mirror of
https://github.com/aigc3d/LAM_Audio2Expression.git
synced 2026-02-04 09:29:24 +08:00
105cfbfc89a1dd6296ade8cd12643c5330cdec50
LAM-A2E: Audio to Expression
This project leverages audio input to generate ARKit blendshapes-driven facial expressions in ⚡real-time⚡, powering ultra-realistic 3D avatars generated by LAM.
Demo
📢 News
[April 21, 2025] We have released the ModelScope Space !
[April 21, 2025] We have released the WebGL Interactive Chatting Avatar SDK on OpenAvatarChat (including LLM, ASR, TTS, Avatar), with which you can freely chat with our generated 3D Digital Human ! 🔥
To do list
- Release Huggingface space.
- Release Modelscope space.
- Release the LAM-A2E model based on the Flame expression.
- Release Interactive Chatting Avatar SDK with OpenAvatarChat, including LLM, ASR, TTS, LAM-Avatars.
🚀 Get Started
Environment Setup
git clone git@github.com:aigc3d/LAM_Audio2Expression.git
cd LAM_Audio2Expression
# Create conda environment (currently only supports Python 3.10)
conda create -n lam_a2e python=3.10
# Activate the conda environment
conda activate lam_a2e
# Install with Cuda 12.1
sh ./scripts/install/install_cu121.sh
# Or Install with Cuda 11.8
sh ./scripts/install/install_cu118.sh
Download
# HuggingFace download
# Download Assets and Model Weights
huggingface-cli download 3DAIGC/LAM_audio2exp --local-dir ./
tar -xzvf LAM_audio2exp_assets.tar && rm -f LAM_audio2exp_assets.tar
tar -xzvf LAM_audio2exp_streaming.tar && rm -f LAM_audio2exp_streaming.tar
# Or OSS Download (In case of HuggingFace download failing)
# Download Assets
wget https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/aigc3d/data/LAM/LAM_audio2exp_assets.tar
tar -xzvf LAM_audio2exp_assets.tar && rm -f LAM_audio2exp_assets.tar
# Download Model Weights
wget https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/aigc3d/data/LAM/LAM_audio2exp_streaming.tar
tar -xzvf LAM_audio2exp_streaming.tar && rm -f LAM_audio2exp_streaming.tar
Or Modelscope Download
git clone https://www.modelscope.cn/Damo_XR_Lab/LAM_audio2exp.git ./modelscope_download
Quick Start Guide
Using Gradio Interface:
We provide a simple Gradio demo with WebGL Render, and you can get rendering results by uploading audio in seconds.
python app_lam_audio2exp.py
Inference
# example: python inference.py --config-file configs/lam_audio2exp_config_streaming.py --options save_path=exp/audio2exp weight=pretrained_models/lam_audio2exp_streaming.tar audio_input=./assets/sample_audio/BarackObama_english.wav
python inference.py --config-file ${CONFIG_PATH} --options save_path=${SAVE_PATH} weight=${CHECKPOINT_PATH} audio_input=${AUDIO_INPUT}
Acknowledgement
This work is built on many amazing research works and open-source projects:
Thanks for their excellent works and great contribution.
Related Works
Welcome to follow our other interesting works:
Citation
@inproceedings{he2025LAM,
title={LAM: Large Avatar Model for One-shot Animatable Gaussian Head},
author={
Yisheng He and Xiaodong Gu and Xiaodan Ye and Chao Xu and Zhengyi Zhao and Yuan Dong and Weihao Yuan and Zilong Dong and Liefeng Bo
},
booktitle={arXiv preprint arXiv:2502.17796},
year={2025}
}
Description
Languages
Python
99.7%
Shell
0.3%