add instruct

This commit is contained in:
lyuxiang.lx
2025-12-11 09:43:25 +00:00
parent 3298d6f3e3
commit ebef63066f
5 changed files with 36 additions and 3 deletions

View File

@@ -242,6 +242,10 @@ def tokenize(data, get_tokenizer, allowed_special, mode='train'):
for sample in data:
assert 'text' in sample
sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
if 'instruct' in sample:
sample['instruct_token'] = tokenizer.encode(sample['instruct'], allowed_special=allowed_special)
else:
sample['instruct_token'] = tokenizer.encode('', allowed_special=allowed_special)
yield sample
@@ -390,6 +394,9 @@ def padding(data, use_spk_embedding, mode='train', gan=False, dpo=False):
text_token = [torch.tensor(sample[i]['text_token']) for i in order]
text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
instruct_token = [torch.tensor(sample[i]['instruct_token']) for i in order]
instruct_token_len = torch.tensor([i.size(0) for i in instruct_token], dtype=torch.int32)
instruct_token = pad_sequence(instruct_token, batch_first=True, padding_value=0)
utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
batch = {
@@ -403,6 +410,8 @@ def padding(data, use_spk_embedding, mode='train', gan=False, dpo=False):
"text": text,
"text_token": text_token,
"text_token_len": text_token_len,
"instruct_token": instruct_token,
"instruct_token_len": instruct_token_len,
"utt_embedding": utt_embedding,
"spk_embedding": spk_embedding,
}

View File

@@ -674,6 +674,9 @@ class CosyVoice3LM(Qwen2LM):
text_token_len = batch['text_token_len'].to(device)
speech_token = batch['speech_token'].to(device)
speech_token_len = batch['speech_token_len'].to(device)
# NOTE should append instruct_token to sequence, not implemented yet
instruct_token = batch['instruct_token'].to(device)
instruct_token_len = batch['instruct_token_len'].to(device)
# 1. encode text_token
text_token_emb = self.llm.model.model.embed_tokens(text_token)

View File

@@ -40,6 +40,11 @@ def main():
with open('{}/spk2utt'.format(args.des_dir), 'w') as f:
for k, v in spk2utt.items():
f.write('{} {}\n'.format(k, ' '.join(v)))
if args.instruct is True:
with open('{}/instruct'.format(args.des_dir), 'w') as f:
for k, v in utt2text.items():
# NOTE in CosyVoice3, we add instruct in sequence
f.write('{} You are a helpful assistant.<|endofprompt|>\n'.format(k, v))
return
@@ -49,7 +54,9 @@ if __name__ == "__main__":
type=str)
parser.add_argument('--des_dir',
type=str)
parser.add_argument('--ref_model',
type=str)
parser.add_argument('--instruct',
action='store_true',
default=False,
help='create instruct file or not')
args = parser.parse_args()
main()

View File

@@ -20,7 +20,7 @@ if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
echo "Data preparation, prepare wav.scp/text/utt2spk/spk2utt"
for x in train-clean-100 train-clean-360 train-other-500 dev-clean dev-other test-clean test-other; do
mkdir -p data/$x
python local/prepare_data.py --src_dir $data_dir/LibriTTS/$x --des_dir data/$x
python local/prepare_data.py --src_dir $data_dir/LibriTTS/$x --des_dir data/$x --instruct
done
fi
@@ -46,6 +46,7 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
mkdir -p data/$x/parquet
tools/make_parquet_list.py --num_utts_per_parquet 1000 \
--num_processes 10 \
--instruct \
--src_dir data/$x \
--des_dir data/$x/parquet
done

View File

@@ -37,6 +37,8 @@ def job(utt_list, parquet_file, utt2parquet_file, spk2parquet_file):
speech_token_list = [utt2speech_token.get(utt, []) for utt in utt_list]
if args.dpo:
reject_speech_token_list = [utt2reject_speech_token[utt] for utt in utt_list]
if args.instruct:
instruct_list = [utt2instruct[utt] for utt in utt_list]
# 保存到parquet,utt2parquet_file,spk2parquet_file
df = pd.DataFrame()
@@ -50,6 +52,8 @@ def job(utt_list, parquet_file, utt2parquet_file, spk2parquet_file):
df['speech_token'] = speech_token_list
if args.dpo:
df['reject_speech_token'] = reject_speech_token_list
if args.instruct:
df['instruct'] = instruct_list
df.to_parquet(parquet_file)
with open(utt2parquet_file, 'w') as f:
json.dump({k: parquet_file for k in utt_list}, f, ensure_ascii=False, indent=2)
@@ -68,6 +72,10 @@ if __name__ == "__main__":
type=int,
default=1,
help='num processes for make parquets')
parser.add_argument('--instruct',
action='store_true',
default=False,
help='has instruct file or not')
parser.add_argument('--src_dir',
type=str)
parser.add_argument('--des_dir',
@@ -91,6 +99,11 @@ if __name__ == "__main__":
for l in f:
l = l.replace('\n', '').split()
utt2spk[l[0]] = l[1]
if args.instruct is True:
with open('{}/instruct'.format(args.src_dir)) as f:
for l in f:
l = l.replace('\n', '').split()
utt2instruct[l[0]] = ' '.join(l[1:])
utt2embedding = torch.load('{}/utt2embedding.pt'.format(args.src_dir))
spk2embedding = torch.load('{}/spk2embedding.pt'.format(args.src_dir))
utt2speech_token = torch.load('{}/utt2speech_token.pt'.format(args.src_dir))