mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 17:39:25 +08:00
update tempo change
This commit is contained in:
@@ -53,43 +53,43 @@ class CosyVoice:
|
|||||||
spks = list(self.frontend.spk2info.keys())
|
spks = list(self.frontend.spk2info.keys())
|
||||||
return spks
|
return spks
|
||||||
|
|
||||||
def inference_sft(self, tts_text, spk_id, stream=False):
|
def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0):
|
||||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
||||||
model_input = self.frontend.frontend_sft(i, spk_id)
|
model_input = self.frontend.frontend_sft(i, spk_id)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
logging.info('synthesis text {}'.format(i))
|
logging.info('synthesis text {}'.format(i))
|
||||||
for model_output in self.model.inference(**model_input, stream=stream):
|
for model_output in self.model.inference(**model_input, stream=stream, speed=speed):
|
||||||
speech_len = model_output['tts_speech'].shape[1] / 22050
|
speech_len = model_output['tts_speech'].shape[1] / 22050
|
||||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
yield model_output
|
yield model_output
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
|
|
||||||
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False):
|
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0):
|
||||||
prompt_text = self.frontend.text_normalize(prompt_text, split=False)
|
prompt_text = self.frontend.text_normalize(prompt_text, split=False)
|
||||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
||||||
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
|
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
logging.info('synthesis text {}'.format(i))
|
logging.info('synthesis text {}'.format(i))
|
||||||
for model_output in self.model.inference(**model_input, stream=stream):
|
for model_output in self.model.inference(**model_input, stream=stream, speed=speed):
|
||||||
speech_len = model_output['tts_speech'].shape[1] / 22050
|
speech_len = model_output['tts_speech'].shape[1] / 22050
|
||||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
yield model_output
|
yield model_output
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
|
|
||||||
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False):
|
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0):
|
||||||
if self.frontend.instruct is True:
|
if self.frontend.instruct is True:
|
||||||
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
|
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
|
||||||
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
for i in tqdm(self.frontend.text_normalize(tts_text, split=True)):
|
||||||
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
|
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
logging.info('synthesis text {}'.format(i))
|
logging.info('synthesis text {}'.format(i))
|
||||||
for model_output in self.model.inference(**model_input, stream=stream):
|
for model_output in self.model.inference(**model_input, stream=stream, speed=speed):
|
||||||
speech_len = model_output['tts_speech'].shape[1] / 22050
|
speech_len = model_output['tts_speech'].shape[1] / 22050
|
||||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
yield model_output
|
yield model_output
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
|
|
||||||
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False):
|
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0):
|
||||||
if self.frontend.instruct is False:
|
if self.frontend.instruct is False:
|
||||||
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
||||||
instruct_text = self.frontend.text_normalize(instruct_text, split=False)
|
instruct_text = self.frontend.text_normalize(instruct_text, split=False)
|
||||||
@@ -97,7 +97,7 @@ class CosyVoice:
|
|||||||
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
logging.info('synthesis text {}'.format(i))
|
logging.info('synthesis text {}'.format(i))
|
||||||
for model_output in self.model.inference(**model_input, stream=stream):
|
for model_output in self.model.inference(**model_input, stream=stream, speed=speed):
|
||||||
speech_len = model_output['tts_speech'].shape[1] / 22050
|
speech_len = model_output['tts_speech'].shape[1] / 22050
|
||||||
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
||||||
yield model_output
|
yield model_output
|
||||||
|
|||||||
@@ -15,6 +15,7 @@ import torch
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import threading
|
import threading
|
||||||
import time
|
import time
|
||||||
|
from torch.nn import functional as F
|
||||||
from contextlib import nullcontext
|
from contextlib import nullcontext
|
||||||
import uuid
|
import uuid
|
||||||
from cosyvoice.utils.common import fade_in_out
|
from cosyvoice.utils.common import fade_in_out
|
||||||
@@ -91,7 +92,7 @@ class CosyVoiceModel:
|
|||||||
self.tts_speech_token_dict[uuid].append(i)
|
self.tts_speech_token_dict[uuid].append(i)
|
||||||
self.llm_end_dict[uuid] = True
|
self.llm_end_dict[uuid] = True
|
||||||
|
|
||||||
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False):
|
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
|
||||||
tts_mel = self.flow.inference(token=token.to(self.device),
|
tts_mel = self.flow.inference(token=token.to(self.device),
|
||||||
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
prompt_token=prompt_token.to(self.device),
|
prompt_token=prompt_token.to(self.device),
|
||||||
@@ -116,6 +117,9 @@ class CosyVoiceModel:
|
|||||||
self.hift_cache_dict[uuid] = {'source': tts_source[:, :, -self.source_cache_len:], 'mel': tts_mel[:, :, -self.mel_cache_len:]}
|
self.hift_cache_dict[uuid] = {'source': tts_source[:, :, -self.source_cache_len:], 'mel': tts_mel[:, :, -self.mel_cache_len:]}
|
||||||
tts_speech = tts_speech[:, :-self.source_cache_len]
|
tts_speech = tts_speech[:, :-self.source_cache_len]
|
||||||
else:
|
else:
|
||||||
|
if speed != 1.0:
|
||||||
|
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
||||||
|
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
||||||
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
|
tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
|
||||||
return tts_speech
|
return tts_speech
|
||||||
|
|
||||||
@@ -123,7 +127,7 @@ class CosyVoiceModel:
|
|||||||
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
prompt_text=torch.zeros(1, 0, dtype=torch.int32),
|
||||||
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
||||||
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
|
||||||
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, **kwargs):
|
prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
|
||||||
# this_uuid is used to track variables related to this inference thread
|
# this_uuid is used to track variables related to this inference thread
|
||||||
this_uuid = str(uuid.uuid1())
|
this_uuid = str(uuid.uuid1())
|
||||||
with self.lock:
|
with self.lock:
|
||||||
@@ -169,7 +173,8 @@ class CosyVoiceModel:
|
|||||||
prompt_feat=prompt_speech_feat,
|
prompt_feat=prompt_speech_feat,
|
||||||
embedding=flow_embedding,
|
embedding=flow_embedding,
|
||||||
uuid=this_uuid,
|
uuid=this_uuid,
|
||||||
finalize=True)
|
finalize=True,
|
||||||
|
speed=speed)
|
||||||
yield {'tts_speech': this_tts_speech.cpu()}
|
yield {'tts_speech': this_tts_speech.cpu()}
|
||||||
with self.lock:
|
with self.lock:
|
||||||
self.tts_speech_token_dict.pop(this_uuid)
|
self.tts_speech_token_dict.pop(this_uuid)
|
||||||
|
|||||||
@@ -45,16 +45,3 @@ def load_wav(wav, target_sr):
|
|||||||
assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr)
|
assert sample_rate > target_sr, 'wav sample rate {} must be greater than {}'.format(sample_rate, target_sr)
|
||||||
speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech)
|
speech = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sr)(speech)
|
||||||
return speech
|
return speech
|
||||||
|
|
||||||
|
|
||||||
def speed_change(waveform, sample_rate, speed_factor: str):
|
|
||||||
effects = [
|
|
||||||
["tempo", speed_factor], # speed_factor
|
|
||||||
["rate", f"{sample_rate}"]
|
|
||||||
]
|
|
||||||
augmented_waveform, new_sample_rate = torchaudio.sox_effects.apply_effects_tensor(
|
|
||||||
waveform,
|
|
||||||
sample_rate,
|
|
||||||
effects
|
|
||||||
)
|
|
||||||
return augmented_waveform, new_sample_rate
|
|
||||||
|
|||||||
14
webui.py
14
webui.py
@@ -66,7 +66,7 @@ def change_instruction(mode_checkbox_group):
|
|||||||
|
|
||||||
|
|
||||||
def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text,
|
def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text,
|
||||||
seed, stream, speed_factor):
|
seed, stream, speed):
|
||||||
if prompt_wav_upload is not None:
|
if prompt_wav_upload is not None:
|
||||||
prompt_wav = prompt_wav_upload
|
prompt_wav = prompt_wav_upload
|
||||||
elif prompt_wav_record is not None:
|
elif prompt_wav_record is not None:
|
||||||
@@ -117,24 +117,24 @@ def generate_audio(tts_text, mode_checkbox_group, sft_dropdown, prompt_text, pro
|
|||||||
if mode_checkbox_group == '预训练音色':
|
if mode_checkbox_group == '预训练音色':
|
||||||
logging.info('get sft inference request')
|
logging.info('get sft inference request')
|
||||||
set_all_random_seed(seed)
|
set_all_random_seed(seed)
|
||||||
for i in cosyvoice.inference_sft(tts_text, sft_dropdown, stream=stream):
|
for i in cosyvoice.inference_sft(tts_text, sft_dropdown, stream=stream, speed=speed):
|
||||||
yield (target_sr, i['tts_speech'].numpy().flatten())
|
yield (target_sr, i['tts_speech'].numpy().flatten())
|
||||||
elif mode_checkbox_group == '3s极速复刻':
|
elif mode_checkbox_group == '3s极速复刻':
|
||||||
logging.info('get zero_shot inference request')
|
logging.info('get zero_shot inference request')
|
||||||
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
|
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
|
||||||
set_all_random_seed(seed)
|
set_all_random_seed(seed)
|
||||||
for i in cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k, stream=stream):
|
for i in cosyvoice.inference_zero_shot(tts_text, prompt_text, prompt_speech_16k, stream=stream, speed=speed):
|
||||||
yield (target_sr, i['tts_speech'].numpy().flatten())
|
yield (target_sr, i['tts_speech'].numpy().flatten())
|
||||||
elif mode_checkbox_group == '跨语种复刻':
|
elif mode_checkbox_group == '跨语种复刻':
|
||||||
logging.info('get cross_lingual inference request')
|
logging.info('get cross_lingual inference request')
|
||||||
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
|
prompt_speech_16k = postprocess(load_wav(prompt_wav, prompt_sr))
|
||||||
set_all_random_seed(seed)
|
set_all_random_seed(seed)
|
||||||
for i in cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k, stream=stream):
|
for i in cosyvoice.inference_cross_lingual(tts_text, prompt_speech_16k, stream=stream, speed=speed):
|
||||||
yield (target_sr, i['tts_speech'].numpy().flatten())
|
yield (target_sr, i['tts_speech'].numpy().flatten())
|
||||||
else:
|
else:
|
||||||
logging.info('get instruct inference request')
|
logging.info('get instruct inference request')
|
||||||
set_all_random_seed(seed)
|
set_all_random_seed(seed)
|
||||||
for i in cosyvoice.inference_instruct(tts_text, sft_dropdown, instruct_text, stream=stream):
|
for i in cosyvoice.inference_instruct(tts_text, sft_dropdown, instruct_text, stream=stream, speed=speed):
|
||||||
yield (target_sr, i['tts_speech'].numpy().flatten())
|
yield (target_sr, i['tts_speech'].numpy().flatten())
|
||||||
|
|
||||||
|
|
||||||
@@ -147,12 +147,12 @@ def main():
|
|||||||
gr.Markdown("#### 请输入需要合成的文本,选择推理模式,并按照提示步骤进行操作")
|
gr.Markdown("#### 请输入需要合成的文本,选择推理模式,并按照提示步骤进行操作")
|
||||||
|
|
||||||
tts_text = gr.Textbox(label="输入合成文本", lines=1, value="我是通义实验室语音团队全新推出的生成式语音大模型,提供舒适自然的语音合成能力。")
|
tts_text = gr.Textbox(label="输入合成文本", lines=1, value="我是通义实验室语音团队全新推出的生成式语音大模型,提供舒适自然的语音合成能力。")
|
||||||
speed_factor = gr.Slider(minimum=0.25, maximum=4, step=0.05, label="语速调节", value=1.0, interactive=True)
|
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
mode_checkbox_group = gr.Radio(choices=inference_mode_list, label='选择推理模式', value=inference_mode_list[0])
|
mode_checkbox_group = gr.Radio(choices=inference_mode_list, label='选择推理模式', value=inference_mode_list[0])
|
||||||
instruction_text = gr.Text(label="操作步骤", value=instruct_dict[inference_mode_list[0]], scale=0.5)
|
instruction_text = gr.Text(label="操作步骤", value=instruct_dict[inference_mode_list[0]], scale=0.5)
|
||||||
sft_dropdown = gr.Dropdown(choices=sft_spk, label='选择预训练音色', value=sft_spk[0], scale=0.25)
|
sft_dropdown = gr.Dropdown(choices=sft_spk, label='选择预训练音色', value=sft_spk[0], scale=0.25)
|
||||||
stream = gr.Radio(choices=stream_mode_list, label='是否流式推理', value=stream_mode_list[0][1])
|
stream = gr.Radio(choices=stream_mode_list, label='是否流式推理', value=stream_mode_list[0][1])
|
||||||
|
speed = gr.Number(value=1, label="速度调节(仅支持非流式推理)", minimum=0.5, maximum=2.0, step=0.1)
|
||||||
with gr.Column(scale=0.25):
|
with gr.Column(scale=0.25):
|
||||||
seed_button = gr.Button(value="\U0001F3B2")
|
seed_button = gr.Button(value="\U0001F3B2")
|
||||||
seed = gr.Number(value=0, label="随机推理种子")
|
seed = gr.Number(value=0, label="随机推理种子")
|
||||||
@@ -170,7 +170,7 @@ def main():
|
|||||||
seed_button.click(generate_seed, inputs=[], outputs=seed)
|
seed_button.click(generate_seed, inputs=[], outputs=seed)
|
||||||
generate_button.click(generate_audio,
|
generate_button.click(generate_audio,
|
||||||
inputs=[tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text,
|
inputs=[tts_text, mode_checkbox_group, sft_dropdown, prompt_text, prompt_wav_upload, prompt_wav_record, instruct_text,
|
||||||
seed, stream, speed_factor],
|
seed, stream, speed],
|
||||||
outputs=[audio_output])
|
outputs=[audio_output])
|
||||||
mode_checkbox_group.change(fn=change_instruction, inputs=[mode_checkbox_group], outputs=[instruction_text])
|
mode_checkbox_group.change(fn=change_instruction, inputs=[mode_checkbox_group], outputs=[instruction_text])
|
||||||
demo.queue(max_size=4, default_concurrency_limit=2)
|
demo.queue(max_size=4, default_concurrency_limit=2)
|
||||||
|
|||||||
Reference in New Issue
Block a user