
|
**Note** that `n_timesteps` is treated as a hyper-parameter rather than a model input. This means you should specify it during export (not during inference). If not specified, `n_timesteps` is set to **5**.
|
||||||
|
|
||||||
|
**Important**: for now, torch>=2.1.0 is needed for export since the `scaled_product_attention` operator is not exportable in older versions. Until the final version is released, those who want to export their models must install torch>=2.1.0 manually as a pre-release.
|
||||||
|
|
||||||
|
### ONNX Inference
|
||||||
|
|
||||||
|
To run inference on the exported model, first install `onnxruntime` using
|
||||||
|
|
||||||
|
```bash
|
||||||
|
pip install onnxruntime
|
||||||
|
pip install onnxruntime-gpu # for GPU inference
|
||||||
|
```
|
||||||
|
|
||||||
|
then use the following:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs
|
||||||
|
```
|
||||||
|
|
||||||
|
You can also control synthesis parameters:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --temperature 0.4 --speaking_rate 0.9 --spk 0
|
||||||
|
```
|
||||||
|
|
||||||
|
To run inference on **GPU**, make sure to install **onnxruntime-gpu** package, and then pass `--gpu` to the inference command:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --gpu
|
||||||
|
```
|
||||||
|
|
||||||
|
If you exported only Matcha to ONNX, this will write mel-spectrogram as graphs and `numpy` arrays to the output directory.
|
||||||
|
If you embedded the vocoder in the exported graph, this will write `.wav` audio files to the output directory.
|
||||||
|
|
||||||
|
If you exported only Matcha to ONNX, and you want to run a full TTS pipeline, you can pass a path to a vocoder model in `ONNX` format:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --vocoder hifigan.small.onnx
|
||||||
|
```
|
||||||
|
|
||||||
|
This will write `.wav` audio files to the output directory.
|
||||||
|
|
||||||
|
## Citation information
|
||||||
|
|
||||||
|
If you use our code or otherwise find this work useful, please cite our paper:
|
||||||
|
|
||||||
|
```text
|
||||||
|
@inproceedings{mehta2024matcha,
|
||||||
|
title={Matcha-{TTS}: A fast {TTS} architecture with conditional flow matching},
|
||||||
|
author={Mehta, Shivam and Tu, Ruibo and Beskow, Jonas and Sz{\'e}kely, {\'E}va and Henter, Gustav Eje},
|
||||||
|
booktitle={Proc. ICASSP},
|
||||||
|
year={2024}
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
## Acknowledgements
|
## Acknowledgements
|
||||||
|
|
||||||
Since this code uses: [Lightning-Hydra-Template](https://github.com/ashleve/lightning-hydra-template), you have all the powers that comes with it.
|
Since this code uses [Lightning-Hydra-Template](https://github.com/ashleve/lightning-hydra-template), you have all the powers that come with it.
|
||||||
|
|
||||||
Other source codes I would like to acknowledge:
|
Other source code we would like to acknowledge:
|
||||||
|
|
||||||
- [Coqui-TTS](https://github.com/coqui-ai/TTS/tree/dev) :For helping me figure out how to make cython binaries pip installable and encouragement
|
- [Coqui-TTS](https://github.com/coqui-ai/TTS/tree/dev): For helping me figure out how to make cython binaries pip installable and encouragement
|
||||||
- [Hugging Face Diffusers](https://huggingface.co/): For their awesome diffusers library and its components
|
- [Hugging Face Diffusers](https://huggingface.co/): For their awesome diffusers library and its components
|
||||||
- [Grad-TTS](https://github.com/huawei-noah/Speech-Backbones/tree/main/Grad-TTS): For source code of MAS
|
- [Grad-TTS](https://github.com/huawei-noah/Speech-Backbones/tree/main/Grad-TTS): For the monotonic alignment search source code
|
||||||
- [torchdyn](https://github.com/DiffEqML/torchdyn): Useful for trying other ODE solvers during research and development
|
- [torchdyn](https://github.com/DiffEqML/torchdyn): Useful for trying other ODE solvers during research and development
|
||||||
- [labml.ai](https://nn.labml.ai/transformers/rope/index.html): For RoPE implementation
|
- [labml.ai](https://nn.labml.ai/transformers/rope/index.html): For the RoPE implementation
|
||||||
|
|||||||
14
configs/data/hi-fi_en-US_female.yaml
Normal file
14
configs/data/hi-fi_en-US_female.yaml
Normal file
@@ -0,0 +1,14 @@
|
|||||||
|
defaults:
|
||||||
|
- ljspeech
|
||||||
|
- _self_
|
||||||
|
|
||||||
|
# Dataset URL: https://ast-astrec.nict.go.jp/en/release/hi-fi-captain/
|
||||||
|
_target_: matcha.data.text_mel_datamodule.TextMelDataModule
|
||||||
|
name: hi-fi_en-US_female
|
||||||
|
train_filelist_path: data/filelists/hi-fi-captain-en-us-female_train.txt
|
||||||
|
valid_filelist_path: data/filelists/hi-fi-captain-en-us-female_val.txt
|
||||||
|
batch_size: 32
|
||||||
|
cleaners: [english_cleaners_piper]
|
||||||
|
data_statistics: # Computed for this dataset
|
||||||
|
mel_mean: -6.38385
|
||||||
|
mel_std: 2.541796
|
||||||
@@ -7,8 +7,8 @@
|
|||||||
task_name: "debug"
|
task_name: "debug"
|
||||||
|
|
||||||
# disable callbacks and loggers during debugging
|
# disable callbacks and loggers during debugging
|
||||||
callbacks: null
|
# callbacks: null
|
||||||
logger: null
|
# logger: null
|
||||||
|
|
||||||
extras:
|
extras:
|
||||||
ignore_warnings: False
|
ignore_warnings: False
|
||||||
|
|||||||
@@ -7,6 +7,9 @@ defaults:
|
|||||||
|
|
||||||
trainer:
|
trainer:
|
||||||
max_epochs: 1
|
max_epochs: 1
|
||||||
profiler: "simple"
|
# profiler: "simple"
|
||||||
# profiler: "advanced"
|
profiler: "advanced"
|
||||||
# profiler: "pytorch"
|
# profiler: "pytorch"
|
||||||
|
accelerator: gpu
|
||||||
|
|
||||||
|
limit_train_batches: 0.02
|
||||||
|
|||||||
14
configs/experiment/hifi_dataset_piper_phonemizer.yaml
Normal file
14
configs/experiment/hifi_dataset_piper_phonemizer.yaml
Normal file
@@ -0,0 +1,14 @@
|
|||||||
|
# @package _global_
|
||||||
|
|
||||||
|
# to execute this experiment run:
|
||||||
|
# python train.py experiment=multispeaker
|
||||||
|
|
||||||
|
defaults:
|
||||||
|
- override /data: hi-fi_en-US_female.yaml
|
||||||
|
|
||||||
|
# all parameters below will be merged with parameters from default configurations set above
|
||||||
|
# this allows you to overwrite only specified parameters
|
||||||
|
|
||||||
|
tags: ["hi-fi", "single_speaker", "piper_phonemizer", "en_US", "female"]
|
||||||
|
|
||||||
|
run_name: hi-fi_en-US_female_piper_phonemizer
|
||||||
@@ -12,3 +12,4 @@ spk_emb_dim: 64
|
|||||||
n_feats: 80
|
n_feats: 80
|
||||||
data_statistics: ${data.data_statistics}
|
data_statistics: ${data.data_statistics}
|
||||||
out_size: null # Must be divisible by 4
|
out_size: null # Must be divisible by 4
|
||||||
|
prior_loss: true
|
||||||
|
|||||||
@@ -1 +1 @@
|
|||||||
0.0.1.dev4
|
0.0.5.1
|
||||||
|
|||||||
198
matcha/app.py
198
matcha/app.py
@@ -8,7 +8,7 @@ import torch
|
|||||||
|
|
||||||
from matcha.cli import (
|
from matcha.cli import (
|
||||||
MATCHA_URLS,
|
MATCHA_URLS,
|
||||||
VOCODER_URL,
|
VOCODER_URLS,
|
||||||
assert_model_downloaded,
|
assert_model_downloaded,
|
||||||
get_device,
|
get_device,
|
||||||
load_matcha,
|
load_matcha,
|
||||||
@@ -22,20 +22,80 @@ LOCATION = Path(get_user_data_dir())
|
|||||||
|
|
||||||
args = Namespace(
|
args = Namespace(
|
||||||
cpu=False,
|
cpu=False,
|
||||||
model="matcha_ljspeech",
|
model="matcha_vctk",
|
||||||
vocoder="hifigan_T2_v1",
|
vocoder="hifigan_univ_v1",
|
||||||
spk=None,
|
spk=0,
|
||||||
)
|
)
|
||||||
|
|
||||||
MATCHA_TTS_LOC = LOCATION / f"{args.model}.ckpt"
|
CURRENTLY_LOADED_MODEL = args.model
|
||||||
VOCODER_LOC = LOCATION / f"{args.vocoder}"
|
|
||||||
|
|
||||||
|
def MATCHA_TTS_LOC(x):
|
||||||
|
return LOCATION / f"{x}.ckpt"
|
||||||
|
|
||||||
|
|
||||||
|
def VOCODER_LOC(x):
|
||||||
|
return LOCATION / f"{x}"
|
||||||
|
|
||||||
|
|
||||||
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png"
|
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png"
|
||||||
assert_model_downloaded(MATCHA_TTS_LOC, MATCHA_URLS[args.model])
|
RADIO_OPTIONS = {
|
||||||
assert_model_downloaded(VOCODER_LOC, VOCODER_URL[args.vocoder])
|
"Multi Speaker (VCTK)": {
|
||||||
|
"model": "matcha_vctk",
|
||||||
|
"vocoder": "hifigan_univ_v1",
|
||||||
|
},
|
||||||
|
"Single Speaker (LJ Speech)": {
|
||||||
|
"model": "matcha_ljspeech",
|
||||||
|
"vocoder": "hifigan_T2_v1",
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
# Ensure all the required models are downloaded
|
||||||
|
assert_model_downloaded(MATCHA_TTS_LOC("matcha_ljspeech"), MATCHA_URLS["matcha_ljspeech"])
|
||||||
|
assert_model_downloaded(VOCODER_LOC("hifigan_T2_v1"), VOCODER_URLS["hifigan_T2_v1"])
|
||||||
|
assert_model_downloaded(MATCHA_TTS_LOC("matcha_vctk"), MATCHA_URLS["matcha_vctk"])
|
||||||
|
assert_model_downloaded(VOCODER_LOC("hifigan_univ_v1"), VOCODER_URLS["hifigan_univ_v1"])
|
||||||
|
|
||||||
device = get_device(args)
|
device = get_device(args)
|
||||||
|
|
||||||
model = load_matcha(args.model, MATCHA_TTS_LOC, device)
|
# Load default model
|
||||||
vocoder, denoiser = load_vocoder(args.vocoder, VOCODER_LOC, device)
|
model = load_matcha(args.model, MATCHA_TTS_LOC(args.model), device)
|
||||||
|
vocoder, denoiser = load_vocoder(args.vocoder, VOCODER_LOC(args.vocoder), device)
|
||||||
|
|
||||||
|
|
||||||
|
def load_model(model_name, vocoder_name):
|
||||||
|
model = load_matcha(model_name, MATCHA_TTS_LOC(model_name), device)
|
||||||
|
vocoder, denoiser = load_vocoder(vocoder_name, VOCODER_LOC(vocoder_name), device)
|
||||||
|
return model, vocoder, denoiser
|
||||||
|
|
||||||
|
|
||||||
|
def load_model_ui(model_type, textbox):
|
||||||
|
model_name, vocoder_name = RADIO_OPTIONS[model_type]["model"], RADIO_OPTIONS[model_type]["vocoder"]
|
||||||
|
|
||||||
|
global model, vocoder, denoiser, CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
|
||||||
|
if CURRENTLY_LOADED_MODEL != model_name:
|
||||||
|
model, vocoder, denoiser = load_model(model_name, vocoder_name)
|
||||||
|
CURRENTLY_LOADED_MODEL = model_name
|
||||||
|
|
||||||
|
if model_name == "matcha_ljspeech":
|
||||||
|
spk_slider = gr.update(visible=False, value=-1)
|
||||||
|
single_speaker_examples = gr.update(visible=True)
|
||||||
|
multi_speaker_examples = gr.update(visible=False)
|
||||||
|
length_scale = gr.update(value=0.95)
|
||||||
|
else:
|
||||||
|
spk_slider = gr.update(visible=True, value=0)
|
||||||
|
single_speaker_examples = gr.update(visible=False)
|
||||||
|
multi_speaker_examples = gr.update(visible=True)
|
||||||
|
length_scale = gr.update(value=0.85)
|
||||||
|
|
||||||
|
return (
|
||||||
|
textbox,
|
||||||
|
gr.update(interactive=True),
|
||||||
|
spk_slider,
|
||||||
|
single_speaker_examples,
|
||||||
|
multi_speaker_examples,
|
||||||
|
length_scale,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
@@ -45,13 +105,14 @@ def process_text_gradio(text):
|
|||||||
|
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale):
|
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk):
|
||||||
|
spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None
|
||||||
output = model.synthesise(
|
output = model.synthesise(
|
||||||
text,
|
text,
|
||||||
text_length,
|
text_length,
|
||||||
n_timesteps=n_timesteps,
|
n_timesteps=n_timesteps,
|
||||||
temperature=temperature,
|
temperature=temperature,
|
||||||
spks=args.spk,
|
spks=spk,
|
||||||
length_scale=length_scale,
|
length_scale=length_scale,
|
||||||
)
|
)
|
||||||
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
|
output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
|
||||||
@@ -61,9 +122,27 @@ def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale):
|
|||||||
return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy())
|
return fp.name, plot_tensor(output["mel"].squeeze().cpu().numpy())
|
||||||
|
|
||||||
|
|
||||||
def run_full_synthesis(text, n_timesteps, mel_temp, length_scale):
|
def multispeaker_example_cacher(text, n_timesteps, mel_temp, length_scale, spk):
|
||||||
|
global CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
|
||||||
|
if CURRENTLY_LOADED_MODEL != "matcha_vctk":
|
||||||
|
global model, vocoder, denoiser # pylint: disable=global-statement
|
||||||
|
model, vocoder, denoiser = load_model("matcha_vctk", "hifigan_univ_v1")
|
||||||
|
CURRENTLY_LOADED_MODEL = "matcha_vctk"
|
||||||
|
|
||||||
phones, text, text_lengths = process_text_gradio(text)
|
phones, text, text_lengths = process_text_gradio(text)
|
||||||
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale)
|
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
|
||||||
|
return phones, audio, mel_spectrogram
|
||||||
|
|
||||||
|
|
||||||
|
def ljspeech_example_cacher(text, n_timesteps, mel_temp, length_scale, spk=-1):
|
||||||
|
global CURRENTLY_LOADED_MODEL # pylint: disable=global-statement
|
||||||
|
if CURRENTLY_LOADED_MODEL != "matcha_ljspeech":
|
||||||
|
global model, vocoder, denoiser # pylint: disable=global-statement
|
||||||
|
model, vocoder, denoiser = load_model("matcha_ljspeech", "hifigan_T2_v1")
|
||||||
|
CURRENTLY_LOADED_MODEL = "matcha_ljspeech"
|
||||||
|
|
||||||
|
phones, text, text_lengths = process_text_gradio(text)
|
||||||
|
audio, mel_spectrogram = synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)
|
||||||
return phones, audio, mel_spectrogram
|
return phones, audio, mel_spectrogram
|
||||||
|
|
||||||
|
|
||||||
@@ -92,20 +171,31 @@ def main():
|
|||||||
with gr.Box():
|
with gr.Box():
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
gr.Markdown(description, scale=3)
|
gr.Markdown(description, scale=3)
|
||||||
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=150, width=150, scale=1, show_label=False)
|
with gr.Column():
|
||||||
|
gr.Image(LOGO_URL, label="Matcha-TTS logo", height=50, width=50, scale=1, show_label=False)
|
||||||
|
html = '<br><iframe width="560" height="315" src="https://www.youtube.com/embed/xmvJkz3bqw0?si=jN7ILyDsbPwJCGoa" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" allowfullscreen></iframe>'
|
||||||
|
gr.HTML(html)
|
||||||
|
|
||||||
with gr.Box():
|
with gr.Box():
|
||||||
|
radio_options = list(RADIO_OPTIONS.keys())
|
||||||
|
model_type = gr.Radio(
|
||||||
|
radio_options, value=radio_options[0], label="Choose a Model", interactive=True, container=False
|
||||||
|
)
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
gr.Markdown("# Text Input")
|
gr.Markdown("# Text Input")
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
text = gr.Textbox(value="", lines=2, label="Text to synthesise")
|
text = gr.Textbox(value="", lines=2, label="Text to synthesise", scale=3)
|
||||||
|
spk_slider = gr.Slider(
|
||||||
|
minimum=0, maximum=107, step=1, value=args.spk, label="Speaker ID", interactive=True, scale=1
|
||||||
|
)
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
gr.Markdown("### Hyper parameters")
|
gr.Markdown("### Hyper parameters")
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
n_timesteps = gr.Slider(
|
n_timesteps = gr.Slider(
|
||||||
label="Number of ODE steps",
|
label="Number of ODE steps",
|
||||||
minimum=0,
|
minimum=1,
|
||||||
maximum=100,
|
maximum=100,
|
||||||
step=1,
|
step=1,
|
||||||
value=10,
|
value=10,
|
||||||
@@ -142,58 +232,110 @@ def main():
|
|||||||
# with gr.Row():
|
# with gr.Row():
|
||||||
audio = gr.Audio(interactive=False, label="Audio")
|
audio = gr.Audio(interactive=False, label="Audio")
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row(visible=False) as example_row_lj_speech:
|
||||||
examples = gr.Examples( # pylint: disable=unused-variable
|
examples = gr.Examples( # pylint: disable=unused-variable
|
||||||
examples=[
|
examples=[
|
||||||
[
|
[
|
||||||
"We propose Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up O D E-based speech synthesis.",
|
"We propose Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses conditional flow matching (similar to rectified flows) to speed up O D E-based speech synthesis.",
|
||||||
50,
|
50,
|
||||||
0.677,
|
0.677,
|
||||||
1.0,
|
0.95,
|
||||||
],
|
],
|
||||||
[
|
[
|
||||||
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
||||||
2,
|
2,
|
||||||
0.677,
|
0.677,
|
||||||
1.0,
|
0.95,
|
||||||
],
|
],
|
||||||
[
|
[
|
||||||
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
||||||
4,
|
4,
|
||||||
0.677,
|
0.677,
|
||||||
1.0,
|
0.95,
|
||||||
],
|
],
|
||||||
[
|
[
|
||||||
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
||||||
10,
|
10,
|
||||||
0.677,
|
0.677,
|
||||||
1.0,
|
0.95,
|
||||||
],
|
],
|
||||||
[
|
[
|
||||||
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
"The Secret Service believed that it was very doubtful that any President would ride regularly in a vehicle with a fixed top, even though transparent.",
|
||||||
50,
|
50,
|
||||||
0.677,
|
0.677,
|
||||||
1.0,
|
0.95,
|
||||||
],
|
],
|
||||||
[
|
[
|
||||||
"The narrative of these events is based largely on the recollections of the participants.",
|
"The narrative of these events is based largely on the recollections of the participants.",
|
||||||
10,
|
10,
|
||||||
0.677,
|
0.677,
|
||||||
1.0,
|
0.95,
|
||||||
],
|
],
|
||||||
[
|
[
|
||||||
"The jury did not believe him, and the verdict was for the defendants.",
|
"The jury did not believe him, and the verdict was for the defendants.",
|
||||||
10,
|
10,
|
||||||
0.677,
|
0.677,
|
||||||
1.0,
|
0.95,
|
||||||
],
|
],
|
||||||
],
|
],
|
||||||
fn=run_full_synthesis,
|
fn=ljspeech_example_cacher,
|
||||||
inputs=[text, n_timesteps, mel_temp, length_scale],
|
inputs=[text, n_timesteps, mel_temp, length_scale],
|
||||||
outputs=[phonetised_text, audio, mel_spectrogram],
|
outputs=[phonetised_text, audio, mel_spectrogram],
|
||||||
cache_examples=True,
|
cache_examples=True,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
with gr.Row() as example_row_multispeaker:
|
||||||
|
multi_speaker_examples = gr.Examples( # pylint: disable=unused-variable
|
||||||
|
examples=[
|
||||||
|
[
|
||||||
|
"Hello everyone! I am speaker 0 and I am here to tell you that Matcha-TTS is amazing!",
|
||||||
|
10,
|
||||||
|
0.677,
|
||||||
|
0.85,
|
||||||
|
0,
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"Hello everyone! I am speaker 16 and I am here to tell you that Matcha-TTS is amazing!",
|
||||||
|
10,
|
||||||
|
0.677,
|
||||||
|
0.85,
|
||||||
|
16,
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"Hello everyone! I am speaker 44 and I am here to tell you that Matcha-TTS is amazing!",
|
||||||
|
50,
|
||||||
|
0.677,
|
||||||
|
0.85,
|
||||||
|
44,
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"Hello everyone! I am speaker 45 and I am here to tell you that Matcha-TTS is amazing!",
|
||||||
|
50,
|
||||||
|
0.677,
|
||||||
|
0.85,
|
||||||
|
45,
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"Hello everyone! I am speaker 58 and I am here to tell you that Matcha-TTS is amazing!",
|
||||||
|
4,
|
||||||
|
0.677,
|
||||||
|
0.85,
|
||||||
|
58,
|
||||||
|
],
|
||||||
|
],
|
||||||
|
fn=multispeaker_example_cacher,
|
||||||
|
inputs=[text, n_timesteps, mel_temp, length_scale, spk_slider],
|
||||||
|
outputs=[phonetised_text, audio, mel_spectrogram],
|
||||||
|
cache_examples=True,
|
||||||
|
label="Multi Speaker Examples",
|
||||||
|
)
|
||||||
|
|
||||||
|
model_type.change(lambda x: gr.update(interactive=False), inputs=[synth_btn], outputs=[synth_btn]).then(
|
||||||
|
load_model_ui,
|
||||||
|
inputs=[model_type, text],
|
||||||
|
outputs=[text, synth_btn, spk_slider, example_row_lj_speech, example_row_multispeaker, length_scale],
|
||||||
|
)
|
||||||
|
|
||||||
synth_btn.click(
|
synth_btn.click(
|
||||||
fn=process_text_gradio,
|
fn=process_text_gradio,
|
||||||
inputs=[
|
inputs=[
|
||||||
@@ -204,11 +346,11 @@ def main():
|
|||||||
queue=True,
|
queue=True,
|
||||||
).then(
|
).then(
|
||||||
fn=synthesise_mel,
|
fn=synthesise_mel,
|
||||||
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale],
|
inputs=[processed_text, processed_text_len, n_timesteps, mel_temp, length_scale, spk_slider],
|
||||||
outputs=[audio, mel_spectrogram],
|
outputs=[audio, mel_spectrogram],
|
||||||
)
|
)
|
||||||
|
|
||||||
demo.queue(concurrency_count=5).launch(share=True)
|
demo.queue().launch(share=True)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|||||||
111
matcha/cli.py
111
matcha/cli.py
@@ -1,6 +1,7 @@
|
|||||||
import argparse
|
import argparse
|
||||||
import datetime as dt
|
import datetime as dt
|
||||||
import os
|
import os
|
||||||
|
import warnings
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
@@ -17,13 +18,20 @@ from matcha.text import sequence_to_text, text_to_sequence
|
|||||||
from matcha.utils.utils import assert_model_downloaded, get_user_data_dir, intersperse
|
from matcha.utils.utils import assert_model_downloaded, get_user_data_dir, intersperse
|
||||||
|
|
||||||
MATCHA_URLS = {
|
MATCHA_URLS = {
|
||||||
"matcha_ljspeech": "https://drive.google.com/file/d/1BBzmMU7k3a_WetDfaFblMoN18GqQeHCg/view?usp=drive_link"
|
"matcha_ljspeech": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/matcha_ljspeech.ckpt",
|
||||||
} # , "matcha_vctk": ""} # Coming soon
|
"matcha_vctk": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/matcha_vctk.ckpt",
|
||||||
|
}
|
||||||
|
|
||||||
MULTISPEAKER_MODEL = {"matcha_vctk"}
|
VOCODER_URLS = {
|
||||||
SINGLESPEAKER_MODEL = {"matcha_ljspeech"}
|
"hifigan_T2_v1": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/generator_v1", # Old url: https://drive.google.com/file/d/14NENd4equCBLyyCSke114Mv6YR_j_uFs/view?usp=drive_link
|
||||||
|
"hifigan_univ_v1": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/g_02500000", # Old url: https://drive.google.com/file/d/1qpgI41wNXFcH-iKq1Y42JlBC9j0je8PW/view?usp=drive_link
|
||||||
|
}
|
||||||
|
|
||||||
VOCODER_URL = {"hifigan_T2_v1": "https://drive.google.com/file/d/14NENd4equCBLyyCSke114Mv6YR_j_uFs/view?usp=drive_link"}
|
MULTISPEAKER_MODEL = {
|
||||||
|
"matcha_vctk": {"vocoder": "hifigan_univ_v1", "speaking_rate": 0.85, "spk": 0, "spk_range": (0, 107)}
|
||||||
|
}
|
||||||
|
|
||||||
|
SINGLESPEAKER_MODEL = {"matcha_ljspeech": {"vocoder": "hifigan_T2_v1", "speaking_rate": 0.95, "spk": None}}
|
||||||
|
|
||||||
|
|
||||||
def plot_spectrogram_to_numpy(spectrogram, filename):
|
def plot_spectrogram_to_numpy(spectrogram, filename):
|
||||||
@@ -55,17 +63,21 @@ def get_texts(args):
|
|||||||
if args.text:
|
if args.text:
|
||||||
texts = [args.text]
|
texts = [args.text]
|
||||||
else:
|
else:
|
||||||
with open(args.file) as f:
|
with open(args.file, encoding="utf-8") as f:
|
||||||
texts = f.readlines()
|
texts = f.readlines()
|
||||||
return texts
|
return texts
|
||||||
|
|
||||||
|
|
||||||
def assert_required_models_available(args):
|
def assert_required_models_available(args):
|
||||||
save_dir = get_user_data_dir()
|
save_dir = get_user_data_dir()
|
||||||
|
if not hasattr(args, "checkpoint_path") and args.checkpoint_path is None:
|
||||||
|
model_path = args.checkpoint_path
|
||||||
|
else:
|
||||||
model_path = save_dir / f"{args.model}.ckpt"
|
model_path = save_dir / f"{args.model}.ckpt"
|
||||||
vocoder_path = save_dir / f"{args.vocoder}"
|
|
||||||
assert_model_downloaded(model_path, MATCHA_URLS[args.model])
|
assert_model_downloaded(model_path, MATCHA_URLS[args.model])
|
||||||
assert_model_downloaded(vocoder_path, VOCODER_URL[args.vocoder])
|
|
||||||
|
vocoder_path = save_dir / f"{args.vocoder}"
|
||||||
|
assert_model_downloaded(vocoder_path, VOCODER_URLS[args.vocoder])
|
||||||
return {"matcha": model_path, "vocoder": vocoder_path}
|
return {"matcha": model_path, "vocoder": vocoder_path}
|
||||||
|
|
||||||
|
|
||||||
@@ -81,7 +93,7 @@ def load_hifigan(checkpoint_path, device):
|
|||||||
def load_vocoder(vocoder_name, checkpoint_path, device):
|
def load_vocoder(vocoder_name, checkpoint_path, device):
|
||||||
print(f"[!] Loading {vocoder_name}!")
|
print(f"[!] Loading {vocoder_name}!")
|
||||||
vocoder = None
|
vocoder = None
|
||||||
if vocoder_name == "hifigan_T2_v1":
|
if vocoder_name in ("hifigan_T2_v1", "hifigan_univ_v1"):
|
||||||
vocoder = load_hifigan(checkpoint_path, device)
|
vocoder = load_hifigan(checkpoint_path, device)
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError(
|
raise NotImplementedError(
|
||||||
@@ -124,21 +136,70 @@ def validate_args(args):
|
|||||||
args.text or args.file
|
args.text or args.file
|
||||||
), "Either text or file must be provided Matcha-T(ea)TTS need sometext to whisk the waveforms."
|
), "Either text or file must be provided Matcha-T(ea)TTS need sometext to whisk the waveforms."
|
||||||
assert args.temperature >= 0, "Sampling temperature cannot be negative"
|
assert args.temperature >= 0, "Sampling temperature cannot be negative"
|
||||||
assert args.speaking_rate > 0, "Speaking rate must be greater than 0"
|
|
||||||
assert args.steps > 0, "Number of ODE steps must be greater than 0"
|
assert args.steps > 0, "Number of ODE steps must be greater than 0"
|
||||||
|
|
||||||
|
if args.checkpoint_path is None:
|
||||||
|
# When using pretrained models
|
||||||
if args.model in SINGLESPEAKER_MODEL:
|
if args.model in SINGLESPEAKER_MODEL:
|
||||||
assert args.spk is None, f"Speaker ID is not supported for {args.model}"
|
args = validate_args_for_single_speaker_model(args)
|
||||||
if args.spk is not None:
|
|
||||||
assert args.spk >= 0 and args.spk < 109, "Speaker ID must be between 0 and 108"
|
|
||||||
assert args.model in MULTISPEAKER_MODEL, "Speaker ID is only supported for multispeaker model"
|
|
||||||
|
|
||||||
if args.model in MULTISPEAKER_MODEL:
|
if args.model in MULTISPEAKER_MODEL:
|
||||||
if args.spk is None:
|
args = validate_args_for_multispeaker_model(args)
|
||||||
print("[!] Speaker ID not provided! Using speaker ID 0")
|
else:
|
||||||
args.spk = 0
|
# When using a custom model
|
||||||
|
if args.vocoder != "hifigan_univ_v1":
|
||||||
|
warn_ = "[-] Using custom model checkpoint! I would suggest passing --vocoder hifigan_univ_v1, unless the custom model is trained on LJ Speech."
|
||||||
|
warnings.warn(warn_, UserWarning)
|
||||||
|
if args.speaking_rate is None:
|
||||||
|
args.speaking_rate = 1.0
|
||||||
|
|
||||||
if args.batched:
|
if args.batched:
|
||||||
assert args.batch_size > 0, "Batch size must be greater than 0"
|
assert args.batch_size > 0, "Batch size must be greater than 0"
|
||||||
|
assert args.speaking_rate > 0, "Speaking rate must be greater than 0"
|
||||||
|
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
def validate_args_for_multispeaker_model(args):
|
||||||
|
if args.vocoder is not None:
|
||||||
|
if args.vocoder != MULTISPEAKER_MODEL[args.model]["vocoder"]:
|
||||||
|
warn_ = f"[-] Using {args.model} model! I would suggest passing --vocoder {MULTISPEAKER_MODEL[args.model]['vocoder']}"
|
||||||
|
warnings.warn(warn_, UserWarning)
|
||||||
|
else:
|
||||||
|
args.vocoder = MULTISPEAKER_MODEL[args.model]["vocoder"]
|
||||||
|
|
||||||
|
if args.speaking_rate is None:
|
||||||
|
args.speaking_rate = MULTISPEAKER_MODEL[args.model]["speaking_rate"]
|
||||||
|
|
||||||
|
spk_range = MULTISPEAKER_MODEL[args.model]["spk_range"]
|
||||||
|
if args.spk is not None:
|
||||||
|
assert (
|
||||||
|
args.spk >= spk_range[0] and args.spk <= spk_range[-1]
|
||||||
|
), f"Speaker ID must be between {spk_range} for this model."
|
||||||
|
else:
|
||||||
|
available_spk_id = MULTISPEAKER_MODEL[args.model]["spk"]
|
||||||
|
warn_ = f"[!] Speaker ID not provided! Using speaker ID {available_spk_id}"
|
||||||
|
warnings.warn(warn_, UserWarning)
|
||||||
|
args.spk = available_spk_id
|
||||||
|
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
def validate_args_for_single_speaker_model(args):
|
||||||
|
if args.vocoder is not None:
|
||||||
|
if args.vocoder != SINGLESPEAKER_MODEL[args.model]["vocoder"]:
|
||||||
|
warn_ = f"[-] Using {args.model} model! I would suggest passing --vocoder {SINGLESPEAKER_MODEL[args.model]['vocoder']}"
|
||||||
|
warnings.warn(warn_, UserWarning)
|
||||||
|
else:
|
||||||
|
args.vocoder = SINGLESPEAKER_MODEL[args.model]["vocoder"]
|
||||||
|
|
||||||
|
if args.speaking_rate is None:
|
||||||
|
args.speaking_rate = SINGLESPEAKER_MODEL[args.model]["speaking_rate"]
|
||||||
|
|
||||||
|
if args.spk != SINGLESPEAKER_MODEL[args.model]["spk"]:
|
||||||
|
warn_ = f"[-] Ignoring speaker id {args.spk} for {args.model}"
|
||||||
|
warnings.warn(warn_, UserWarning)
|
||||||
|
args.spk = SINGLESPEAKER_MODEL[args.model]["spk"]
|
||||||
|
|
||||||
return args
|
return args
|
||||||
|
|
||||||
@@ -166,9 +227,9 @@ def cli():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--vocoder",
|
"--vocoder",
|
||||||
type=str,
|
type=str,
|
||||||
default="hifigan_T2_v1",
|
default=None,
|
||||||
help="Vocoder to use",
|
help="Vocoder to use (default: will use the one suggested with the pretrained model))",
|
||||||
choices=VOCODER_URL.keys(),
|
choices=VOCODER_URLS.keys(),
|
||||||
)
|
)
|
||||||
parser.add_argument("--text", type=str, default=None, help="Text to synthesize")
|
parser.add_argument("--text", type=str, default=None, help="Text to synthesize")
|
||||||
parser.add_argument("--file", type=str, default=None, help="Text file to synthesize")
|
parser.add_argument("--file", type=str, default=None, help="Text file to synthesize")
|
||||||
@@ -182,7 +243,7 @@ def cli():
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--speaking_rate",
|
"--speaking_rate",
|
||||||
type=float,
|
type=float,
|
||||||
default=1.0,
|
default=None,
|
||||||
help="change the speaking rate, a higher value means slower speaking rate (default: 1.0)",
|
help="change the speaking rate, a higher value means slower speaking rate (default: 1.0)",
|
||||||
)
|
)
|
||||||
parser.add_argument("--steps", type=int, default=10, help="Number of ODE steps (default: 10)")
|
parser.add_argument("--steps", type=int, default=10, help="Number of ODE steps (default: 10)")
|
||||||
@@ -199,8 +260,10 @@ def cli():
|
|||||||
default=os.getcwd(),
|
default=os.getcwd(),
|
||||||
help="Output folder to save results (default: current dir)",
|
help="Output folder to save results (default: current dir)",
|
||||||
)
|
)
|
||||||
parser.add_argument("--batched", action="store_true")
|
parser.add_argument("--batched", action="store_true", help="Batched inference (default: False)")
|
||||||
parser.add_argument("--batch_size", type=int, default=32)
|
parser.add_argument(
|
||||||
|
"--batch_size", type=int, default=32, help="Batch size only useful when --batched (default: 32)"
|
||||||
|
)
|
||||||
|
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
@@ -333,6 +396,8 @@ def unbatched_synthesis(args, device, model, vocoder, denoiser, texts, spk):
|
|||||||
|
|
||||||
def print_config(args):
|
def print_config(args):
|
||||||
print("[!] Configurations: ")
|
print("[!] Configurations: ")
|
||||||
|
print(f"\t- Model: {args.model}")
|
||||||
|
print(f"\t- Vocoder: {args.vocoder}")
|
||||||
print(f"\t- Temperature: {args.temperature}")
|
print(f"\t- Temperature: {args.temperature}")
|
||||||
print(f"\t- Speaking rate: {args.speaking_rate}")
|
print(f"\t- Speaking rate: {args.speaking_rate}")
|
||||||
print(f"\t- Number of ODE steps: {args.steps}")
|
print(f"\t- Number of ODE steps: {args.steps}")
|
||||||
|
|||||||
@@ -81,7 +81,7 @@ class BaseLightningClass(LightningModule, ABC):
|
|||||||
"step",
|
"step",
|
||||||
float(self.global_step),
|
float(self.global_step),
|
||||||
on_step=True,
|
on_step=True,
|
||||||
on_epoch=True,
|
prog_bar=True,
|
||||||
logger=True,
|
logger=True,
|
||||||
sync_dist=True,
|
sync_dist=True,
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -73,16 +73,14 @@ class BASECFM(torch.nn.Module, ABC):
|
|||||||
# Or in future might add like a return_all_steps flag
|
# Or in future might add like a return_all_steps flag
|
||||||
sol = []
|
sol = []
|
||||||
|
|
||||||
steps = 1
|
for step in range(1, len(t_span)):
|
||||||
while steps <= len(t_span) - 1:
|
|
||||||
dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
|
dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
|
||||||
|
|
||||||
x = x + dt * dphi_dt
|
x = x + dt * dphi_dt
|
||||||
t = t + dt
|
t = t + dt
|
||||||
sol.append(x)
|
sol.append(x)
|
||||||
if steps < len(t_span) - 1:
|
if step < len(t_span) - 1:
|
||||||
dt = t_span[steps + 1] - t
|
dt = t_span[step + 1] - t
|
||||||
steps += 1
|
|
||||||
|
|
||||||
return sol[-1]
|
return sol[-1]
|
||||||
|
|
||||||
|
|||||||
@@ -34,6 +34,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
|||||||
out_size,
|
out_size,
|
||||||
optimizer=None,
|
optimizer=None,
|
||||||
scheduler=None,
|
scheduler=None,
|
||||||
|
prior_loss=True,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
@@ -44,6 +45,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
|||||||
self.spk_emb_dim = spk_emb_dim
|
self.spk_emb_dim = spk_emb_dim
|
||||||
self.n_feats = n_feats
|
self.n_feats = n_feats
|
||||||
self.out_size = out_size
|
self.out_size = out_size
|
||||||
|
self.prior_loss = prior_loss
|
||||||
|
|
||||||
if n_spks > 1:
|
if n_spks > 1:
|
||||||
self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
|
self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
|
||||||
@@ -116,7 +118,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
|||||||
w = torch.exp(logw) * x_mask
|
w = torch.exp(logw) * x_mask
|
||||||
w_ceil = torch.ceil(w) * length_scale
|
w_ceil = torch.ceil(w) * length_scale
|
||||||
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
||||||
y_max_length = int(y_lengths.max())
|
y_max_length = y_lengths.max()
|
||||||
y_max_length_ = fix_len_compatibility(y_max_length)
|
y_max_length_ = fix_len_compatibility(y_max_length)
|
||||||
|
|
||||||
# Using obtained durations `w` construct alignment map `attn`
|
# Using obtained durations `w` construct alignment map `attn`
|
||||||
@@ -228,7 +230,10 @@ class MatchaTTS(BaseLightningClass): # 🍵
|
|||||||
# Compute loss of the decoder
|
# Compute loss of the decoder
|
||||||
diff_loss, _ = self.decoder.compute_loss(x1=y, mask=y_mask, mu=mu_y, spks=spks, cond=cond)
|
diff_loss, _ = self.decoder.compute_loss(x1=y, mask=y_mask, mu=mu_y, spks=spks, cond=cond)
|
||||||
|
|
||||||
|
if self.prior_loss:
|
||||||
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask)
|
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask)
|
||||||
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats)
|
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats)
|
||||||
|
else:
|
||||||
|
prior_loss = 0
|
||||||
|
|
||||||
return dur_loss, prior_loss, diff_loss
|
return dur_loss, prior_loss, diff_loss
|
||||||
|
|||||||
0
matcha/onnx/__init__.py
Normal file
0
matcha/onnx/__init__.py
Normal file
181
matcha/onnx/export.py
Normal file
181
matcha/onnx/export.py
Normal file
@@ -0,0 +1,181 @@
|
|||||||
|
import argparse
|
||||||
|
import random
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
from lightning import LightningModule
|
||||||
|
|
||||||
|
from matcha.cli import VOCODER_URLS, load_matcha, load_vocoder
|
||||||
|
|
||||||
|
DEFAULT_OPSET = 15
|
||||||
|
|
||||||
|
SEED = 1234
|
||||||
|
random.seed(SEED)
|
||||||
|
np.random.seed(SEED)
|
||||||
|
torch.manual_seed(SEED)
|
||||||
|
torch.cuda.manual_seed(SEED)
|
||||||
|
torch.backends.cudnn.deterministic = True
|
||||||
|
torch.backends.cudnn.benchmark = False
|
||||||
|
|
||||||
|
|
||||||
|
class MatchaWithVocoder(LightningModule):
|
||||||
|
def __init__(self, matcha, vocoder):
|
||||||
|
super().__init__()
|
||||||
|
self.matcha = matcha
|
||||||
|
self.vocoder = vocoder
|
||||||
|
|
||||||
|
def forward(self, x, x_lengths, scales, spks=None):
|
||||||
|
mel, mel_lengths = self.matcha(x, x_lengths, scales, spks)
|
||||||
|
wavs = self.vocoder(mel).clamp(-1, 1)
|
||||||
|
lengths = mel_lengths * 256
|
||||||
|
return wavs.squeeze(1), lengths
|
||||||
|
|
||||||
|
|
||||||
|
def get_exportable_module(matcha, vocoder, n_timesteps):
|
||||||
|
"""
|
||||||
|
Return an appropriate `LighteningModule` and output-node names
|
||||||
|
based on whether the vocoder is embedded in the final graph
|
||||||
|
"""
|
||||||
|
|
||||||
|
def onnx_forward_func(x, x_lengths, scales, spks=None):
|
||||||
|
"""
|
||||||
|
Custom forward function for accepting
|
||||||
|
scaler parameters as tensors
|
||||||
|
"""
|
||||||
|
# Extract scaler parameters from tensors
|
||||||
|
temperature = scales[0]
|
||||||
|
length_scale = scales[1]
|
||||||
|
output = matcha.synthesise(x, x_lengths, n_timesteps, temperature, spks, length_scale)
|
||||||
|
return output["mel"], output["mel_lengths"]
|
||||||
|
|
||||||
|
# Monkey-patch Matcha's forward function
|
||||||
|
matcha.forward = onnx_forward_func
|
||||||
|
|
||||||
|
if vocoder is None:
|
||||||
|
model, output_names = matcha, ["mel", "mel_lengths"]
|
||||||
|
else:
|
||||||
|
model = MatchaWithVocoder(matcha, vocoder)
|
||||||
|
output_names = ["wav", "wav_lengths"]
|
||||||
|
return model, output_names
|
||||||
|
|
||||||
|
|
||||||
|
def get_inputs(is_multi_speaker):
|
||||||
|
"""
|
||||||
|
Create dummy inputs for tracing
|
||||||
|
"""
|
||||||
|
dummy_input_length = 50
|
||||||
|
x = torch.randint(low=0, high=20, size=(1, dummy_input_length), dtype=torch.long)
|
||||||
|
x_lengths = torch.LongTensor([dummy_input_length])
|
||||||
|
|
||||||
|
# Scales
|
||||||
|
temperature = 0.667
|
||||||
|
length_scale = 1.0
|
||||||
|
scales = torch.Tensor([temperature, length_scale])
|
||||||
|
|
||||||
|
model_inputs = [x, x_lengths, scales]
|
||||||
|
input_names = [
|
||||||
|
"x",
|
||||||
|
"x_lengths",
|
||||||
|
"scales",
|
||||||
|
]
|
||||||
|
|
||||||
|
if is_multi_speaker:
|
||||||
|
spks = torch.LongTensor([1])
|
||||||
|
model_inputs.append(spks)
|
||||||
|
input_names.append("spks")
|
||||||
|
|
||||||
|
return tuple(model_inputs), input_names
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser(description="Export 🍵 Matcha-TTS to ONNX")
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"checkpoint_path",
|
||||||
|
type=str,
|
||||||
|
help="Path to the model checkpoint",
|
||||||
|
)
|
||||||
|
parser.add_argument("output", type=str, help="Path to output `.onnx` file")
|
||||||
|
parser.add_argument(
|
||||||
|
"--n-timesteps", type=int, default=5, help="Number of steps to use for reverse diffusion in decoder (default 5)"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--vocoder-name",
|
||||||
|
type=str,
|
||||||
|
choices=list(VOCODER_URLS.keys()),
|
||||||
|
default=None,
|
||||||
|
help="Name of the vocoder to embed in the ONNX graph",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--vocoder-checkpoint-path",
|
||||||
|
type=str,
|
||||||
|
default=None,
|
||||||
|
help="Vocoder checkpoint to embed in the ONNX graph for an `e2e` like experience",
|
||||||
|
)
|
||||||
|
parser.add_argument("--opset", type=int, default=DEFAULT_OPSET, help="ONNX opset version to use (default 15")
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
print(f"[🍵] Loading Matcha checkpoint from {args.checkpoint_path}")
|
||||||
|
print(f"Setting n_timesteps to {args.n_timesteps}")
|
||||||
|
|
||||||
|
checkpoint_path = Path(args.checkpoint_path)
|
||||||
|
matcha = load_matcha(checkpoint_path.stem, checkpoint_path, "cpu")
|
||||||
|
|
||||||
|
if args.vocoder_name or args.vocoder_checkpoint_path:
|
||||||
|
assert (
|
||||||
|
args.vocoder_name and args.vocoder_checkpoint_path
|
||||||
|
), "Both vocoder_name and vocoder-checkpoint are required when embedding the vocoder in the ONNX graph."
|
||||||
|
vocoder, _ = load_vocoder(args.vocoder_name, args.vocoder_checkpoint_path, "cpu")
|
||||||
|
else:
|
||||||
|
vocoder = None
|
||||||
|
|
||||||
|
is_multi_speaker = matcha.n_spks > 1
|
||||||
|
|
||||||
|
dummy_input, input_names = get_inputs(is_multi_speaker)
|
||||||
|
model, output_names = get_exportable_module(matcha, vocoder, args.n_timesteps)
|
||||||
|
|
||||||
|
# Set dynamic shape for inputs/outputs
|
||||||
|
dynamic_axes = {
|
||||||
|
"x": {0: "batch_size", 1: "time"},
|
||||||
|
"x_lengths": {0: "batch_size"},
|
||||||
|
}
|
||||||
|
|
||||||
|
if vocoder is None:
|
||||||
|
dynamic_axes.update(
|
||||||
|
{
|
||||||
|
"mel": {0: "batch_size", 2: "time"},
|
||||||
|
"mel_lengths": {0: "batch_size"},
|
||||||
|
}
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
print("Embedding the vocoder in the ONNX graph")
|
||||||
|
dynamic_axes.update(
|
||||||
|
{
|
||||||
|
"wav": {0: "batch_size", 1: "time"},
|
||||||
|
"wav_lengths": {0: "batch_size"},
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
if is_multi_speaker:
|
||||||
|
dynamic_axes["spks"] = {0: "batch_size"}
|
||||||
|
|
||||||
|
# Create the output directory (if not exists)
|
||||||
|
Path(args.output).parent.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
model.to_onnx(
|
||||||
|
args.output,
|
||||||
|
dummy_input,
|
||||||
|
input_names=input_names,
|
||||||
|
output_names=output_names,
|
||||||
|
dynamic_axes=dynamic_axes,
|
||||||
|
opset_version=args.opset,
|
||||||
|
export_params=True,
|
||||||
|
do_constant_folding=True,
|
||||||
|
)
|
||||||
|
print(f"[🍵] ONNX model exported to {args.output}")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
168
matcha/onnx/infer.py
Normal file
168
matcha/onnx/infer.py
Normal file
@@ -0,0 +1,168 @@
|
|||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import warnings
|
||||||
|
from pathlib import Path
|
||||||
|
from time import perf_counter
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import onnxruntime as ort
|
||||||
|
import soundfile as sf
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from matcha.cli import plot_spectrogram_to_numpy, process_text
|
||||||
|
|
||||||
|
|
||||||
|
def validate_args(args):
|
||||||
|
assert (
|
||||||
|
args.text or args.file
|
||||||
|
), "Either text or file must be provided Matcha-T(ea)TTS need sometext to whisk the waveforms."
|
||||||
|
assert args.temperature >= 0, "Sampling temperature cannot be negative"
|
||||||
|
assert args.speaking_rate >= 0, "Speaking rate must be greater than 0"
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
def write_wavs(model, inputs, output_dir, external_vocoder=None):
|
||||||
|
if external_vocoder is None:
|
||||||
|
print("The provided model has the vocoder embedded in the graph.\nGenerating waveform directly")
|
||||||
|
t0 = perf_counter()
|
||||||
|
wavs, wav_lengths = model.run(None, inputs)
|
||||||
|
infer_secs = perf_counter() - t0
|
||||||
|
mel_infer_secs = vocoder_infer_secs = None
|
||||||
|
else:
|
||||||
|
print("[🍵] Generating mel using Matcha")
|
||||||
|
mel_t0 = perf_counter()
|
||||||
|
mels, mel_lengths = model.run(None, inputs)
|
||||||
|
mel_infer_secs = perf_counter() - mel_t0
|
||||||
|
print("Generating waveform from mel using external vocoder")
|
||||||
|
vocoder_inputs = {external_vocoder.get_inputs()[0].name: mels}
|
||||||
|
vocoder_t0 = perf_counter()
|
||||||
|
wavs = external_vocoder.run(None, vocoder_inputs)[0]
|
||||||
|
vocoder_infer_secs = perf_counter() - vocoder_t0
|
||||||
|
wavs = wavs.squeeze(1)
|
||||||
|
wav_lengths = mel_lengths * 256
|
||||||
|
infer_secs = mel_infer_secs + vocoder_infer_secs
|
||||||
|
|
||||||
|
output_dir = Path(output_dir)
|
||||||
|
output_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
for i, (wav, wav_length) in enumerate(zip(wavs, wav_lengths)):
|
||||||
|
output_filename = output_dir.joinpath(f"output_{i + 1}.wav")
|
||||||
|
audio = wav[:wav_length]
|
||||||
|
print(f"Writing audio to {output_filename}")
|
||||||
|
sf.write(output_filename, audio, 22050, "PCM_24")
|
||||||
|
|
||||||
|
wav_secs = wav_lengths.sum() / 22050
|
||||||
|
print(f"Inference seconds: {infer_secs}")
|
||||||
|
print(f"Generated wav seconds: {wav_secs}")
|
||||||
|
rtf = infer_secs / wav_secs
|
||||||
|
if mel_infer_secs is not None:
|
||||||
|
mel_rtf = mel_infer_secs / wav_secs
|
||||||
|
print(f"Matcha RTF: {mel_rtf}")
|
||||||
|
if vocoder_infer_secs is not None:
|
||||||
|
vocoder_rtf = vocoder_infer_secs / wav_secs
|
||||||
|
print(f"Vocoder RTF: {vocoder_rtf}")
|
||||||
|
print(f"Overall RTF: {rtf}")
|
||||||
|
|
||||||
|
|
||||||
|
def write_mels(model, inputs, output_dir):
|
||||||
|
t0 = perf_counter()
|
||||||
|
mels, mel_lengths = model.run(None, inputs)
|
||||||
|
infer_secs = perf_counter() - t0
|
||||||
|
|
||||||
|
output_dir = Path(output_dir)
|
||||||
|
output_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
for i, mel in enumerate(mels):
|
||||||
|
output_stem = output_dir.joinpath(f"output_{i + 1}")
|
||||||
|
plot_spectrogram_to_numpy(mel.squeeze(), output_stem.with_suffix(".png"))
|
||||||
|
np.save(output_stem.with_suffix(".numpy"), mel)
|
||||||
|
|
||||||
|
wav_secs = (mel_lengths * 256).sum() / 22050
|
||||||
|
print(f"Inference seconds: {infer_secs}")
|
||||||
|
print(f"Generated wav seconds: {wav_secs}")
|
||||||
|
rtf = infer_secs / wav_secs
|
||||||
|
print(f"RTF: {rtf}")
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser(
|
||||||
|
description=" 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching"
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"model",
|
||||||
|
type=str,
|
||||||
|
help="ONNX model to use",
|
||||||
|
)
|
||||||
|
parser.add_argument("--vocoder", type=str, default=None, help="Vocoder to use (defaults to None)")
|
||||||
|
parser.add_argument("--text", type=str, default=None, help="Text to synthesize")
|
||||||
|
parser.add_argument("--file", type=str, default=None, help="Text file to synthesize")
|
||||||
|
parser.add_argument("--spk", type=int, default=None, help="Speaker ID")
|
||||||
|
parser.add_argument(
|
||||||
|
"--temperature",
|
||||||
|
type=float,
|
||||||
|
default=0.667,
|
||||||
|
help="Variance of the x0 noise (default: 0.667)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--speaking-rate",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="change the speaking rate, a higher value means slower speaking rate (default: 1.0)",
|
||||||
|
)
|
||||||
|
parser.add_argument("--gpu", action="store_true", help="Use CPU for inference (default: use GPU if available)")
|
||||||
|
parser.add_argument(
|
||||||
|
"--output-dir",
|
||||||
|
type=str,
|
||||||
|
default=os.getcwd(),
|
||||||
|
help="Output folder to save results (default: current dir)",
|
||||||
|
)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
args = validate_args(args)
|
||||||
|
|
||||||
|
if args.gpu:
|
||||||
|
providers = ["GPUExecutionProvider"]
|
||||||
|
else:
|
||||||
|
providers = ["CPUExecutionProvider"]
|
||||||
|
model = ort.InferenceSession(args.model, providers=providers)
|
||||||
|
|
||||||
|
model_inputs = model.get_inputs()
|
||||||
|
model_outputs = list(model.get_outputs())
|
||||||
|
|
||||||
|
if args.text:
|
||||||
|
text_lines = args.text.splitlines()
|
||||||
|
else:
|
||||||
|
with open(args.file, encoding="utf-8") as file:
|
||||||
|
text_lines = file.read().splitlines()
|
||||||
|
|
||||||
|
processed_lines = [process_text(0, line, "cpu") for line in text_lines]
|
||||||
|
x = [line["x"].squeeze() for line in processed_lines]
|
||||||
|
# Pad
|
||||||
|
x = torch.nn.utils.rnn.pad_sequence(x, batch_first=True)
|
||||||
|
x = x.detach().cpu().numpy()
|
||||||
|
x_lengths = np.array([line["x_lengths"].item() for line in processed_lines], dtype=np.int64)
|
||||||
|
inputs = {
|
||||||
|
"x": x,
|
||||||
|
"x_lengths": x_lengths,
|
||||||
|
"scales": np.array([args.temperature, args.speaking_rate], dtype=np.float32),
|
||||||
|
}
|
||||||
|
is_multi_speaker = len(model_inputs) == 4
|
||||||
|
if is_multi_speaker:
|
||||||
|
if args.spk is None:
|
||||||
|
args.spk = 0
|
||||||
|
warn = "[!] Speaker ID not provided! Using speaker ID 0"
|
||||||
|
warnings.warn(warn, UserWarning)
|
||||||
|
inputs["spks"] = np.repeat(args.spk, x.shape[0]).astype(np.int64)
|
||||||
|
|
||||||
|
has_vocoder_embedded = model_outputs[0].name == "wav"
|
||||||
|
if has_vocoder_embedded:
|
||||||
|
write_wavs(model, inputs, args.output_dir)
|
||||||
|
elif args.vocoder:
|
||||||
|
external_vocoder = ort.InferenceSession(args.vocoder, providers=providers)
|
||||||
|
write_wavs(model, inputs, args.output_dir, external_vocoder=external_vocoder)
|
||||||
|
else:
|
||||||
|
warn = "[!] A vocoder is not embedded in the graph nor an external vocoder is provided. The mel output will be written as numpy arrays to `*.npy` files in the output directory"
|
||||||
|
warnings.warn(warn, UserWarning)
|
||||||
|
write_mels(model, inputs, args.output_dir)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
@@ -15,6 +15,7 @@ import logging
|
|||||||
import re
|
import re
|
||||||
|
|
||||||
import phonemizer
|
import phonemizer
|
||||||
|
import piper_phonemize
|
||||||
from unidecode import unidecode
|
from unidecode import unidecode
|
||||||
|
|
||||||
# To avoid excessive logging we set the log level of the phonemizer package to Critical
|
# To avoid excessive logging we set the log level of the phonemizer package to Critical
|
||||||
@@ -103,3 +104,13 @@ def english_cleaners2(text):
|
|||||||
phonemes = global_phonemizer.phonemize([text], strip=True, njobs=1)[0]
|
phonemes = global_phonemizer.phonemize([text], strip=True, njobs=1)[0]
|
||||||
phonemes = collapse_whitespace(phonemes)
|
phonemes = collapse_whitespace(phonemes)
|
||||||
return phonemes
|
return phonemes
|
||||||
|
|
||||||
|
|
||||||
|
def english_cleaners_piper(text):
|
||||||
|
"""Pipeline for English text, including abbreviation expansion. + punctuation + stress"""
|
||||||
|
text = convert_to_ascii(text)
|
||||||
|
text = lowercase(text)
|
||||||
|
text = expand_abbreviations(text)
|
||||||
|
phonemes = "".join(piper_phonemize.phonemize_espeak(text=text, voice="en-US")[0])
|
||||||
|
phonemes = collapse_whitespace(phonemes)
|
||||||
|
return phonemes
|
||||||
|
|||||||
@@ -7,15 +7,17 @@ import torch
|
|||||||
def sequence_mask(length, max_length=None):
|
def sequence_mask(length, max_length=None):
|
||||||
if max_length is None:
|
if max_length is None:
|
||||||
max_length = length.max()
|
max_length = length.max()
|
||||||
x = torch.arange(int(max_length), dtype=length.dtype, device=length.device)
|
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
||||||
return x.unsqueeze(0) < length.unsqueeze(1)
|
return x.unsqueeze(0) < length.unsqueeze(1)
|
||||||
|
|
||||||
|
|
||||||
def fix_len_compatibility(length, num_downsamplings_in_unet=2):
|
def fix_len_compatibility(length, num_downsamplings_in_unet=2):
|
||||||
while True:
|
factor = torch.scalar_tensor(2).pow(num_downsamplings_in_unet)
|
||||||
if length % (2**num_downsamplings_in_unet) == 0:
|
length = (length / factor).ceil() * factor
|
||||||
|
if not torch.onnx.is_in_onnx_export():
|
||||||
|
return length.int().item()
|
||||||
|
else:
|
||||||
return length
|
return length
|
||||||
length += 1
|
|
||||||
|
|
||||||
|
|
||||||
def convert_pad_shape(pad_shape):
|
def convert_pad_shape(pad_shape):
|
||||||
|
|||||||
@@ -115,7 +115,7 @@ def get_metric_value(metric_dict: Dict[str, Any], metric_name: str) -> float:
|
|||||||
return None
|
return None
|
||||||
|
|
||||||
if metric_name not in metric_dict:
|
if metric_name not in metric_dict:
|
||||||
raise Exception(
|
raise ValueError(
|
||||||
f"Metric value not found! <metric_name={metric_name}>\n"
|
f"Metric value not found! <metric_name={metric_name}>\n"
|
||||||
"Make sure metric name logged in LightningModule is correct!\n"
|
"Make sure metric name logged in LightningModule is correct!\n"
|
||||||
"Make sure `optimized_metric` name in `hparams_search` config is correct!"
|
"Make sure `optimized_metric` name in `hparams_search` config is correct!"
|
||||||
@@ -205,11 +205,13 @@ def get_user_data_dir(appname="matcha_tts"):
|
|||||||
return final_path
|
return final_path
|
||||||
|
|
||||||
|
|
||||||
def assert_model_downloaded(checkpoint_path, url, use_wget=False):
|
def assert_model_downloaded(checkpoint_path, url, use_wget=True):
|
||||||
if Path(checkpoint_path).exists():
|
if Path(checkpoint_path).exists():
|
||||||
log.debug(f"[+] Model already present at {checkpoint_path}!")
|
log.debug(f"[+] Model already present at {checkpoint_path}!")
|
||||||
|
print(f"[+] Model already present at {checkpoint_path}!")
|
||||||
return
|
return
|
||||||
log.info(f"[-] Model not found at {checkpoint_path}! Will download it")
|
log.info(f"[-] Model not found at {checkpoint_path}! Will download it")
|
||||||
|
print(f"[-] Model not found at {checkpoint_path}! Will download it")
|
||||||
checkpoint_path = str(checkpoint_path)
|
checkpoint_path = str(checkpoint_path)
|
||||||
if not use_wget:
|
if not use_wget:
|
||||||
gdown.download(url=url, output=checkpoint_path, quiet=False, fuzzy=True)
|
gdown.download(url=url, output=checkpoint_path, quiet=False, fuzzy=True)
|
||||||
|
|||||||
@@ -35,10 +35,11 @@ torchaudio
|
|||||||
matplotlib
|
matplotlib
|
||||||
pandas
|
pandas
|
||||||
conformer==0.3.2
|
conformer==0.3.2
|
||||||
diffusers==0.21.1
|
diffusers==0.27.2
|
||||||
notebook
|
notebook
|
||||||
ipywidgets
|
ipywidgets
|
||||||
gradio
|
gradio
|
||||||
gdown
|
gdown
|
||||||
wget
|
wget
|
||||||
seaborn
|
seaborn
|
||||||
|
piper_phonemize
|
||||||
|
|||||||
Reference in New Issue
Block a user