This commit is contained in:
lyuxiang.lx
2026-01-29 06:13:36 +00:00
parent 66b80dbccb
commit f26cde56df
7 changed files with 90 additions and 73 deletions

View File

@@ -256,6 +256,10 @@ class CosyVoice2Model(CosyVoiceModel):
self.fp16 = fp16
# NOTE must matching training static_chunk_size
self.token_hop_len = 25
# NOTE increase token_hop_len incrementally to avoid duplicate inference
self.token_max_hop_len = 4 * self.token_hop_len
self.stream_scale_factor = 2
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
# hift cache
self.mel_cache_len = 8
self.source_cache_len = int(self.mel_cache_len * 480)
@@ -353,6 +357,7 @@ class CosyVoice2Model(CosyVoiceModel):
stream=stream,
finalize=False)
token_offset += this_token_hop_len
self.token_hop_len = min(self.token_max_hop_len, self.token_hop_len * self.stream_scale_factor)
yield {'tts_speech': this_tts_speech.cpu()}
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < this_token_hop_len + self.flow.pre_lookahead_len:
break
@@ -403,6 +408,10 @@ class CosyVoice3Model(CosyVoice2Model):
self.fp16 = fp16
# NOTE must matching training static_chunk_size
self.token_hop_len = 25
# NOTE increase token_hop_len incrementally to avoid duplicate inference
self.token_max_hop_len = 4 * self.token_hop_len
self.stream_scale_factor = 2
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
# rtf and decoding related
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
self.lock = threading.Lock()

View File

@@ -17,6 +17,7 @@ import random
import pyarrow.parquet as pq
from io import BytesIO
import numpy as np
import whisper
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
@@ -179,6 +180,23 @@ def compute_fbank(data,
yield sample
def compute_whisper_fbank(data, num_frames=-1, mode='train'):
""" Extract whisper fbank
Args:
data: Iterable[{key, wav, label, sample_rate}]
Returns:
Iterable[{key, feat, label}]
"""
for sample in data:
if num_frames != -1:
assert sample['speech'].shape[1] % num_frames == 0, 'speech length is not aligned with speech_token'
sample['speech_16k'] = torchaudio.transforms.Resample(orig_freq=sample['sample_rate'], new_freq=16000)(sample['speech'])
sample['whisper_feat'] = whisper.log_mel_spectrogram(sample['speech_16k'], n_mels=128).squeeze(dim=0).transpose(0, 1)
yield sample
def compute_f0(data, sample_rate, hop_size, mode='train'):
""" Extract f0
@@ -215,11 +233,12 @@ def parse_embedding(data, normalize, mode='train'):
"""
for sample in data:
if 'utt_embedding' not in sample and 'spk_embedding' not in sample:
speech_16k = torchaudio.transforms.Resample(orig_freq=sample['sample_rate'], new_freq=16000)(sample['speech'])
embedding = embedding_extractor.inference(speech_16k)
sample['speech_16k'] = torchaudio.transforms.Resample(orig_freq=sample['sample_rate'], new_freq=16000)(sample['speech'])
embedding = embedding_extractor.inference(sample['speech_16k'])
sample['spk_embedding'] = sample['utt_embedding'] = embedding
sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
sample['spk_embedding'] = torch.tensor(sample['spk_embedding'], dtype=torch.float32)
else:
sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
sample['spk_embedding'] = torch.tensor(sample['spk_embedding'], dtype=torch.float32)
if normalize:
sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0)
sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0)
@@ -242,8 +261,6 @@ def tokenize(data, get_tokenizer, allowed_special, mode='train'):
sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
if 'instruct' in sample:
sample['instruct_token'] = tokenizer.encode(sample['instruct'], allowed_special=allowed_special)
else:
sample['instruct_token'] = tokenizer.encode('', allowed_special=allowed_special)
yield sample
@@ -371,66 +388,42 @@ def padding(data, use_spk_embedding, mode='train', gan=False, dpo=False):
"""
for sample in data:
assert isinstance(sample, list)
speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
dtype=torch.int32)
order = torch.argsort(speech_feat_len, descending=True)
utts = [sample[i]['utt'] for i in order]
speech = [sample[i]['speech'].squeeze(dim=0) for i in order]
speech_len = torch.tensor([i.size(0) for i in speech], dtype=torch.int32)
speech = pad_sequence(speech, batch_first=True, padding_value=0)
speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
speech_token = pad_sequence(speech_token,
batch_first=True,
padding_value=0)
speech_feat = [sample[i]['speech_feat'] for i in order]
speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
speech_feat = pad_sequence(speech_feat,
batch_first=True,
padding_value=0)
text = [sample[i]['text'] for i in order]
order = torch.argsort(torch.tensor([x['speech'].size(1) for x in sample], dtype=torch.int32), descending=True)
batch = {}
batch['utts'] = [sample[i]['utt'] for i in order]
batch['text'] = [sample[i]['text'] for i in order]
text_token = [torch.tensor(sample[i]['text_token']) for i in order]
text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
instruct_token = [torch.tensor(sample[i]['instruct_token']) for i in order]
instruct_token_len = torch.tensor([i.size(0) for i in instruct_token], dtype=torch.int32)
instruct_token = pad_sequence(instruct_token, batch_first=True, padding_value=0)
utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
batch = {
"utts": utts,
"speech": speech,
"speech_len": speech_len,
"speech_token": speech_token,
"speech_token_len": speech_token_len,
"speech_feat": speech_feat,
"speech_feat_len": speech_feat_len,
"text": text,
"text_token": text_token,
"text_token_len": text_token_len,
"instruct_token": instruct_token,
"instruct_token_len": instruct_token_len,
"utt_embedding": utt_embedding,
"spk_embedding": spk_embedding,
}
batch['text_token_len'] = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
batch['text_token'] = pad_sequence(text_token, batch_first=True, padding_value=0)
speech_feat = [sample[i]['speech_feat'] for i in order]
batch['speech_feat_len'] = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
batch['speech_feat'] = pad_sequence(speech_feat, batch_first=True, padding_value=0)
batch['utt_embedding'] = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
batch['spk_embedding'] = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
if torch.tensor(['instruct_token' in sample[i] for i in order]).all():
instruct_token = [torch.tensor(sample[i]['instruct_token']) for i in order]
batch['instruct_token_len'] = torch.tensor([i.size(0) for i in instruct_token], dtype=torch.int32)
batch['instruct_token'] = pad_sequence(instruct_token, batch_first=True, padding_value=0)
if torch.tensor(['whisper_feat' in sample[i] for i in order]).all():
whisper_feat = [torch.tensor(sample[i]['whisper_feat']) for i in order]
batch['whisper_feat_len'] = torch.tensor([i.size(0) for i in whisper_feat], dtype=torch.int32)
batch['whisper_feat'] = pad_sequence(whisper_feat, batch_first=True, padding_value=0)
if torch.tensor(['speech_token' in sample[i] for i in order]).all():
speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
batch['speech_token_len'] = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
batch['speech_token'] = pad_sequence(speech_token, batch_first=True, padding_value=0)
if gan is True:
# in gan train, we need pitch_feat
# in gan train, we need speech/pitch_feat
speech = [sample[i]['speech'].squeeze(dim=0) for i in order]
batch['speech_len'] = torch.tensor([i.size(0) for i in speech], dtype=torch.int32)
batch['speech'] = pad_sequence(speech, batch_first=True, padding_value=0)
pitch_feat = [sample[i]['pitch_feat'] for i in order]
pitch_feat_len = torch.tensor([i.size(0) for i in pitch_feat], dtype=torch.int32)
pitch_feat = pad_sequence(pitch_feat,
batch_first=True,
padding_value=0)
batch["pitch_feat"] = pitch_feat
batch["pitch_feat_len"] = pitch_feat_len
batch['pitch_feat_len'] = torch.tensor([i.size(0) for i in pitch_feat], dtype=torch.int32)
batch['pitch_feat'] = pad_sequence(pitch_feat, batch_first=True, padding_value=0)
if dpo is True:
reject_speech_token = [torch.tensor(sample[i]['reject_speech_token']) for i in order]
reject_speech_token_len = torch.tensor([i.size(0) for i in reject_speech_token], dtype=torch.int32)
reject_speech_token = pad_sequence(reject_speech_token,
batch_first=True,
padding_value=0)
batch['reject_speech_token'] = reject_speech_token
batch['reject_speech_token_len'] = reject_speech_token_len
batch['reject_speech_token_len'] = torch.tensor([i.size(0) for i in reject_speech_token], dtype=torch.int32)
batch['reject_speech_token'] = pad_sequence(reject_speech_token, batch_first=True, padding_value=0)
if use_spk_embedding is True:
batch["embedding"] = batch["spk_embedding"]
else:

View File

@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os, logging
import random
from typing import Dict, Optional
import torch
@@ -19,7 +19,7 @@ import torch.nn as nn
from torch.nn import functional as F
from omegaconf import DictConfig
from cosyvoice.utils.mask import make_pad_mask
from cosyvoice.utils.onnx import SpeechTokenExtractor
from cosyvoice.utils.onnx import SpeechTokenExtractor, online_feature, onnx_path
class MaskedDiffWithXvec(torch.nn.Module):
@@ -180,14 +180,19 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
self.only_mask_loss = only_mask_loss
self.token_mel_ratio = token_mel_ratio
self.pre_lookahead_len = pre_lookahead_len
if online_feature is True:
self.speech_token_extractor = SpeechTokenExtractor(model_path=os.path.join(onnx_path, 'speech_tokenizer_v2.batch.onnx'))
def forward(
self,
batch: dict,
device: torch.device,
) -> Dict[str, Optional[torch.Tensor]]:
token = batch['speech_token'].to(device)
token_len = batch['speech_token_len'].to(device)
if 'speech_token' not in batch:
token, token_len = self.speech_token_extractor.inference(batch['whisper_feat'], batch['whisper_feat_len'])
else:
token = batch['speech_token'].to(device)
token_len = batch['speech_token_len'].to(device)
feat = batch['speech_feat'].to(device)
feat_len = batch['speech_feat_len'].to(device)
embedding = batch['embedding'].to(device)
@@ -309,6 +314,8 @@ class CausalMaskedDiffWithDiT(torch.nn.Module):
self.decoder = decoder
self.only_mask_loss = only_mask_loss
self.token_mel_ratio = token_mel_ratio
if online_feature is True:
self.speech_token_extractor = SpeechTokenExtractor(model_path=os.path.join(onnx_path, 'speech_tokenizer_v3.batch.onnx'))
def forward(
self,

View File

@@ -12,7 +12,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import queue
import os, queue
import random
import time
import threading
@@ -28,7 +28,7 @@ from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
from cosyvoice.utils.common import th_accuracy
from cosyvoice.utils.file_utils import logging
from cosyvoice.utils.mask import make_pad_mask
from cosyvoice.utils.onnx import SpeechTokenExtractor
from cosyvoice.utils.onnx import SpeechTokenExtractor, online_feature, onnx_path
class TransformerLM(torch.nn.Module):
@@ -301,6 +301,8 @@ class Qwen2LM(TransformerLM):
# 5. vllm related
self.stop_token_ids = [speech_token_size + i for i in range(3)]
self.vllm_output_queue = {}
if online_feature is True:
self.speech_token_extractor = SpeechTokenExtractor(model_path=os.path.join(onnx_path, 'speech_tokenizer_v2.batch.onnx'))
def prepare_lm_input_target(self, sos_emb, text_token, text_token_emb, text_token_len, task_id_emb, speech_token, speech_token_emb, speech_token_len, instruct_token=None, instruct_token_emb=None, instruct_token_len=None):
lm_target, lm_input = [], []
@@ -667,6 +669,8 @@ class CosyVoice3LM(Qwen2LM):
# 5. vllm related
self.stop_token_ids = [speech_token_size + i for i in range(200)]
self.vllm_output_queue = {}
if online_feature is True:
self.speech_token_extractor = SpeechTokenExtractor(model_path=os.path.join(onnx_path, 'speech_tokenizer_v3.batch.onnx'))
def forward(
self,

View File

@@ -18,14 +18,13 @@ class SpeechTokenExtractor():
sess_options=option,
providers=[("CUDAExecutionProvider", {'device_id': self.local_rank})])
def inference(self, feat, feat_lengths, device):
ort_out = self.speech_tokenizer_session.run(None,
def inference(self, feat, feat_lengths):
speech_token = self.speech_tokenizer_session.run(None,
{self.speech_tokenizer_session.get_inputs()[0].name:
feat.detach().cpu().numpy(),
feat.transpose(1, 2).detach().cpu().numpy(),
self.speech_tokenizer_session.get_inputs()[1].name:
feat_lengths.detach().cpu().numpy()})
speech_token, speech_token_embedding = ort_out[0], ort_out[1]
return torch.tensor(speech_token).to(device), (feat_lengths / 2).to(torch.int32).to(device)
feat_lengths.detach().cpu().numpy()})[0]
return torch.tensor(speech_token).to(feat), (feat_lengths / 4).to(torch.int32).to(feat.device)
class EmbeddingExtractor():

View File

@@ -159,6 +159,8 @@ feat_extractor: !name:matcha.utils.audio.mel_spectrogram
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
feat_extractor: !ref <feat_extractor>
num_frames: 960
compute_whisper_fbank: !name:cosyvoice.dataset.processor.compute_whisper_fbank
num_frames: 960
compute_f0: !name:cosyvoice.dataset.processor.compute_f0
sample_rate: !ref <sample_rate>
hop_size: 480
@@ -183,6 +185,7 @@ data_pipeline: [
!ref <resample>,
!ref <compute_fbank>,
!ref <parse_embedding>,
!ref <compute_whisper_fbank>,
!ref <shuffle>,
!ref <sort>,
!ref <batch>,

View File

@@ -149,6 +149,7 @@ feat_extractor: !name:matcha.utils.audio.mel_spectrogram
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
feat_extractor: !ref <feat_extractor>
num_frames: 960
compute_whisper_fbank: !name:cosyvoice.dataset.processor.compute_whisper_fbank
compute_f0: !name:cosyvoice.dataset.processor.compute_f0
sample_rate: !ref <sample_rate>
hop_size: 480
@@ -173,6 +174,7 @@ data_pipeline: [
!ref <resample>,
!ref <compute_fbank>,
!ref <parse_embedding>,
!ref <compute_whisper_fbank>,
!ref <shuffle>,
!ref <sort>,
!ref <batch>,