# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Preprocess the Text to Speech dataset to parquet format """ import argparse import os import re import datasets from verl.utils.hdfs_io import copy, makedirs if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--train_file", required=True, help="Path to training JSON/JSONL file") parser.add_argument("--test_file", required=True, help="Path to test JSON/JSONL file") parser.add_argument("--local_dir", default=None, required=True) parser.add_argument("--hdfs_dir", default=None) args = parser.parse_args() # Load datasets from local JSON files train_dataset = datasets.load_dataset("json", data_files=args.train_file)['train'] test_dataset = datasets.load_dataset("json", data_files=args.test_file)['train'] # add a row to each data item that represents a unique id def make_map_fn(split): def process_fn(example, idx): text = example.pop("text") # use cosyvoice2 official huggingface compatible checkpoint template question = text answer = "" data = { "data_source": f"{args.train_file}_{args.test_file}", # Use file names as data source "prompt": [ { "role": "user", "content": question, }, { "role": "assistant", "content": answer, }, ], "ability": "text-to-speech", "reward_model": {"style": "rule", "ground_truth": text}, "extra_info": { "split": split, "index": idx, "text": text, }, } return data return process_fn train_dataset = train_dataset.map(function=make_map_fn("train"), with_indices=True) test_dataset = test_dataset.map(function=make_map_fn("test"), with_indices=True) local_dir = args.local_dir hdfs_dir = args.hdfs_dir print(train_dataset) print(test_dataset) train_dataset.to_parquet(os.path.join(local_dir, "train.parquet")) test_dataset.to_parquet(os.path.join(local_dir, "test.parquet")) if hdfs_dir is not None: makedirs(hdfs_dir) copy(src=local_dir, dst=hdfs_dir)