mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
142 lines
7.5 KiB
Markdown
142 lines
7.5 KiB
Markdown
## Accelerating CosyVoice with DiT-based Token2Wav, NVIDIA Triton Inference Server and TensorRT-LLM
|
|
|
|
Contributed by Yuekai Zhang (NVIDIA).
|
|
|
|
This document describes how to accelerate CosyVoice with a DiT-based Token2Wav module from Step-Audio2, using NVIDIA Triton Inference Server and TensorRT-LLM.
|
|
|
|
### Quick Start
|
|
|
|
Launch the service directly with Docker Compose:
|
|
```sh
|
|
docker compose -f docker-compose.dit.yml up
|
|
```
|
|
|
|
### Build the Docker Image
|
|
|
|
To build the image from scratch:
|
|
```sh
|
|
docker build . -f Dockerfile.server -t soar97/triton-cosyvoice:25.06
|
|
```
|
|
|
|
### Run a Docker Container
|
|
```sh
|
|
your_mount_dir=/mnt:/mnt
|
|
docker run -it --name "cosyvoice-server" --gpus all --net host -v $your_mount_dir --shm-size=2g soar97/triton-cosyvoice:25.06
|
|
```
|
|
|
|
### Understanding `run_stepaudio2_dit_token2wav.sh`
|
|
|
|
The `run_stepaudio2_dit_token2wav.sh` script orchestrates the entire workflow through numbered stages.
|
|
|
|
You can run a subset of stages with:
|
|
```sh
|
|
bash run_stepaudio2_dit_token2wav.sh <start_stage> <stop_stage>
|
|
```
|
|
- `<start_stage>`: The stage to start from.
|
|
- `<stop_stage>`: The stage to stop after.
|
|
|
|
**Stages:**
|
|
|
|
- **Stage -1**: Clones the `Step-Audio2` and `CosyVoice` repositories.
|
|
- **Stage 0**: Downloads the `cosyvoice2_llm`, `CosyVoice2-0.5B`, and `Step-Audio-2-mini` models.
|
|
- **Stage 1**: Converts the HuggingFace checkpoint for the LLM to the TensorRT-LLM format and builds the TensorRT engines.
|
|
- **Stage 2**: Creates the Triton model repository, including configurations for `cosyvoice2_dit` and `token2wav_dit`.
|
|
- **Stage 3**: Launches the Triton Inference Server for Token2Wav module and uses `trtllm-serve` to deploy Cosyvoice2 LLM.
|
|
- **Stage 4**: Runs the gRPC benchmark client for performance testing.
|
|
- **Stage 5**: Runs the offline TTS inference benchmark test.
|
|
- **Stage 6**: Runs a standalone inference script for the Step-Audio2-mini DiT Token2Wav model.
|
|
- **Stage 7**: Launches servers in a disaggregated setup, with the LLM on GPU 0 and Token2Wav servers on GPUs 1-3.
|
|
- **Stage 8**: Runs the benchmark client for the disaggregated server configuration.
|
|
### Export Models and Launch Server
|
|
|
|
Inside the Docker container, prepare the models and start the Triton server by running stages 0-3:
|
|
```sh
|
|
# This command runs stages 0, 1, 2, and 3
|
|
bash run_stepaudio2_dit_token2wav.sh 0 3
|
|
```
|
|
|
|
### Benchmark with client-server mode
|
|
|
|
To benchmark the running Triton server, run stage 4:
|
|
```sh
|
|
bash run_stepaudio2_dit_token2wav.sh 4 4
|
|
|
|
# You can customize parameters such as the number of tasks inside the script.
|
|
```
|
|
The following results were obtained by decoding on a single L20 GPU with the `yuekai/seed_tts_cosy2` dataset.
|
|
|
|
#### Total Request Latency
|
|
|
|
| Concurrent Tasks | RTF | Average (ms) | 50th Percentile (ms) | 90th Percentile (ms) | 95th Percentile (ms) | 99th Percentile (ms) |
|
|
| ---------------- | ------ | ------------ | -------------------- | -------------------- | -------------------- | -------------------- |
|
|
| 1 | 0.1228 | 833.66 | 779.98 | 1297.05 | 1555.97 | 1653.02 |
|
|
| 2 | 0.0901 | 1166.23 | 1124.69 | 1762.76 | 1900.64 | 2204.14 |
|
|
| 4 | 0.0741 | 1849.30 | 1759.42 | 2624.50 | 2822.20 | 3128.42 |
|
|
| 6 | 0.0774 | 2936.13 | 3054.64 | 3849.60 | 3900.49 | 4245.79 |
|
|
| 8 | 0.0691 | 3408.56 | 3434.98 | 4547.13 | 5047.76 | 5346.53 |
|
|
| 10 | 0.0707 | 4306.56 | 4343.44 | 5769.64 | 5876.09 | 5939.79 |
|
|
|
|
#### First Chunk Latency
|
|
|
|
| Concurrent Tasks | Average (ms) | 50th Percentile (ms) | 90th Percentile (ms) | 95th Percentile (ms) | 99th Percentile (ms) |
|
|
| ---------------- | ------------ | -------------------- | -------------------- | -------------------- | -------------------- |
|
|
| 1 | 197.50 | 196.13 | 214.65 | 215.96 | 229.21 |
|
|
| 2 | 281.15 | 278.20 | 345.18 | 361.79 | 395.97 |
|
|
| 4 | 510.65 | 530.50 | 630.13 | 642.44 | 666.65 |
|
|
| 6 | 921.54 | 918.86 | 1079.97 | 1265.22 | 1524.41 |
|
|
| 8 | 1019.95 | 1085.26 | 1371.05 | 1402.24 | 1410.66 |
|
|
| 10 | 1214.98 | 1293.54 | 1575.36 | 1654.51 | 2161.76 |
|
|
|
|
### Benchmark with offline inference mode
|
|
For offline inference mode benchmark, please run stage 5:
|
|
```sh
|
|
bash run_stepaudio2_dit_token2wav.sh 5 5
|
|
```
|
|
|
|
The following results were obtained by decoding on a single L20 GPU with the `yuekai/seed_tts_cosy2` dataset.
|
|
|
|
#### Offline TTS (Cosyvoice2 0.5B LLM + StepAudio2 DiT Token2Wav)
|
|
| Backend | Batch Size | llm_time_seconds | total_time_seconds | RTF |
|
|
|---------|------------|------------------|-----------------------|--|
|
|
| TRTLLM | 16 | 2.01 | 5.03 | 0.0292 |
|
|
|
|
|
|
### Disaggregated Server
|
|
When the LLM and token2wav components are deployed on the same GPU, they compete for resources. To optimize performance, we use a disaggregated setup where the LLM is deployed on one dedicated L20 GPU, taking advantage of in-flight batching for inference. The token2wav module is deployed on separate, dedicated GPUs.
|
|
|
|
The table below shows the first chunk latency results for this configuration. In our tests, we deploy two token2wav instances on each dedicated token2wav GPU.
|
|
|
|
| token2wav_num_gpu | concurrent_task_per_instance | concurrent_tasks_per_gpu | avg (ms) | p50 (ms) | p90 (ms) | p99 (ms) |
|
|
|---|---|---|---|---|---|---|
|
|
| 1 | 1 | 1.00 | 218.53 | 217.86 | 254.07 | 296.49 |
|
|
| 2 | 1 | 1.33 | 218.82 | 219.21 | 256.62 | 303.13 |
|
|
| 3 | 1 | 1.50 | 229.08 | 223.27 | 302.13 | 324.41 |
|
|
| 4 | 1 | 1.60 | 203.87 | 198.23 | 254.92 | 279.31 |
|
|
| 1 | 2 | 2.00 | 293.46 | 280.53 | 370.81 | 407.40 |
|
|
| 2 | 2 | 2.67 | 263.38 | 236.84 | 350.82 | 397.39 |
|
|
| 3 | 2 | 3.00 | 308.09 | 275.48 | 385.22 | 521.45 |
|
|
| 4 | 2 | 3.20 | 271.85 | 253.25 | 359.03 | 387.91 |
|
|
| 1 | 3 | 3.00 | 389.15 | 373.01 | 469.22 | 542.89 |
|
|
| 2 | 3 | 4.00 | 403.48 | 394.80 | 481.24 | 507.75 |
|
|
| 3 | 3 | 4.50 | 406.33 | 391.28 | 495.43 | 571.29 |
|
|
| 4 | 3 | 4.80 | 436.72 | 383.81 | 638.44 | 879.23 |
|
|
| 1 | 4 | 4.00 | 520.12 | 493.98 | 610.38 | 739.85 |
|
|
| 2 | 4 | 5.33 | 494.60 | 490.50 | 605.93 | 708.09 |
|
|
| 3 | 4 | 6.00 | 538.23 | 508.33 | 687.62 | 736.96 |
|
|
| 4 | 4 | 6.40 | 579.68 | 546.20 | 721.53 | 958.04 |
|
|
| 1 | 5 | 5.00 | 635.02 | 623.30 | 786.85 | 819.84 |
|
|
| 2 | 5 | 6.67 | 598.23 | 617.09 | 741.00 | 788.96 |
|
|
| 3 | 5 | 7.50 | 644.78 | 684.40 | 786.45 | 1009.45 |
|
|
| 4 | 5 | 8.00 | 733.92 | 642.26 | 1024.79 | 1281.55 |
|
|
| 1 | 6 | 6.00 | 715.38 | 745.68 | 887.04 | 906.68 |
|
|
| 2 | 6 | 8.00 | 748.31 | 753.94 | 873.59 | 1007.14 |
|
|
| 3 | 6 | 9.00 | 900.27 | 822.28 | 1431.14 | 1800.23 |
|
|
| 4 | 6 | 9.60 | 857.54 | 820.33 | 1150.30 | 1298.53 |
|
|
|
|
The `concurrent_task_per_gpu` is calculated as:
|
|
`concurrent_task_per_gpu = concurrent_task_per_instance * num_token2wav_instance_per_gpu (2) * token2wav_gpus / (token2wav_gpus + llm_gpus (1))`
|
|
|
|
### Acknowledgements
|
|
|
|
This work originates from the NVIDIA CISI project. For more multimodal resources, please see [mair-hub](https://github.com/nvidia-china-sae/mair-hub).
|