16 Commits
0.0.2 ... 0.0.4

Author SHA1 Message Date
Shivam Mehta
b756809a32 Merge pull request #13 from shivammehta25/dev
Merging dev to main | adding ONNX support
2023-09-29 16:54:09 +02:00
Shivam Mehta
1ead4303f3 Version Bump 2023-09-29 14:50:46 +00:00
Shivam Mehta
7a29fef719 Merge pull request #12 from shivammehta25/dependabot/pip/dev/diffusers-0.21.3
Bump diffusers from 0.21.2 to 0.21.3
2023-09-29 16:48:13 +02:00
Shivam Mehta
9ace522249 Update README.md 2023-09-29 16:46:38 +02:00
Shivam Mehta
ed6e6bbf6c Merge branch 'ONNX_BRANCH' into dev 2023-09-29 14:43:52 +00:00
Shivam Mehta
51ea36d271 Merge pull request #8 from mush42/onnx
ONNX export and inference
2023-09-29 16:43:19 +02:00
Shivam Mehta
269609003b Adding onnx installation command in the README 2023-09-29 14:38:57 +00:00
dependabot[bot]
2a81800825 Bump diffusers from 0.21.2 to 0.21.3
Bumps [diffusers](https://github.com/huggingface/diffusers) from 0.21.2 to 0.21.3.
- [Release notes](https://github.com/huggingface/diffusers/releases)
- [Commits](https://github.com/huggingface/diffusers/compare/v0.21.2...v0.21.3)

---
updated-dependencies:
- dependency-name: diffusers
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-09-28 13:23:02 +00:00
mush42
336dd20d5b Use torch.onnx.is_in_onnx_export() instead of torch.jit.is_scripting() since the former is dedicated to this use case. 2023-09-26 15:28:15 +02:00
mush42
01c99161c4 - Fixed several bugs. Thanks @shivammehta25 for the suggestions 2023-09-26 14:21:17 +02:00
mush42
2c21a0edac Fixed an error encountered when loading the vocoder during export. 2023-09-24 20:28:59 +02:00
mush42
25767f76a8 Readme: added a note about GPU inference with onnxruntime. 2023-09-24 02:13:27 +02:00
mush42
1b204ed42c ONNX export and inference. Complete and tested implmentation. 2023-09-24 01:57:35 +02:00
Shivam Mehta
2cd057187b Update README.md
Add information about installation and compilation of monotonic alignment
2023-09-23 17:39:36 +02:00
Shivam Mehta
d373e9a5b1 Bumping it to an increased version 2023-09-21 13:43:20 +00:00
Shivam Mehta
f12be190a4 ADding video teaser to readme 2023-09-21 13:41:21 +00:00
8 changed files with 430 additions and 9 deletions

View File

@@ -32,6 +32,10 @@ Check out our [demo page](https://shivammehta25.github.io/Matcha-TTS) and read [
[Try 🍵 Matcha-TTS on HuggingFace 🤗 spaces!](https://huggingface.co/spaces/shivammehta25/Matcha-TTS)
## Watch the teaser
[![Watch the video](https://img.youtube.com/vi/xmvJkz3bqw0/hqdefault.jpg)](https://youtu.be/xmvJkz3bqw0)
## Installation
1. Create an environment (suggested but optional)
@@ -51,6 +55,8 @@ from source
```bash
pip install git+https://github.com/shivammehta25/Matcha-TTS.git
cd Matcha-TTS
pip install -e .
```
3. Run CLI / gradio app / jupyter notebook
@@ -182,6 +188,70 @@ python matcha/train.py experiment=ljspeech trainer.devices=[0,1]
matcha-tts --text "<INPUT TEXT>" --checkpoint_path <PATH TO CHECKPOINT>
```
## ONNX support
> Special thanks to [@mush42](https://github.com/mush42) for implementing ONNX export and inference support.
It is possible to export Matcha checkpoints to [ONNX](https://onnx.ai/), and run inference on the exported ONNX graph.
### ONNX export
To export a checkpoint to ONNX, first install ONNX with
```bash
pip install onnx
```
then run the following:
```bash
python3 -m matcha.onnx.export matcha.ckpt model.onnx --n-timesteps 5
```
Optionally, the ONNX exporter accepts **vocoder-name** and **vocoder-checkpoint** arguments. This enables you to embed the vocoder in the exported graph and generate waveforms in a single run (similar to end-to-end TTS systems).
**Note** that `n_timesteps` is treated as a hyper-parameter rather than a model input. This means you should specify it during export (not during inference). If not specified, `n_timesteps` is set to **5**.
**Important**: for now, torch>=2.1.0 is needed for export since the `scaled_product_attention` operator is not exportable in older versions. Until the final version is released, those who want to export their models must install torch>=2.1.0 manually as a pre-release.
### ONNX Inference
To run inference on the exported model, first install `onnxruntime` using
```bash
pip install onnxruntime
pip install onnxruntime-gpu # for GPU inference
```
then use the following:
```bash
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs
```
You can also control synthesis parameters:
```bash
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --temperature 0.4 --speaking_rate 0.9 --spk 0
```
To run inference on **GPU**, make sure to install **onnxruntime-gpu** package, and then pass `--gpu` to the inference command:
```bash
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --gpu
```
If you exported only Matcha to ONNX, this will write mel-spectrogram as graphs and `numpy` arrays to the output directory.
If you embedded the vocoder in the exported graph, this will write `.wav` audio files to the output directory.
If you exported only Matcha to ONNX, and you want to run a full TTS pipeline, you can pass a path to a vocoder model in `ONNX` format:
```bash
python3 -m matcha.onnx.infer model.onnx --text "hey" --output-dir ./outputs --vocoder hifigan.small.onnx
```
This will write `.wav` audio files to the output directory.
## Citation information
If you use our code or otherwise find this work useful, please cite our paper:

View File

@@ -1 +1 @@
0.0.2
0.0.4

View File

@@ -116,7 +116,7 @@ class MatchaTTS(BaseLightningClass): # 🍵
w = torch.exp(logw) * x_mask
w_ceil = torch.ceil(w) * length_scale
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_max_length = int(y_lengths.max())
y_max_length = y_lengths.max()
y_max_length_ = fix_len_compatibility(y_max_length)
# Using obtained durations `w` construct alignment map `attn`

0
matcha/onnx/__init__.py Normal file
View File

181
matcha/onnx/export.py Normal file
View File

@@ -0,0 +1,181 @@
import argparse
import random
from pathlib import Path
import numpy as np
import torch
from lightning import LightningModule
from matcha.cli import VOCODER_URLS, load_matcha, load_vocoder
DEFAULT_OPSET = 15
SEED = 1234
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
class MatchaWithVocoder(LightningModule):
def __init__(self, matcha, vocoder):
super().__init__()
self.matcha = matcha
self.vocoder = vocoder
def forward(self, x, x_lengths, scales, spks=None):
mel, mel_lengths = self.matcha(x, x_lengths, scales, spks)
wavs = self.vocoder(mel).clamp(-1, 1)
lengths = mel_lengths * 256
return wavs.squeeze(1), lengths
def get_exportable_module(matcha, vocoder, n_timesteps):
"""
Return an appropriate `LighteningModule` and output-node names
based on whether the vocoder is embedded in the final graph
"""
def onnx_forward_func(x, x_lengths, scales, spks=None):
"""
Custom forward function for accepting
scaler parameters as tensors
"""
# Extract scaler parameters from tensors
temperature = scales[0]
length_scale = scales[1]
output = matcha.synthesise(x, x_lengths, n_timesteps, temperature, spks, length_scale)
return output["mel"], output["mel_lengths"]
# Monkey-patch Matcha's forward function
matcha.forward = onnx_forward_func
if vocoder is None:
model, output_names = matcha, ["mel", "mel_lengths"]
else:
model = MatchaWithVocoder(matcha, vocoder)
output_names = ["wav", "wav_lengths"]
return model, output_names
def get_inputs(is_multi_speaker):
"""
Create dummy inputs for tracing
"""
dummy_input_length = 50
x = torch.randint(low=0, high=20, size=(1, dummy_input_length), dtype=torch.long)
x_lengths = torch.LongTensor([dummy_input_length])
# Scales
temperature = 0.667
length_scale = 1.0
scales = torch.Tensor([temperature, length_scale])
model_inputs = [x, x_lengths, scales]
input_names = [
"x",
"x_lengths",
"scales",
]
if is_multi_speaker:
spks = torch.LongTensor([1])
model_inputs.append(spks)
input_names.append("spks")
return tuple(model_inputs), input_names
def main():
parser = argparse.ArgumentParser(description="Export 🍵 Matcha-TTS to ONNX")
parser.add_argument(
"checkpoint_path",
type=str,
help="Path to the model checkpoint",
)
parser.add_argument("output", type=str, help="Path to output `.onnx` file")
parser.add_argument(
"--n-timesteps", type=int, default=5, help="Number of steps to use for reverse diffusion in decoder (default 5)"
)
parser.add_argument(
"--vocoder-name",
type=str,
choices=list(VOCODER_URLS.keys()),
default=None,
help="Name of the vocoder to embed in the ONNX graph",
)
parser.add_argument(
"--vocoder-checkpoint-path",
type=str,
default=None,
help="Vocoder checkpoint to embed in the ONNX graph for an `e2e` like experience",
)
parser.add_argument("--opset", type=int, default=DEFAULT_OPSET, help="ONNX opset version to use (default 15")
args = parser.parse_args()
print(f"[🍵] Loading Matcha checkpoint from {args.checkpoint_path}")
print(f"Setting n_timesteps to {args.n_timesteps}")
checkpoint_path = Path(args.checkpoint_path)
matcha = load_matcha(checkpoint_path.stem, checkpoint_path, "cpu")
if args.vocoder_name or args.vocoder_checkpoint_path:
assert (
args.vocoder_name and args.vocoder_checkpoint_path
), "Both vocoder_name and vocoder-checkpoint are required when embedding the vocoder in the ONNX graph."
vocoder, _ = load_vocoder(args.vocoder_name, args.vocoder_checkpoint_path, "cpu")
else:
vocoder = None
is_multi_speaker = matcha.n_spks > 1
dummy_input, input_names = get_inputs(is_multi_speaker)
model, output_names = get_exportable_module(matcha, vocoder, args.n_timesteps)
# Set dynamic shape for inputs/outputs
dynamic_axes = {
"x": {0: "batch_size", 1: "time"},
"x_lengths": {0: "batch_size"},
}
if vocoder is None:
dynamic_axes.update(
{
"mel": {0: "batch_size", 2: "time"},
"mel_lengths": {0: "batch_size"},
}
)
else:
print("Embedding the vocoder in the ONNX graph")
dynamic_axes.update(
{
"wav": {0: "batch_size", 1: "time"},
"wav_lengths": {0: "batch_size"},
}
)
if is_multi_speaker:
dynamic_axes["spks"] = {0: "batch_size"}
# Create the output directory (if not exists)
Path(args.output).parent.mkdir(parents=True, exist_ok=True)
model.to_onnx(
args.output,
dummy_input,
input_names=input_names,
output_names=output_names,
dynamic_axes=dynamic_axes,
opset_version=args.opset,
export_params=True,
do_constant_folding=True,
)
print(f"[🍵] ONNX model exported to {args.output}")
if __name__ == "__main__":
main()

168
matcha/onnx/infer.py Normal file
View File

@@ -0,0 +1,168 @@
import argparse
import os
import warnings
from pathlib import Path
from time import perf_counter
import numpy as np
import onnxruntime as ort
import soundfile as sf
import torch
from matcha.cli import plot_spectrogram_to_numpy, process_text
def validate_args(args):
assert (
args.text or args.file
), "Either text or file must be provided Matcha-T(ea)TTS need sometext to whisk the waveforms."
assert args.temperature >= 0, "Sampling temperature cannot be negative"
assert args.speaking_rate >= 0, "Speaking rate must be greater than 0"
return args
def write_wavs(model, inputs, output_dir, external_vocoder=None):
if external_vocoder is None:
print("The provided model has the vocoder embedded in the graph.\nGenerating waveform directly")
t0 = perf_counter()
wavs, wav_lengths = model.run(None, inputs)
infer_secs = perf_counter() - t0
mel_infer_secs = vocoder_infer_secs = None
else:
print("[🍵] Generating mel using Matcha")
mel_t0 = perf_counter()
mels, mel_lengths = model.run(None, inputs)
mel_infer_secs = perf_counter() - mel_t0
print("Generating waveform from mel using external vocoder")
vocoder_inputs = {external_vocoder.get_inputs()[0].name: mels}
vocoder_t0 = perf_counter()
wavs = external_vocoder.run(None, vocoder_inputs)[0]
vocoder_infer_secs = perf_counter() - vocoder_t0
wavs = wavs.squeeze(1)
wav_lengths = mel_lengths * 256
infer_secs = mel_infer_secs + vocoder_infer_secs
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
for i, (wav, wav_length) in enumerate(zip(wavs, wav_lengths)):
output_filename = output_dir.joinpath(f"output_{i + 1}.wav")
audio = wav[:wav_length]
print(f"Writing audio to {output_filename}")
sf.write(output_filename, audio, 22050, "PCM_24")
wav_secs = wav_lengths.sum() / 22050
print(f"Inference seconds: {infer_secs}")
print(f"Generated wav seconds: {wav_secs}")
rtf = infer_secs / wav_secs
if mel_infer_secs is not None:
mel_rtf = mel_infer_secs / wav_secs
print(f"Matcha RTF: {mel_rtf}")
if vocoder_infer_secs is not None:
vocoder_rtf = vocoder_infer_secs / wav_secs
print(f"Vocoder RTF: {vocoder_rtf}")
print(f"Overall RTF: {rtf}")
def write_mels(model, inputs, output_dir):
t0 = perf_counter()
mels, mel_lengths = model.run(None, inputs)
infer_secs = perf_counter() - t0
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
for i, mel in enumerate(mels):
output_stem = output_dir.joinpath(f"output_{i + 1}")
plot_spectrogram_to_numpy(mel.squeeze(), output_stem.with_suffix(".png"))
np.save(output_stem.with_suffix(".numpy"), mel)
wav_secs = (mel_lengths * 256).sum() / 22050
print(f"Inference seconds: {infer_secs}")
print(f"Generated wav seconds: {wav_secs}")
rtf = infer_secs / wav_secs
print(f"RTF: {rtf}")
def main():
parser = argparse.ArgumentParser(
description=" 🍵 Matcha-TTS: A fast TTS architecture with conditional flow matching"
)
parser.add_argument(
"model",
type=str,
help="ONNX model to use",
)
parser.add_argument("--vocoder", type=str, default=None, help="Vocoder to use (defaults to None)")
parser.add_argument("--text", type=str, default=None, help="Text to synthesize")
parser.add_argument("--file", type=str, default=None, help="Text file to synthesize")
parser.add_argument("--spk", type=int, default=None, help="Speaker ID")
parser.add_argument(
"--temperature",
type=float,
default=0.667,
help="Variance of the x0 noise (default: 0.667)",
)
parser.add_argument(
"--speaking-rate",
type=float,
default=1.0,
help="change the speaking rate, a higher value means slower speaking rate (default: 1.0)",
)
parser.add_argument("--gpu", action="store_true", help="Use CPU for inference (default: use GPU if available)")
parser.add_argument(
"--output-dir",
type=str,
default=os.getcwd(),
help="Output folder to save results (default: current dir)",
)
args = parser.parse_args()
args = validate_args(args)
if args.gpu:
providers = ["GPUExecutionProvider"]
else:
providers = ["CPUExecutionProvider"]
model = ort.InferenceSession(args.model, providers=providers)
model_inputs = model.get_inputs()
model_outputs = list(model.get_outputs())
if args.text:
text_lines = args.text.splitlines()
else:
with open(args.file, encoding="utf-8") as file:
text_lines = file.read().splitlines()
processed_lines = [process_text(0, line, "cpu") for line in text_lines]
x = [line["x"].squeeze() for line in processed_lines]
# Pad
x = torch.nn.utils.rnn.pad_sequence(x, batch_first=True)
x = x.detach().cpu().numpy()
x_lengths = np.array([line["x_lengths"].item() for line in processed_lines], dtype=np.int64)
inputs = {
"x": x,
"x_lengths": x_lengths,
"scales": np.array([args.temperature, args.speaking_rate], dtype=np.float32),
}
is_multi_speaker = len(model_inputs) == 4
if is_multi_speaker:
if args.spk is None:
args.spk = 0
warn = "[!] Speaker ID not provided! Using speaker ID 0"
warnings.warn(warn, UserWarning)
inputs["spks"] = np.repeat(args.spk, x.shape[0]).astype(np.int64)
has_vocoder_embedded = model_outputs[0].name == "wav"
if has_vocoder_embedded:
write_wavs(model, inputs, args.output_dir)
elif args.vocoder:
external_vocoder = ort.InferenceSession(args.vocoder, providers=providers)
write_wavs(model, inputs, args.output_dir, external_vocoder=external_vocoder)
else:
warn = "[!] A vocoder is not embedded in the graph nor an external vocoder is provided. The mel output will be written as numpy arrays to `*.npy` files in the output directory"
warnings.warn(warn, UserWarning)
write_mels(model, inputs, args.output_dir)
if __name__ == "__main__":
main()

View File

@@ -7,15 +7,17 @@ import torch
def sequence_mask(length, max_length=None):
if max_length is None:
max_length = length.max()
x = torch.arange(int(max_length), dtype=length.dtype, device=length.device)
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
return x.unsqueeze(0) < length.unsqueeze(1)
def fix_len_compatibility(length, num_downsamplings_in_unet=2):
while True:
if length % (2**num_downsamplings_in_unet) == 0:
factor = torch.scalar_tensor(2).pow(num_downsamplings_in_unet)
length = (length / factor).ceil() * factor
if not torch.onnx.is_in_onnx_export():
return length.int().item()
else:
return length
length += 1
def convert_pad_shape(pad_shape):

View File

@@ -35,7 +35,7 @@ torchaudio
matplotlib
pandas
conformer==0.3.2
diffusers==0.21.2
diffusers==0.21.3
notebook
ipywidgets
gradio