Files
CosyVoice/examples/grpo/cosyvoice2/prepare_data.py
2025-07-29 07:54:42 +00:00

89 lines
2.9 KiB
Python

# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocess the Text to Speech dataset to parquet format
"""
import argparse
import os
import re
import datasets
from verl.utils.hdfs_io import copy, makedirs
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--train_file", required=True, help="Path to training JSON/JSONL file")
parser.add_argument("--test_file", required=True, help="Path to test JSON/JSONL file")
parser.add_argument("--local_dir", default=None, required=True)
parser.add_argument("--hdfs_dir", default=None)
args = parser.parse_args()
# Load datasets from local JSON files
train_dataset = datasets.load_dataset("json", data_files=args.train_file)['train']
test_dataset = datasets.load_dataset("json", data_files=args.test_file)['train']
# add a row to each data item that represents a unique id
def make_map_fn(split):
def process_fn(example, idx):
text = example.pop("text")
# use cosyvoice2 official huggingface compatible checkpoint template
question = text
answer = ""
data = {
"data_source": f"{args.train_file}_{args.test_file}", # Use file names as data source
"prompt": [
{
"role": "user",
"content": question,
},
{
"role": "assistant",
"content": answer,
},
],
"ability": "text-to-speech",
"reward_model": {"style": "rule", "ground_truth": text},
"extra_info": {
"split": split,
"index": idx,
"text": text,
},
}
return data
return process_fn
train_dataset = train_dataset.map(function=make_map_fn("train"), with_indices=True)
test_dataset = test_dataset.map(function=make_map_fn("test"), with_indices=True)
local_dir = args.local_dir
hdfs_dir = args.hdfs_dir
print(train_dataset)
print(test_dataset)
train_dataset.to_parquet(os.path.join(local_dir, "train.parquet"))
test_dataset.to_parquet(os.path.join(local_dir, "test.parquet"))
if hdfs_dir is not None:
makedirs(hdfs_dir)
copy(src=local_dir, dst=hdfs_dir)