mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 09:29:25 +08:00
update
This commit is contained in:
@@ -256,6 +256,10 @@ class CosyVoice2Model(CosyVoiceModel):
|
||||
self.fp16 = fp16
|
||||
# NOTE must matching training static_chunk_size
|
||||
self.token_hop_len = 25
|
||||
# NOTE increase token_hop_len incrementally to avoid duplicate inference
|
||||
self.token_max_hop_len = 4 * self.token_hop_len
|
||||
self.stream_scale_factor = 2
|
||||
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
|
||||
# hift cache
|
||||
self.mel_cache_len = 8
|
||||
self.source_cache_len = int(self.mel_cache_len * 480)
|
||||
@@ -353,6 +357,7 @@ class CosyVoice2Model(CosyVoiceModel):
|
||||
stream=stream,
|
||||
finalize=False)
|
||||
token_offset += this_token_hop_len
|
||||
self.token_hop_len = min(self.token_max_hop_len, self.token_hop_len * self.stream_scale_factor)
|
||||
yield {'tts_speech': this_tts_speech.cpu()}
|
||||
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < this_token_hop_len + self.flow.pre_lookahead_len:
|
||||
break
|
||||
@@ -403,6 +408,10 @@ class CosyVoice3Model(CosyVoice2Model):
|
||||
self.fp16 = fp16
|
||||
# NOTE must matching training static_chunk_size
|
||||
self.token_hop_len = 25
|
||||
# NOTE increase token_hop_len incrementally to avoid duplicate inference
|
||||
self.token_max_hop_len = 4 * self.token_hop_len
|
||||
self.stream_scale_factor = 2
|
||||
assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
|
||||
# rtf and decoding related
|
||||
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
||||
self.lock = threading.Lock()
|
||||
|
||||
@@ -17,6 +17,7 @@ import random
|
||||
import pyarrow.parquet as pq
|
||||
from io import BytesIO
|
||||
import numpy as np
|
||||
import whisper
|
||||
import torch
|
||||
import torchaudio
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
@@ -179,6 +180,23 @@ def compute_fbank(data,
|
||||
yield sample
|
||||
|
||||
|
||||
def compute_whisper_fbank(data, num_frames=-1, mode='train'):
|
||||
""" Extract whisper fbank
|
||||
|
||||
Args:
|
||||
data: Iterable[{key, wav, label, sample_rate}]
|
||||
|
||||
Returns:
|
||||
Iterable[{key, feat, label}]
|
||||
"""
|
||||
for sample in data:
|
||||
if num_frames != -1:
|
||||
assert sample['speech'].shape[1] % num_frames == 0, 'speech length is not aligned with speech_token'
|
||||
sample['speech_16k'] = torchaudio.transforms.Resample(orig_freq=sample['sample_rate'], new_freq=16000)(sample['speech'])
|
||||
sample['whisper_feat'] = whisper.log_mel_spectrogram(sample['speech_16k'], n_mels=128).squeeze(dim=0).transpose(0, 1)
|
||||
yield sample
|
||||
|
||||
|
||||
def compute_f0(data, sample_rate, hop_size, mode='train'):
|
||||
""" Extract f0
|
||||
|
||||
@@ -215,11 +233,12 @@ def parse_embedding(data, normalize, mode='train'):
|
||||
"""
|
||||
for sample in data:
|
||||
if 'utt_embedding' not in sample and 'spk_embedding' not in sample:
|
||||
speech_16k = torchaudio.transforms.Resample(orig_freq=sample['sample_rate'], new_freq=16000)(sample['speech'])
|
||||
embedding = embedding_extractor.inference(speech_16k)
|
||||
sample['speech_16k'] = torchaudio.transforms.Resample(orig_freq=sample['sample_rate'], new_freq=16000)(sample['speech'])
|
||||
embedding = embedding_extractor.inference(sample['speech_16k'])
|
||||
sample['spk_embedding'] = sample['utt_embedding'] = embedding
|
||||
sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
|
||||
sample['spk_embedding'] = torch.tensor(sample['spk_embedding'], dtype=torch.float32)
|
||||
else:
|
||||
sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
|
||||
sample['spk_embedding'] = torch.tensor(sample['spk_embedding'], dtype=torch.float32)
|
||||
if normalize:
|
||||
sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0)
|
||||
sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0)
|
||||
@@ -242,8 +261,6 @@ def tokenize(data, get_tokenizer, allowed_special, mode='train'):
|
||||
sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
|
||||
if 'instruct' in sample:
|
||||
sample['instruct_token'] = tokenizer.encode(sample['instruct'], allowed_special=allowed_special)
|
||||
else:
|
||||
sample['instruct_token'] = tokenizer.encode('', allowed_special=allowed_special)
|
||||
yield sample
|
||||
|
||||
|
||||
@@ -371,66 +388,42 @@ def padding(data, use_spk_embedding, mode='train', gan=False, dpo=False):
|
||||
"""
|
||||
for sample in data:
|
||||
assert isinstance(sample, list)
|
||||
speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
|
||||
dtype=torch.int32)
|
||||
order = torch.argsort(speech_feat_len, descending=True)
|
||||
|
||||
utts = [sample[i]['utt'] for i in order]
|
||||
speech = [sample[i]['speech'].squeeze(dim=0) for i in order]
|
||||
speech_len = torch.tensor([i.size(0) for i in speech], dtype=torch.int32)
|
||||
speech = pad_sequence(speech, batch_first=True, padding_value=0)
|
||||
speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
|
||||
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
|
||||
speech_token = pad_sequence(speech_token,
|
||||
batch_first=True,
|
||||
padding_value=0)
|
||||
speech_feat = [sample[i]['speech_feat'] for i in order]
|
||||
speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
|
||||
speech_feat = pad_sequence(speech_feat,
|
||||
batch_first=True,
|
||||
padding_value=0)
|
||||
text = [sample[i]['text'] for i in order]
|
||||
order = torch.argsort(torch.tensor([x['speech'].size(1) for x in sample], dtype=torch.int32), descending=True)
|
||||
batch = {}
|
||||
batch['utts'] = [sample[i]['utt'] for i in order]
|
||||
batch['text'] = [sample[i]['text'] for i in order]
|
||||
text_token = [torch.tensor(sample[i]['text_token']) for i in order]
|
||||
text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
|
||||
text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
|
||||
instruct_token = [torch.tensor(sample[i]['instruct_token']) for i in order]
|
||||
instruct_token_len = torch.tensor([i.size(0) for i in instruct_token], dtype=torch.int32)
|
||||
instruct_token = pad_sequence(instruct_token, batch_first=True, padding_value=0)
|
||||
utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
|
||||
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
|
||||
batch = {
|
||||
"utts": utts,
|
||||
"speech": speech,
|
||||
"speech_len": speech_len,
|
||||
"speech_token": speech_token,
|
||||
"speech_token_len": speech_token_len,
|
||||
"speech_feat": speech_feat,
|
||||
"speech_feat_len": speech_feat_len,
|
||||
"text": text,
|
||||
"text_token": text_token,
|
||||
"text_token_len": text_token_len,
|
||||
"instruct_token": instruct_token,
|
||||
"instruct_token_len": instruct_token_len,
|
||||
"utt_embedding": utt_embedding,
|
||||
"spk_embedding": spk_embedding,
|
||||
}
|
||||
batch['text_token_len'] = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
|
||||
batch['text_token'] = pad_sequence(text_token, batch_first=True, padding_value=0)
|
||||
speech_feat = [sample[i]['speech_feat'] for i in order]
|
||||
batch['speech_feat_len'] = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
|
||||
batch['speech_feat'] = pad_sequence(speech_feat, batch_first=True, padding_value=0)
|
||||
batch['utt_embedding'] = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
|
||||
batch['spk_embedding'] = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
|
||||
if torch.tensor(['instruct_token' in sample[i] for i in order]).all():
|
||||
instruct_token = [torch.tensor(sample[i]['instruct_token']) for i in order]
|
||||
batch['instruct_token_len'] = torch.tensor([i.size(0) for i in instruct_token], dtype=torch.int32)
|
||||
batch['instruct_token'] = pad_sequence(instruct_token, batch_first=True, padding_value=0)
|
||||
if torch.tensor(['whisper_feat' in sample[i] for i in order]).all():
|
||||
whisper_feat = [torch.tensor(sample[i]['whisper_feat']) for i in order]
|
||||
batch['whisper_feat_len'] = torch.tensor([i.size(0) for i in whisper_feat], dtype=torch.int32)
|
||||
batch['whisper_feat'] = pad_sequence(whisper_feat, batch_first=True, padding_value=0)
|
||||
if torch.tensor(['speech_token' in sample[i] for i in order]).all():
|
||||
speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
|
||||
batch['speech_token_len'] = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
|
||||
batch['speech_token'] = pad_sequence(speech_token, batch_first=True, padding_value=0)
|
||||
if gan is True:
|
||||
# in gan train, we need pitch_feat
|
||||
# in gan train, we need speech/pitch_feat
|
||||
speech = [sample[i]['speech'].squeeze(dim=0) for i in order]
|
||||
batch['speech_len'] = torch.tensor([i.size(0) for i in speech], dtype=torch.int32)
|
||||
batch['speech'] = pad_sequence(speech, batch_first=True, padding_value=0)
|
||||
pitch_feat = [sample[i]['pitch_feat'] for i in order]
|
||||
pitch_feat_len = torch.tensor([i.size(0) for i in pitch_feat], dtype=torch.int32)
|
||||
pitch_feat = pad_sequence(pitch_feat,
|
||||
batch_first=True,
|
||||
padding_value=0)
|
||||
batch["pitch_feat"] = pitch_feat
|
||||
batch["pitch_feat_len"] = pitch_feat_len
|
||||
batch['pitch_feat_len'] = torch.tensor([i.size(0) for i in pitch_feat], dtype=torch.int32)
|
||||
batch['pitch_feat'] = pad_sequence(pitch_feat, batch_first=True, padding_value=0)
|
||||
if dpo is True:
|
||||
reject_speech_token = [torch.tensor(sample[i]['reject_speech_token']) for i in order]
|
||||
reject_speech_token_len = torch.tensor([i.size(0) for i in reject_speech_token], dtype=torch.int32)
|
||||
reject_speech_token = pad_sequence(reject_speech_token,
|
||||
batch_first=True,
|
||||
padding_value=0)
|
||||
batch['reject_speech_token'] = reject_speech_token
|
||||
batch['reject_speech_token_len'] = reject_speech_token_len
|
||||
batch['reject_speech_token_len'] = torch.tensor([i.size(0) for i in reject_speech_token], dtype=torch.int32)
|
||||
batch['reject_speech_token'] = pad_sequence(reject_speech_token, batch_first=True, padding_value=0)
|
||||
if use_spk_embedding is True:
|
||||
batch["embedding"] = batch["spk_embedding"]
|
||||
else:
|
||||
|
||||
@@ -11,7 +11,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import logging
|
||||
import os, logging
|
||||
import random
|
||||
from typing import Dict, Optional
|
||||
import torch
|
||||
@@ -19,7 +19,7 @@ import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
from omegaconf import DictConfig
|
||||
from cosyvoice.utils.mask import make_pad_mask
|
||||
from cosyvoice.utils.onnx import SpeechTokenExtractor
|
||||
from cosyvoice.utils.onnx import SpeechTokenExtractor, online_feature, onnx_path
|
||||
|
||||
|
||||
class MaskedDiffWithXvec(torch.nn.Module):
|
||||
@@ -180,14 +180,19 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
||||
self.only_mask_loss = only_mask_loss
|
||||
self.token_mel_ratio = token_mel_ratio
|
||||
self.pre_lookahead_len = pre_lookahead_len
|
||||
if online_feature is True:
|
||||
self.speech_token_extractor = SpeechTokenExtractor(model_path=os.path.join(onnx_path, 'speech_tokenizer_v2.batch.onnx'))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
batch: dict,
|
||||
device: torch.device,
|
||||
) -> Dict[str, Optional[torch.Tensor]]:
|
||||
token = batch['speech_token'].to(device)
|
||||
token_len = batch['speech_token_len'].to(device)
|
||||
if 'speech_token' not in batch:
|
||||
token, token_len = self.speech_token_extractor.inference(batch['whisper_feat'], batch['whisper_feat_len'])
|
||||
else:
|
||||
token = batch['speech_token'].to(device)
|
||||
token_len = batch['speech_token_len'].to(device)
|
||||
feat = batch['speech_feat'].to(device)
|
||||
feat_len = batch['speech_feat_len'].to(device)
|
||||
embedding = batch['embedding'].to(device)
|
||||
@@ -309,6 +314,8 @@ class CausalMaskedDiffWithDiT(torch.nn.Module):
|
||||
self.decoder = decoder
|
||||
self.only_mask_loss = only_mask_loss
|
||||
self.token_mel_ratio = token_mel_ratio
|
||||
if online_feature is True:
|
||||
self.speech_token_extractor = SpeechTokenExtractor(model_path=os.path.join(onnx_path, 'speech_tokenizer_v3.batch.onnx'))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import queue
|
||||
import os, queue
|
||||
import random
|
||||
import time
|
||||
import threading
|
||||
@@ -28,7 +28,7 @@ from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
|
||||
from cosyvoice.utils.common import th_accuracy
|
||||
from cosyvoice.utils.file_utils import logging
|
||||
from cosyvoice.utils.mask import make_pad_mask
|
||||
from cosyvoice.utils.onnx import SpeechTokenExtractor
|
||||
from cosyvoice.utils.onnx import SpeechTokenExtractor, online_feature, onnx_path
|
||||
|
||||
|
||||
class TransformerLM(torch.nn.Module):
|
||||
@@ -301,6 +301,8 @@ class Qwen2LM(TransformerLM):
|
||||
# 5. vllm related
|
||||
self.stop_token_ids = [speech_token_size + i for i in range(3)]
|
||||
self.vllm_output_queue = {}
|
||||
if online_feature is True:
|
||||
self.speech_token_extractor = SpeechTokenExtractor(model_path=os.path.join(onnx_path, 'speech_tokenizer_v2.batch.onnx'))
|
||||
|
||||
def prepare_lm_input_target(self, sos_emb, text_token, text_token_emb, text_token_len, task_id_emb, speech_token, speech_token_emb, speech_token_len, instruct_token=None, instruct_token_emb=None, instruct_token_len=None):
|
||||
lm_target, lm_input = [], []
|
||||
@@ -667,6 +669,8 @@ class CosyVoice3LM(Qwen2LM):
|
||||
# 5. vllm related
|
||||
self.stop_token_ids = [speech_token_size + i for i in range(200)]
|
||||
self.vllm_output_queue = {}
|
||||
if online_feature is True:
|
||||
self.speech_token_extractor = SpeechTokenExtractor(model_path=os.path.join(onnx_path, 'speech_tokenizer_v3.batch.onnx'))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
|
||||
@@ -18,14 +18,13 @@ class SpeechTokenExtractor():
|
||||
sess_options=option,
|
||||
providers=[("CUDAExecutionProvider", {'device_id': self.local_rank})])
|
||||
|
||||
def inference(self, feat, feat_lengths, device):
|
||||
ort_out = self.speech_tokenizer_session.run(None,
|
||||
def inference(self, feat, feat_lengths):
|
||||
speech_token = self.speech_tokenizer_session.run(None,
|
||||
{self.speech_tokenizer_session.get_inputs()[0].name:
|
||||
feat.detach().cpu().numpy(),
|
||||
feat.transpose(1, 2).detach().cpu().numpy(),
|
||||
self.speech_tokenizer_session.get_inputs()[1].name:
|
||||
feat_lengths.detach().cpu().numpy()})
|
||||
speech_token, speech_token_embedding = ort_out[0], ort_out[1]
|
||||
return torch.tensor(speech_token).to(device), (feat_lengths / 2).to(torch.int32).to(device)
|
||||
feat_lengths.detach().cpu().numpy()})[0]
|
||||
return torch.tensor(speech_token).to(feat), (feat_lengths / 4).to(torch.int32).to(feat.device)
|
||||
|
||||
|
||||
class EmbeddingExtractor():
|
||||
|
||||
@@ -159,6 +159,8 @@ feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
||||
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
||||
feat_extractor: !ref <feat_extractor>
|
||||
num_frames: 960
|
||||
compute_whisper_fbank: !name:cosyvoice.dataset.processor.compute_whisper_fbank
|
||||
num_frames: 960
|
||||
compute_f0: !name:cosyvoice.dataset.processor.compute_f0
|
||||
sample_rate: !ref <sample_rate>
|
||||
hop_size: 480
|
||||
@@ -183,6 +185,7 @@ data_pipeline: [
|
||||
!ref <resample>,
|
||||
!ref <compute_fbank>,
|
||||
!ref <parse_embedding>,
|
||||
!ref <compute_whisper_fbank>,
|
||||
!ref <shuffle>,
|
||||
!ref <sort>,
|
||||
!ref <batch>,
|
||||
|
||||
@@ -149,6 +149,7 @@ feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
||||
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
||||
feat_extractor: !ref <feat_extractor>
|
||||
num_frames: 960
|
||||
compute_whisper_fbank: !name:cosyvoice.dataset.processor.compute_whisper_fbank
|
||||
compute_f0: !name:cosyvoice.dataset.processor.compute_f0
|
||||
sample_rate: !ref <sample_rate>
|
||||
hop_size: 480
|
||||
@@ -173,6 +174,7 @@ data_pipeline: [
|
||||
!ref <resample>,
|
||||
!ref <compute_fbank>,
|
||||
!ref <parse_embedding>,
|
||||
!ref <compute_whisper_fbank>,
|
||||
!ref <shuffle>,
|
||||
!ref <sort>,
|
||||
!ref <batch>,
|
||||
|
||||
Reference in New Issue
Block a user