41 Commits

Author SHA1 Message Date
Shivam Mehta
256adc55d3 Adding ICASSP 2024 2024-01-12 11:31:01 +00:00
Shivam Mehta
bfcbdbc82e Merge pull request #43 from shivammehta25/dev
Removing gdown for HifiGAN checkpoints too
2024-01-12 12:29:03 +01:00
Shivam Mehta
fb7b954de5 Updating different url for hifigan as well 2024-01-12 11:21:51 +00:00
Shivam Mehta
5a52a67cf7 Version bump 2024-01-12 11:11:41 +00:00
Shivam Mehta
39cbd85236 Using Wget for new ckpt downloadsA 2024-01-12 11:09:25 +00:00
Shivam Mehta
47a629f128 Merge pull request #42 from shivammehta25/dev
Merging dev adding another dataset, piper phonemizer and refractoring
2024-01-12 11:49:53 +01:00
Shivam Mehta
95ec24b599 Version bump 2024-01-12 10:48:52 +00:00
Shivam Mehta
5a2a893750 Merge pull request #19 from shivammehta25/pre-commit-ci-update-config
[pre-commit.ci] pre-commit autoupdate
2024-01-12 11:47:10 +01:00
Shivam Mehta
13ca33fbe5 Merge pull request #37 from shivammehta25/dependabot/pip/dev/diffusers-0.25.0
Bump diffusers from 0.21.3 to 0.25.0
2024-01-12 11:46:40 +01:00
Shivam Mehta
19bea20928 Merge branch 'main' into dev 2024-01-12 10:37:17 +00:00
Shivam Mehta
8268360674 Update download urls 2024-01-12 10:32:59 +00:00
Shivam Mehta
a0bf4e9e9a Merge pull request #40 from shivammehta25/ghenter-readme-update-1
Update README.md with ICASSP acceptance
2024-01-12 10:13:23 +01:00
Gustav Eje Henter
f1e8efdec2 Update README.md
Add back full stop that erroneously went missing in the shuffle.
2024-01-09 22:53:09 +01:00
Gustav Eje Henter
4ec245e61e Update README.md with ICASSP acceptance
Added ICASSP acceptance to the README and made some tiny tweaks to the text
2024-01-09 22:48:16 +01:00
pre-commit-ci[bot]
dc035a09f2 [pre-commit.ci] pre-commit autoupdate
updates:
- [github.com/pre-commit/pre-commit-hooks: v4.4.0 → v4.5.0](https://github.com/pre-commit/pre-commit-hooks/compare/v4.4.0...v4.5.0)
- [github.com/psf/black: 23.9.1 → 23.12.1](https://github.com/psf/black/compare/23.9.1...23.12.1)
- [github.com/PyCQA/isort: 5.12.0 → 5.13.2](https://github.com/PyCQA/isort/compare/5.12.0...5.13.2)
- [github.com/asottile/pyupgrade: v3.14.0 → v3.15.0](https://github.com/asottile/pyupgrade/compare/v3.14.0...v3.15.0)
- [github.com/PyCQA/flake8: 6.1.0 → 7.0.0](https://github.com/PyCQA/flake8/compare/6.1.0...7.0.0)
- [github.com/pycqa/pylint: v3.0.0 → v3.0.3](https://github.com/pycqa/pylint/compare/v3.0.0...v3.0.3)
2024-01-08 21:15:26 +00:00
dependabot[bot]
254a8e05ce Bump diffusers from 0.21.3 to 0.25.0
Bumps [diffusers](https://github.com/huggingface/diffusers) from 0.21.3 to 0.25.0.
- [Release notes](https://github.com/huggingface/diffusers/releases)
- [Commits](https://github.com/huggingface/diffusers/compare/v0.21.3...v0.25.0)

---
updated-dependencies:
- dependency-name: diffusers
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-12-28 13:20:11 +00:00
Shivam Mehta
0ed9290c31 Logging global step while training 2023-12-06 10:39:54 +00:00
Shivam Mehta
f39ee6cf3b Changing while to for for more readibility 2023-12-05 12:10:52 +00:00
Shivam Mehta
6e71dc8b8f adding prior loss as a configuration 2023-12-05 09:57:37 +00:00
Shivam Mehta
ae2417c175 Merge pull request #34 from shivammehta25/piper_phonemize
Piper phonemize
2023-12-04 11:16:24 +01:00
Shivam Mehta
6c7a82a516 Adding dataset information 2023-12-04 10:15:13 +00:00
Shivam Mehta
009b09a8b2 Removing unwanted configs 2023-12-04 10:13:44 +00:00
Shivam Mehta
a18db17330 Removing the option for configuring prior loss, the durations predicted are not so good then 2023-12-04 10:12:39 +00:00
Shivam Mehta
263d5c4d4e Adding piper phonemizer with different dataset 2023-12-01 12:06:26 +00:00
Shivam Mehta
df896301ca Minor changes moving option to disable prior loss in config 2023-12-01 10:44:49 +00:00
Shivam Mehta
c8d0d60f87 Merge pull request #16 from shivammehta25/pre-commit-ci-update-config
[pre-commit.ci] pre-commit autoupdate
2023-10-06 05:44:02 +02:00
pre-commit-ci[bot]
e540794e7e [pre-commit.ci] pre-commit autoupdate
updates:
- [github.com/psf/black: 23.1.0 → 23.9.1](https://github.com/psf/black/compare/23.1.0...23.9.1)
- [github.com/asottile/pyupgrade: v3.3.1 → v3.14.0](https://github.com/asottile/pyupgrade/compare/v3.3.1...v3.14.0)
- [github.com/PyCQA/flake8: 6.0.0 → 6.1.0](https://github.com/PyCQA/flake8/compare/6.0.0...6.1.0)
- [github.com/pycqa/pylint: v2.8.2 → v3.0.0](https://github.com/pycqa/pylint/compare/v2.8.2...v3.0.0)
2023-10-03 13:14:20 +00:00
Shivam Mehta
b756809a32 Merge pull request #13 from shivammehta25/dev
Merging dev to main | adding ONNX support
2023-09-29 16:54:09 +02:00
Shivam Mehta
1ead4303f3 Version Bump 2023-09-29 14:50:46 +00:00
Shivam Mehta
7a29fef719 Merge pull request #12 from shivammehta25/dependabot/pip/dev/diffusers-0.21.3
Bump diffusers from 0.21.2 to 0.21.3
2023-09-29 16:48:13 +02:00
Shivam Mehta
9ace522249 Update README.md 2023-09-29 16:46:38 +02:00
Shivam Mehta
ed6e6bbf6c Merge branch 'ONNX_BRANCH' into dev 2023-09-29 14:43:52 +00:00
Shivam Mehta
51ea36d271 Merge pull request #8 from mush42/onnx
ONNX export and inference
2023-09-29 16:43:19 +02:00
Shivam Mehta
269609003b Adding onnx installation command in the README 2023-09-29 14:38:57 +00:00
dependabot[bot]
2a81800825 Bump diffusers from 0.21.2 to 0.21.3
Bumps [diffusers](https://github.com/huggingface/diffusers) from 0.21.2 to 0.21.3.
- [Release notes](https://github.com/huggingface/diffusers/releases)
- [Commits](https://github.com/huggingface/diffusers/compare/v0.21.2...v0.21.3)

---
updated-dependencies:
- dependency-name: diffusers
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-09-28 13:23:02 +00:00
mush42
336dd20d5b Use torch.onnx.is_in_onnx_export() instead of torch.jit.is_scripting() since the former is dedicated to this use case. 2023-09-26 15:28:15 +02:00
mush42
01c99161c4 - Fixed several bugs. Thanks @shivammehta25 for the suggestions 2023-09-26 14:21:17 +02:00
mush42
2c21a0edac Fixed an error encountered when loading the vocoder during export. 2023-09-24 20:28:59 +02:00
mush42
25767f76a8 Readme: added a note about GPU inference with onnxruntime. 2023-09-24 02:13:27 +02:00
mush42
1b204ed42c ONNX export and inference. Complete and tested implmentation. 2023-09-24 01:57:35 +02:00
Shivam Mehta
2cd057187b Update README.md
Add information about installation and compilation of monotonic alignment
2023-09-23 17:39:36 +02:00
19 changed files with 514 additions and 123 deletions

View File

@@ -3,7 +3,7 @@ default_language_version:
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.4.0
rev: v4.5.0
hooks:
# list of supported hooks: https://pre-commit.com/hooks.html
- id: trailing-whitespace
@@ -18,28 +18,28 @@ repos:
# python code formatting
- repo: https://github.com/psf/black
rev: 23.1.0
rev: 23.12.1
hooks:
- id: black
args: [--line-length, "120"]
# python import sorting
- repo: https://github.com/PyCQA/isort
rev: 5.12.0
rev: 5.13.2
hooks:
- id: isort
args: ["--profile", "black", "--filter-files"]
# python upgrading syntax to newer version
- repo: https://github.com/asottile/pyupgrade
rev: v3.3.1
rev: v3.15.0
hooks:
- id: pyupgrade
args: [--py38-plus]
# python check (PEP8), programming errors and code complexity
- repo: https://github.com/PyCQA/flake8
rev: 6.0.0
rev: 7.0.0
hooks:
- id: flake8
args:
@@ -54,6 +54,6 @@ repos:
# pylint
- repo: https://github.com/pycqa/pylint
rev: v2.8.2
rev: v3.0.3
hooks:
- id: pylint

View File

@@ -82,16 +82,6 @@ disable=missing-docstring,
no-name-in-module,
no-member,
unsubscriptable-object,
print-statement,
parameter-unpacking,
unpacking-in-except,
old-raise-syntax,
backtick,
long-suffix,
old-ne-operator,
old-octal-literal,
import-star-module-level,
non-ascii-bytes-literal,
raw-checker-failed,
bad-inline-option,
locally-disabled,
@@ -106,67 +96,6 @@ disable=missing-docstring,
too-many-arguments,
too-many-locals,
too-many-statements,
apply-builtin,
basestring-builtin,
buffer-builtin,
cmp-builtin,
coerce-builtin,
execfile-builtin,
file-builtin,
long-builtin,
raw_input-builtin,
reduce-builtin,
standarderror-builtin,
unicode-builtin,
xrange-builtin,
coerce-method,
delslice-method,
getslice-method,
setslice-method,
no-absolute-import,
old-division,
dict-iter-method,
dict-view-method,
next-method-called,
metaclass-assignment,
indexing-exception,
raising-string,
reload-builtin,
oct-method,
hex-method,
nonzero-method,
cmp-method,
input-builtin,
round-builtin,
intern-builtin,
unichr-builtin,
map-builtin-not-iterating,
zip-builtin-not-iterating,
range-builtin-not-iterating,
filter-builtin-not-iterating,
using-cmp-argument,
eq-without-hash,
div-method,
idiv-method,
rdiv-method,
exception-message-attribute,
invalid-str-codec,
sys-max-int,
bad-python3-import,
deprecated-string-function,
deprecated-str-translate-call,
deprecated-itertools-function,
deprecated-types-field,
next-method-defined,
dict-items-not-iterating,
dict-keys-not-iterating,
dict-values-not-iterating,
deprecated-operator-function,
deprecated-urllib-function,
xreadlines-attribute,
deprecated-sys-function,
exception-escape,
comprehension-escape,
duplicate-code,
not-callable,
import-outside-toplevel,
@@ -363,13 +292,6 @@ max-line-length=120
# Maximum number of lines in a module.
max-module-lines=1000
# List of optional constructs for which whitespace checking is disabled. `dict-
# separator` is used to allow tabulation in dicts, etc.: {1 : 1,\n222: 2}.
# `trailing-comma` allows a space between comma and closing bracket: (a, ).
# `empty-line` allows space-only lines.
no-space-check=trailing-comma,
dict-separator
# Allow the body of a class to be on the same line as the declaration if body
# contains single statement.
single-line-class-stmt=no
@@ -599,5 +521,5 @@ min-public-methods=2
# Exceptions that will emit a warning when being caught. Defaults to
# "BaseException, Exception".
overgeneral-exceptions=BaseException,
Exception
overgeneral-exceptions=builtins.BaseException,
builtins.Exception

View File

@@ -17,7 +17,7 @@
</div>
> This is the official code implementation of 🍵 Matcha-TTS.
> This is the official code implementation of 🍵 Matcha-TTS [ICASSP 2024].
We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, that uses [conditional flow matching](https://arxiv.org/abs/2210.02747) (similar to [rectified flows](https://arxiv.org/abs/2209.03003)) to speed up ODE-based speech synthesis. Our method:
@@ -26,17 +26,16 @@ We propose 🍵 Matcha-TTS, a new approach to non-autoregressive neural TTS, tha
- Sounds highly natural
- Is very fast to synthesise from
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS) and read [our arXiv preprint](https://arxiv.org/abs/2309.03199) for more details.
Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS) and read [our ICASSP 2024 paper](https://arxiv.org/abs/2309.03199) for more details.
[Pre-trained models](https://drive.google.com/drive/folders/17C_gYgEHOxI5ZypcfE_k1piKCtyR0isJ?usp=sharing) will be automatically downloaded with the CLI or gradio interface.
[Try 🍵 Matcha-TTS on HuggingFace 🤗 spaces!](https://huggingface.co/spaces/shivammehta25/Matcha-TTS)
You can also [try 🍵 Matcha-TTS in your browser on HuggingFace 🤗 spaces](https://huggingface.co/spaces/shivammehta25/Matcha-TTS).
## Watch the teaser
## Teaser video
[![Watch the video](https://img.youtube.com/vi/xmvJkz3bqw0/hqdefault.jpg)](https://youtu.be/xmvJkz3bqw0)
## Installation
1. Create an environment (suggested but optional)
@@ -56,6 +55,8 @@ from source
```bash
pip install git+https://github.com/shivammehta25/Matcha-TTS.git
cd Matcha-TTS
pip install -e .
```
3. Run CLI / gradio app / jupyter notebook
@@ -187,16 +188,80 @@ python matcha/train.py experiment=ljspeech trainer.devices=[0,1]
matcha-tts --text "<INPUT TEXT>" --checkpoint_path <PATH TO CHECKPOINT>
```
## ONNX support
> Special thanks to [@mush42](https://github.com/mush42) for implementing ONNX export and inference support.
It is possible to export Matcha checkpoints to [ONNX](https://onnx.ai/), and run inference on the exported ONNX graph.
### ONNX export
To export a checkpoint to ONNX, first install ONNX with
```bash
pip install onnx
```
then run the following:
```bash
python3 -m matcha.onnx.export matcha.ckpt model.onnx --n-timesteps 5
```
Optionally, the ONNX exporter accepts **vocoder-name** and **vocoder-checkpoint** arguments. This enables you to embed the vocoder in the exported graph and generate waveforms in a single run (similar to end-to-end TTS systems).
**Note** that `n_timesteps` is treated as a hyper-parameter rather than a model input. This means you should specify it during export (not during inference). If not specified, `n_timesteps` is set to **5**.
**Important**: for now, torch>=2.1.0 is needed for export since the `scaled_product_attention` operator is not exportable in older versions. Until the final version is released, those who want to export their models must install torch>=2.1.0 manually as a pre-release.
### ONNX Inference
To run inference on the exported model, first install `onnxruntime` using
```bash
pip install onnxruntime
pip install onnxruntime-gpu # for GPU inference
```
then use the following:
```bash
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs
```
You can also control synthesis parameters:
```bash
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --temperature 0.4 --speaking_rate 0.9 --spk 0
```
To run inference on **GPU**, make sure to install **onnxruntime-gpu** package, and then pass `--gpu` to the inference command:
```bash
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --gpu
```
If you exported only Matcha to ONNX, this will write mel-spectrogram as graphs and `numpy` arrays to the output directory.
If you embedded the vocoder in the exported graph, this will write `.wav` audio files to the output directory.
If you exported only Matcha to ONNX, and you want to run a full TTS pipeline, you can pass a path to a vocoder model in `ONNX` format:
```bash
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --vocoder hifigan.small.onnx
```
This will write `.wav` audio files to the output directory.
## Citation information
If you use our code or otherwise find this work useful, please cite our paper:
```text
@article{mehta2023matcha,
title={Matcha-TTS: A fast TTS architecture with conditional flow matching},
@inproceedings{mehta2024matcha,
title={Matcha-{TTS}: A fast {TTS} architecture with conditional flow matching},
author={Mehta, Shivam and Tu, Ruibo and Beskow, Jonas and Sz{\'e}kely, {\'E}va and Henter, Gustav Eje},
journal={arXiv preprint arXiv:2309.03199},
year={2023}
booktitle={Proc. ICASSP},
year={2024}
}
```
@@ -204,7 +269,7 @@ If you use our code or otherwise find this work useful, please cite our paper:
Since this code uses [Lightning-Hydra-Template](https://github.com/ashleve/lightning-hydra-template), you have all the powers that come with it.
Other source code I would like to acknowledge:
Other source code we would like to acknowledge:
- [Coqui-TTS](https://github.com/coqui-ai/TTS/tree/dev): For helping me figure out how to make cython binaries pip installable and encouragement
- [Hugging Face Diffusers](https://huggingface.co/): For their awesome diffusers library and its components

View File

@@ -0,0 +1,14 @@
defaults:
- ljspeech
- _self_
# Dataset URL: https://ast-astrec.nict.go.jp/en/release/hi-fi-captain/
_target_: matcha.data.text_mel_datamodule.TextMelDataModule
name: hi-fi_en-US_female
train_filelist_path: data/filelists/hi-fi-captain-en-us-female_train.txt
valid_filelist_path: data/filelists/hi-fi-captain-en-us-female_val.txt
batch_size: 32
cleaners: [english_cleaners_piper]
data_statistics: # Computed for this dataset
mel_mean: -6.38385
mel_std: 2.541796

View File

@@ -0,0 +1,14 @@
# @package _global_
# to execute this experiment run:
# python train.py experiment=multispeaker
defaults:
- override /data: hi-fi_en-US_female.yaml
# all parameters below will be merged with parameters from default configurations set above
# this allows you to overwrite only specified parameters
tags: ["hi-fi", "single_speaker", "piper_phonemizer", "en_US", "female"]
run_name: hi-fi_en-US_female_piper_phonemizer

View File

@@ -12,3 +12,4 @@ spk_emb_dim: 64
n_feats: 80
data_statistics: ${data.data_statistics}
out_size: null # Must be divisible by 4
prior_loss: true

View File

@@ -1 +1 @@
0.0.3
0.0.5.1

View File

@@ -29,8 +29,15 @@ args = Namespace(
CURRENTLY_LOADED_MODEL = args.model
MATCHA_TTS_LOC = lambda x: LOCATION / f"{x}.ckpt" # noqa: E731
VOCODER_LOC = lambda x: LOCATION / f"{x}" # noqa: E731
def MATCHA_TTS_LOC(x):
return LOCATION / f"{x}.ckpt"
def VOCODER_LOC(x):
return LOCATION / f"{x}"
LOGO_URL = "https://shivammehta25.github.io/Matcha-TTS/images/logo.png"
RADIO_OPTIONS = {
"Multi Speaker (VCTK)": {

View File

@@ -18,13 +18,13 @@ from matcha.text import sequence_to_text, text_to_sequence
from matcha.utils.utils import assert_model_downloaded, get_user_data_dir, intersperse
MATCHA_URLS = {
"matcha_ljspeech": "https://drive.google.com/file/d/1BBzmMU7k3a_WetDfaFblMoN18GqQeHCg/view?usp=drive_link",
"matcha_vctk": "https://drive.google.com/file/d/1enuxmfslZciWGAl63WGh2ekVo00FYuQ9/view?usp=drive_link",
"matcha_ljspeech": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/matcha_ljspeech.ckpt",
"matcha_vctk": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/matcha_vctk.ckpt",
}
VOCODER_URLS = {
"hifigan_T2_v1": "https://drive.google.com/file/d/14NENd4equCBLyyCSke114Mv6YR_j_uFs/view?usp=drive_link",
"hifigan_univ_v1": "https://drive.google.com/file/d/1qpgI41wNXFcH-iKq1Y42JlBC9j0je8PW/view?usp=drive_link",
"hifigan_T2_v1": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/generator_v1", # Old url: https://drive.google.com/file/d/14NENd4equCBLyyCSke114Mv6YR_j_uFs/view?usp=drive_link
"hifigan_univ_v1": "https://github.com/shivammehta25/Matcha-TTS-checkpoints/releases/download/v1.0/g_02500000", # Old url: https://drive.google.com/file/d/1qpgI41wNXFcH-iKq1Y42JlBC9j0je8PW/view?usp=drive_link
}
MULTISPEAKER_MODEL = {
@@ -63,7 +63,7 @@ def get_texts(args):
if args.text:
texts = [args.text]
else:
with open(args.file) as f:
with open(args.file, encoding="utf-8") as f:
texts = f.readlines()
return texts
@@ -140,7 +140,7 @@ def validate_args(args):
if args.checkpoint_path is None:
# When using pretrained models
if args.model in SINGLESPEAKER_MODEL.keys():
if args.model in SINGLESPEAKER_MODEL:
args = validate_args_for_single_speaker_model(args)
if args.model in MULTISPEAKER_MODEL:

View File

@@ -81,7 +81,7 @@ class BaseLightningClass(LightningModule, ABC):
"step",
float(self.global_step),
on_step=True,
on_epoch=True,
prog_bar=True,
logger=True,
sync_dist=True,
)

View File

@@ -73,16 +73,14 @@ class BASECFM(torch.nn.Module, ABC):
# Or in future might add like a return_all_steps flag
sol = []
steps = 1
while steps <= len(t_span) - 1:
for step in range(1, len(t_span)):
dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
x = x + dt * dphi_dt
t = t + dt
sol.append(x)
if steps < len(t_span) - 1:
dt = t_span[steps + 1] - t
steps += 1
if step < len(t_span) - 1:
dt = t_span[step + 1] - t
return sol[-1]

View File

@@ -34,6 +34,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
out_size,
optimizer=None,
scheduler=None,
prior_loss=True,
):
super().__init__()
@@ -44,6 +45,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
self.spk_emb_dim = spk_emb_dim
self.n_feats = n_feats
self.out_size = out_size
self.prior_loss = prior_loss
if n_spks > 1:
self.spk_emb = torch.nn.Embedding(n_spks, spk_emb_dim)
@@ -116,7 +118,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
w = torch.exp(logw) * x_mask
w_ceil = torch.ceil(w) * length_scale
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_max_length = int(y_lengths.max())
y_max_length = y_lengths.max()
y_max_length_ = fix_len_compatibility(y_max_length)
# Using obtained durations `w` construct alignment map `attn`
@@ -228,7 +230,10 @@ class MatchaTTS(BaseLightningClass): # 🍵
# Compute loss of the decoder
diff_loss, _ = self.decoder.compute_loss(x1=y, mask=y_mask, mu=mu_y, spks=spks, cond=cond)
if self.prior_loss:
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask)
prior_loss = prior_loss / (torch.sum(y_mask) * self.n_feats)
else:
prior_loss = 0
return dur_loss, prior_loss, diff_loss

0
matcha/onnx/__init__.py Normal file
View File

181
matcha/onnx/export.py Normal file
View File

@@ -0,0 +1,181 @@
import argparse
import random
from pathlib import Path
import numpy as np
import torch
from lightning import LightningModule
from matcha.cli import VOCODER_URLS, load_matcha, load_vocoder
DEFAULT_OPSET = 15
SEED = 1234
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
class MatchaWithVocoder(LightningModule):
def __init__(self, matcha, vocoder):
super().__init__()
self.matcha = matcha
self.vocoder = vocoder
def forward(self, x, x_lengths, scales, spks=None):
mel, mel_lengths = self.matcha(x, x_lengths, scales, spks)
wavs = self.vocoder(mel).clamp(-1, 1)
lengths = mel_lengths * 256
return wavs.squeeze(1), lengths
def get_exportable_module(matcha, vocoder, n_timesteps):
"""
Return an appropriate `LighteningModule` and output-node names
based on whether the vocoder is embedded in the final graph
"""
def onnx_forward_func(x, x_lengths, scales, spks=None):
"""
Custom forward function for accepting
scaler parameters as tensors
"""
# Extract scaler parameters from tensors
temperature = scales[0]
length_scale = scales[1]
output = matcha.synthesise(x, x_lengths, n_timesteps, temperature, spks, length_scale)
return output["mel"], output["mel_lengths"]
# Monkey-patch Matcha's forward function
matcha.forward = onnx_forward_func
if vocoder is None:
model, output_names = matcha, ["mel", "mel_lengths"]
else:
model = MatchaWithVocoder(matcha, vocoder)
output_names = ["wav", "wav_lengths"]
return model, output_names
def get_inputs(is_multi_speaker):
"""
Create dummy inputs for tracing
"""
dummy_input_length = 50
x = torch.randint(low=0, high=20, size=(1, dummy_input_length), dtype=torch.long)
x_lengths = torch.LongTensor([dummy_input_length])
# Scales
temperature = 0.667
length_scale = 1.0
scales = torch.Tensor([temperature, length_scale])
model_inputs = [x, x_lengths, scales]
input_names = [
"x",
"x_lengths",
"scales",
]
if is_multi_speaker:
spks = torch.LongTensor([1])
model_inputs.append(spks)
input_names.append("spks")
return tuple(model_inputs), input_names
def main():
parser = argparse.ArgumentParser(description="Export 🍵 Matcha-TTS to ONNX")
parser.add_argument(
"checkpoint_path",
type=str,
help="Path to the model checkpoint",
)
parser.add_argument("output", type=str, help="Path to output `.onnx` file")
parser.add_argument(
"--n-timesteps", type=int, default=5, help="Number of steps to use for reverse diffusion in decoder (default 5)"
)
parser.add_argument(
"--vocoder-name",
type=str,
choices=list(VOCODER_URLS.keys()),
default=None,
help="Name of the vocoder to embed in the ONNX graph",
)
parser.add_argument(
"--vocoder-checkpoint-path",
type=str,
default=None,
help="Vocoder checkpoint to embed in the ONNX graph for an `e2e` like experience",
)
parser.add_argument("--opset", type=int, default=DEFAULT_OPSET, help="ONNX opset version to use (default 15")
args = parser.parse_args()
print(f"[🍵] Loading Matcha checkpoint from {args.checkpoint_path}")
print(f"Setting n_timesteps to {args.n_timesteps}")
checkpoint_path = Path(args.checkpoint_path)
matcha = load_matcha(checkpoint_path.stem, checkpoint_path, "cpu")
if args.vocoder_name or args.vocoder_checkpoint_path:
assert (
args.vocoder_name and args.vocoder_checkpoint_path
), "Both vocoder_name and vocoder-checkpoint are required when embedding the vocoder in the ONNX graph."
vocoder, _ = load_vocoder(args.vocoder_name, args.vocoder_checkpoint_path, "cpu")
else:
vocoder = None
is_multi_speaker = matcha.n_spks > 1
dummy_input, input_names = get_inputs(is_multi_speaker)
model, output_names = get_exportable_module(matcha, vocoder, args.n_timesteps)
# Set dynamic shape for inputs/outputs
dynamic_axes = {
"x": {0: "batch_size", 1: "time"},
"x_lengths": {0: "batch_size"},
}
if vocoder is None:
dynamic_axes.update(
{
"mel": {0: "batch_size", 2: "time"},
"mel_lengths": {0: "batch_size"},
}
)
else:
print("Embedding the vocoder in the ONNX graph")
dynamic_axes.update(
{
"wav": {0: "batch_size", 1: "time"},
"wav_lengths": {0: "batch_size"},
}
)
if is_multi_speaker:
dynamic_axes["spks"] = {0: "batch_size"}
# Create the output directory (if not exists)
Path(args.output).parent.mkdir(parents=True, exist_ok=True)
model.to_onnx(
args.output,
dummy_input,
input_names=input_names,
output_names=output_names,
dynamic_axes=dynamic_axes,
opset_version=args.opset,
export_params=True,
do_constant_folding=True,
)
print(f"[🍵] ONNX model exported to {args.output}")
if __name__ == "__main__":
main()

168
matcha/onnx/infer.py Normal file
View File

@@ -0,0 +1,168 @@
import argparse
import os
import warnings
from pathlib import Path
from time import perf_counter
import numpy as np
import onnxruntime as ort
import soundfile as sf
import torch
from matcha.cli import plot_spectrogram_to_numpy, process_text
def validate_args(args):
assert (
args.text or args.file
), "Either text or file must be provided Matcha-T(ea)TTS need sometext to whisk the waveforms."
assert args.temperature >= 0, "Sampling temperature cannot be negative"
assert args.speaking_rate >= 0, "Speaking rate must be greater than 0"
return args
def write_wavs(model, inputs, output_dir, external_vocoder=None):
if external_vocoder is None:
print("The provided model has the vocoder embedded in the graph.\nGenerating waveform directly")
t0 = perf_counter()
wavs, wav_lengths = model.run(None, inputs)
infer_secs = perf_counter() - t0
mel_infer_secs = vocoder_infer_secs = None
else:
print("[🍵] Generating mel using Matcha")
mel_t0 = perf_counter()
mels, mel_lengths = model.run(None, inputs)
mel_infer_secs = perf_counter() - mel_t0
print("Generating waveform from mel using external vocoder")
vocoder_inputs = {external_vocoder.get_inputs()[0].name: mels}
vocoder_t0 = perf_counter()
wavs = external_vocoder.run(None, vocoder_inputs)[0]
vocoder_infer_secs = perf_counter() - vocoder_t0
wavs = wavs.squeeze(1)
wav_lengths = mel_lengths * 256
infer_secs = mel_infer_secs + vocoder_infer_secs
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
for i, (wav, wav_length) in enumerate(zip(wavs, wav_lengths)):
output_filename = output_dir.joinpath(f"output_{i + 1}.wav")
audio = wav[:wav_length]
print(f"Writing audio to {output_filename}")
sf.write(output_filename, audio, 22050, "PCM_24")
wav_secs = wav_lengths.sum() / 22050
print(f"Inference seconds: {infer_secs}")
print(f"Generated wav seconds: {wav_secs}")
rtf = infer_secs / wav_secs
if mel_infer_secs is not None:
mel_rtf = mel_infer_secs / wav_secs
print(f"Matcha RTF: {mel_rtf}")
if vocoder_infer_secs is not None:
vocoder_rtf = vocoder_infer_secs / wav_secs
print(f"Vocoder RTF: {vocoder_rtf}")
print(f"Overall RTF: {rtf}")
def write_mels(model, inputs, output_dir):
t0 = perf_counter()
mels, mel_lengths = model.run(None, inputs)
infer_secs = perf_counter() - t0
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
for i, mel in enumerate(mels):
output_stem = output_dir.joinpath(f"output_{i + 1}")
plot_spectrogram_to_numpy(mel.squeeze(), output_stem.with_suffix(".png"))
np.save(output_stem.with_suffix(".numpy"), mel)
wav_secs = (mel_lengths * 256).sum() / 22050
print(f"Inference seconds: {infer_secs}")
print(f"Generated wav seconds: {wav_secs}")
rtf = infer_secs / wav_secs
print(f"RTF: {rtf}")
def main():
parser = argparse.ArgumentParser(
description=" 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching"
)
parser.add_argument(
"model",
type=str,
help="ONNX model to use",
)
parser.add_argument("--vocoder", type=str, default=None, help="Vocoder to use (defaults to None)")
parser.add_argument("--text", type=str, default=None, help="Text to synthesize")
parser.add_argument("--file", type=str, default=None, help="Text file to synthesize")
parser.add_argument("--spk", type=int, default=None, help="Speaker ID")
parser.add_argument(
"--temperature",
type=float,
default=0.667,
help="Variance of the x0 noise (default: 0.667)",
)
parser.add_argument(
"--speaking-rate",
type=float,
default=1.0,
help="change the speaking rate, a higher value means slower speaking rate (default: 1.0)",
)
parser.add_argument("--gpu", action="store_true", help="Use CPU for inference (default: use GPU if available)")
parser.add_argument(
"--output-dir",
type=str,
default=os.getcwd(),
help="Output folder to save results (default: current dir)",
)
args = parser.parse_args()
args = validate_args(args)
if args.gpu:
providers = ["GPUExecutionProvider"]
else:
providers = ["CPUExecutionProvider"]
model = ort.InferenceSession(args.model, providers=providers)
model_inputs = model.get_inputs()
model_outputs = list(model.get_outputs())
if args.text:
text_lines = args.text.splitlines()
else:
with open(args.file, encoding="utf-8") as file:
text_lines = file.read().splitlines()
processed_lines = [process_text(0, line, "cpu") for line in text_lines]
x = [line["x"].squeeze() for line in processed_lines]
# Pad
x = torch.nn.utils.rnn.pad_sequence(x, batch_first=True)
x = x.detach().cpu().numpy()
x_lengths = np.array([line["x_lengths"].item() for line in processed_lines], dtype=np.int64)
inputs = {
"x": x,
"x_lengths": x_lengths,
"scales": np.array([args.temperature, args.speaking_rate], dtype=np.float32),
}
is_multi_speaker = len(model_inputs) == 4
if is_multi_speaker:
if args.spk is None:
args.spk = 0
warn = "[!] Speaker ID not provided! Using speaker ID 0"
warnings.warn(warn, UserWarning)
inputs["spks"] = np.repeat(args.spk, x.shape[0]).astype(np.int64)
has_vocoder_embedded = model_outputs[0].name == "wav"
if has_vocoder_embedded:
write_wavs(model, inputs, args.output_dir)
elif args.vocoder:
external_vocoder = ort.InferenceSession(args.vocoder, providers=providers)
write_wavs(model, inputs, args.output_dir, external_vocoder=external_vocoder)
else:
warn = "[!] A vocoder is not embedded in the graph nor an external vocoder is provided. The mel output will be written as numpy arrays to `*.npy` files in the output directory"
warnings.warn(warn, UserWarning)
write_mels(model, inputs, args.output_dir)
if __name__ == "__main__":
main()

View File

@@ -15,6 +15,7 @@ import logging
import re
import phonemizer
import piper_phonemize
from unidecode import unidecode
# To avoid excessive logging we set the log level of the phonemizer package to Critical
@@ -103,3 +104,13 @@ def english_cleaners2(text):
phonemes = global_phonemizer.phonemize([text], strip=True, njobs=1)[0]
phonemes = collapse_whitespace(phonemes)
return phonemes
def english_cleaners_piper(text):
"""Pipeline for English text, including abbreviation expansion. + punctuation + stress"""
text = convert_to_ascii(text)
text = lowercase(text)
text = expand_abbreviations(text)
phonemes = "".join(piper_phonemize.phonemize_espeak(text=text, voice="en-US")[0])
phonemes = collapse_whitespace(phonemes)
return phonemes

View File

@@ -7,15 +7,17 @@ import torch
def sequence_mask(length, max_length=None):
if max_length is None:
max_length = length.max()
x = torch.arange(int(max_length), dtype=length.dtype, device=length.device)
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
return x.unsqueeze(0) < length.unsqueeze(1)
def fix_len_compatibility(length, num_downsamplings_in_unet=2):
while True:
if length % (2**num_downsamplings_in_unet) == 0:
factor = torch.scalar_tensor(2).pow(num_downsamplings_in_unet)
length = (length / factor).ceil() * factor
if not torch.onnx.is_in_onnx_export():
return length.int().item()
else:
return length
length += 1
def convert_pad_shape(pad_shape):

View File

@@ -115,7 +115,7 @@ def get_metric_value(metric_dict: Dict[str, Any], metric_name: str) -> float:
return None
if metric_name not in metric_dict:
raise Exception(
raise ValueError(
f"Metric value not found! <metric_name={metric_name}>\n"
"Make sure metric name logged in LightningModule is correct!\n"
"Make sure `optimized_metric` name in `hparams_search` config is correct!"
@@ -205,11 +205,13 @@ def get_user_data_dir(appname="matcha_tts"):
return final_path
def assert_model_downloaded(checkpoint_path, url, use_wget=False):
def assert_model_downloaded(checkpoint_path, url, use_wget=True):
if Path(checkpoint_path).exists():
log.debug(f"[+] Model already present at {checkpoint_path}!")
print(f"[+] Model already present at {checkpoint_path}!")
return
log.info(f"[-] Model not found at {checkpoint_path}! Will download it")
print(f"[-] Model not found at {checkpoint_path}! Will download it")
checkpoint_path = str(checkpoint_path)
if not use_wget:
gdown.download(url=url, output=checkpoint_path, quiet=False, fuzzy=True)

View File

@@ -35,10 +35,11 @@ torchaudio
matplotlib
pandas
conformer==0.3.2
diffusers==0.21.2
diffusers==0.25.0
notebook
ipywidgets
gradio
gdown
wget
seaborn
piper_phonemize