mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 09:59:23 +08:00
@@ -1,8 +1,126 @@
|
|||||||
# TODO 跟export_jit一样的逻辑,完成flow部分的estimator的onnx导出。
|
# Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, hexisyztem@icloud.com)
|
||||||
# tensorrt的安装方式,再这里写一下步骤提示如下,如果没有安装,那么不要执行这个脚本,提示用户先安装,不给选择
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
|
||||||
|
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
import tensorrt
|
import tensorrt
|
||||||
except ImportError:
|
except ImportError:
|
||||||
print('step1, 下载\n step2. 解压,安装whl,')
|
error_msg_zh = [
|
||||||
# 安装命令里tensosrt的根目录用环境变量导入,比如os.environ['tensorrt_root_dir']/bin/exetrace,然后python里subprocess里执行导出命令
|
"step.1 下载 tensorrt .tar.gz 压缩包并解压,下载地址: https://developer.nvidia.com/tensorrt/download/10x",
|
||||||
# 后面我会在run.sh里写好执行命令 tensorrt_root_dir=xxxx python cosyvoice/bin/export_trt.py --model_dir xxx
|
"step.2 使用 tensorrt whl 包进行安装根据 python 版本对应进行安装,如 pip install ${TensorRT-Path}/python/tensorrt-10.2.0-cp38-none-linux_x86_64.whl",
|
||||||
|
"step.3 将 tensorrt 的 lib 路径添加进环境变量中,export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${TensorRT-Path}/lib/"
|
||||||
|
]
|
||||||
|
print("\n".join(error_msg_zh))
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from cosyvoice.cli.cosyvoice import CosyVoice
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser(description='Export your model for deployment')
|
||||||
|
parser.add_argument('--model_dir',
|
||||||
|
type=str,
|
||||||
|
default='pretrained_models/CosyVoice-300M-SFT',
|
||||||
|
help='Local path to the model directory')
|
||||||
|
|
||||||
|
parser.add_argument('--export_half',
|
||||||
|
action='store_true',
|
||||||
|
help='Export with half precision (FP16)')
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
print(args)
|
||||||
|
return args
|
||||||
|
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
|
||||||
|
cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_trt=False)
|
||||||
|
estimator = cosyvoice.model.flow.decoder.estimator
|
||||||
|
|
||||||
|
dtype = torch.float32 if not args.export_half else torch.float16
|
||||||
|
device = torch.device("cuda")
|
||||||
|
batch_size = 1
|
||||||
|
seq_len = 256
|
||||||
|
hidden_size = cosyvoice.model.flow.output_size
|
||||||
|
x = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
||||||
|
mask = torch.ones((batch_size, 1, seq_len), dtype=dtype, device=device)
|
||||||
|
mu = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
||||||
|
t = torch.rand((batch_size, ), dtype=dtype, device=device)
|
||||||
|
spks = torch.rand((batch_size, hidden_size), dtype=dtype, device=device)
|
||||||
|
cond = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
||||||
|
|
||||||
|
onnx_file_name = 'estimator_fp32.onnx' if not args.export_half else 'estimator_fp16.onnx'
|
||||||
|
onnx_file_path = os.path.join(args.model_dir, onnx_file_name)
|
||||||
|
dummy_input = (x, mask, mu, t, spks, cond)
|
||||||
|
|
||||||
|
estimator = estimator.to(dtype)
|
||||||
|
|
||||||
|
torch.onnx.export(
|
||||||
|
estimator,
|
||||||
|
dummy_input,
|
||||||
|
onnx_file_path,
|
||||||
|
export_params=True,
|
||||||
|
opset_version=18,
|
||||||
|
do_constant_folding=True,
|
||||||
|
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
||||||
|
output_names=['estimator_out'],
|
||||||
|
dynamic_axes={
|
||||||
|
'x': {2: 'seq_len'},
|
||||||
|
'mask': {2: 'seq_len'},
|
||||||
|
'mu': {2: 'seq_len'},
|
||||||
|
'cond': {2: 'seq_len'},
|
||||||
|
'estimator_out': {2: 'seq_len'},
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
tensorrt_path = os.environ.get('tensorrt_root_dir')
|
||||||
|
if not tensorrt_path:
|
||||||
|
raise EnvironmentError("Please set the 'tensorrt_root_dir' environment variable.")
|
||||||
|
|
||||||
|
if not os.path.isdir(tensorrt_path):
|
||||||
|
raise FileNotFoundError(f"The directory {tensorrt_path} does not exist.")
|
||||||
|
|
||||||
|
trt_lib_path = os.path.join(tensorrt_path, "lib")
|
||||||
|
if trt_lib_path not in os.environ.get('LD_LIBRARY_PATH', ''):
|
||||||
|
print(f"Adding TensorRT lib path {trt_lib_path} to LD_LIBRARY_PATH.")
|
||||||
|
os.environ['LD_LIBRARY_PATH'] = f"{os.environ.get('LD_LIBRARY_PATH', '')}:{trt_lib_path}"
|
||||||
|
|
||||||
|
trt_file_name = 'estimator_fp32.plan' if not args.export_half else 'estimator_fp16.plan'
|
||||||
|
trt_file_path = os.path.join(args.model_dir, trt_file_name)
|
||||||
|
|
||||||
|
trtexec_bin = os.path.join(tensorrt_path, 'bin/trtexec')
|
||||||
|
trtexec_cmd = f"{trtexec_bin} --onnx={onnx_file_path} --saveEngine={trt_file_path} " \
|
||||||
|
"--minShapes=x:1x80x1,mask:1x1x1,mu:1x80x1,t:1,spks:1x80,cond:1x80x1 " \
|
||||||
|
"--maxShapes=x:1x80x4096,mask:1x1x4096,mu:1x80x4096,t:1,spks:1x80,cond:1x80x4096 --verbose " + \
|
||||||
|
("--fp16" if args.export_half else "")
|
||||||
|
|
||||||
|
print("execute ", trtexec_cmd)
|
||||||
|
|
||||||
|
os.system(trtexec_cmd)
|
||||||
|
|
||||||
|
# print("x.shape", x.shape)
|
||||||
|
# print("mask.shape", mask.shape)
|
||||||
|
# print("mu.shape", mu.shape)
|
||||||
|
# print("t.shape", t.shape)
|
||||||
|
# print("spks.shape", spks.shape)
|
||||||
|
# print("cond.shape", cond.shape)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
|
|||||||
@@ -21,7 +21,7 @@ from cosyvoice.utils.file_utils import logging
|
|||||||
|
|
||||||
class CosyVoice:
|
class CosyVoice:
|
||||||
|
|
||||||
def __init__(self, model_dir, load_jit=True):
|
def __init__(self, model_dir, load_jit=True, load_trt=True, use_fp16=False):
|
||||||
instruct = True if '-Instruct' in model_dir else False
|
instruct = True if '-Instruct' in model_dir else False
|
||||||
self.model_dir = model_dir
|
self.model_dir = model_dir
|
||||||
if not os.path.exists(model_dir):
|
if not os.path.exists(model_dir):
|
||||||
@@ -39,9 +39,13 @@ class CosyVoice:
|
|||||||
self.model.load('{}/llm.pt'.format(model_dir),
|
self.model.load('{}/llm.pt'.format(model_dir),
|
||||||
'{}/flow.pt'.format(model_dir),
|
'{}/flow.pt'.format(model_dir),
|
||||||
'{}/hift.pt'.format(model_dir))
|
'{}/hift.pt'.format(model_dir))
|
||||||
|
|
||||||
if load_jit:
|
if load_jit:
|
||||||
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
|
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
|
||||||
'{}/llm.llm.fp16.zip'.format(model_dir))
|
'{}/llm.llm.fp16.zip'.format(model_dir))
|
||||||
|
if load_trt:
|
||||||
|
self.model.load_trt(model_dir, use_fp16)
|
||||||
|
|
||||||
del configs
|
del configs
|
||||||
|
|
||||||
def list_avaliable_spks(self):
|
def list_avaliable_spks(self):
|
||||||
|
|||||||
@@ -11,6 +11,7 @@
|
|||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
import os
|
||||||
import torch
|
import torch
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import threading
|
import threading
|
||||||
@@ -19,7 +20,6 @@ from contextlib import nullcontext
|
|||||||
import uuid
|
import uuid
|
||||||
from cosyvoice.utils.common import fade_in_out
|
from cosyvoice.utils.common import fade_in_out
|
||||||
|
|
||||||
|
|
||||||
class CosyVoiceModel:
|
class CosyVoiceModel:
|
||||||
|
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
@@ -66,6 +66,22 @@ class CosyVoiceModel:
|
|||||||
llm_llm = torch.jit.load(llm_llm_model)
|
llm_llm = torch.jit.load(llm_llm_model)
|
||||||
self.llm.llm = llm_llm
|
self.llm.llm = llm_llm
|
||||||
|
|
||||||
|
def load_trt(self, model_dir, use_fp16):
|
||||||
|
import tensorrt as trt
|
||||||
|
trt_file_name = 'estimator_fp16.plan' if use_fp16 else 'estimator_fp32.plan'
|
||||||
|
trt_file_path = os.path.join(model_dir, trt_file_name)
|
||||||
|
if not os.path.isfile(trt_file_path):
|
||||||
|
raise f"{trt_file_path} does not exist. Please use bin/export_trt.py to generate .plan file"
|
||||||
|
|
||||||
|
trt.init_libnvinfer_plugins(None, "")
|
||||||
|
logger = trt.Logger(trt.Logger.WARNING)
|
||||||
|
runtime = trt.Runtime(logger)
|
||||||
|
with open(trt_file_path, 'rb') as f:
|
||||||
|
serialized_engine = f.read()
|
||||||
|
engine = runtime.deserialize_cuda_engine(serialized_engine)
|
||||||
|
self.flow.decoder.estimator_context = engine.create_execution_context()
|
||||||
|
self.flow.decoder.estimator = None
|
||||||
|
|
||||||
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
||||||
with self.llm_context:
|
with self.llm_context:
|
||||||
for i in self.llm.inference(text=text.to(self.device),
|
for i in self.llm.inference(text=text.to(self.device),
|
||||||
|
|||||||
@@ -159,7 +159,7 @@ class ConditionalDecoder(nn.Module):
|
|||||||
_type_: _description_
|
_type_: _description_
|
||||||
"""
|
"""
|
||||||
|
|
||||||
t = self.time_embeddings(t)
|
t = self.time_embeddings(t).to(t.dtype)
|
||||||
t = self.time_mlp(t)
|
t = self.time_mlp(t)
|
||||||
|
|
||||||
x = pack([x, mu], "b * t")[0]
|
x = pack([x, mu], "b * t")[0]
|
||||||
|
|||||||
@@ -113,7 +113,7 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
|||||||
# concat text and prompt_text
|
# concat text and prompt_text
|
||||||
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
|
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
|
||||||
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
||||||
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(embedding)
|
mask = (~make_pad_mask(token_len)).to(embedding.dtype).unsqueeze(-1).to(embedding)
|
||||||
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
||||||
|
|
||||||
# text encode
|
# text encode
|
||||||
|
|||||||
@@ -50,7 +50,7 @@ class ConditionalCFM(BASECFM):
|
|||||||
shape: (batch_size, n_feats, mel_timesteps)
|
shape: (batch_size, n_feats, mel_timesteps)
|
||||||
"""
|
"""
|
||||||
z = torch.randn_like(mu) * temperature
|
z = torch.randn_like(mu) * temperature
|
||||||
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
|
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
||||||
if self.t_scheduler == 'cosine':
|
if self.t_scheduler == 'cosine':
|
||||||
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
||||||
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
|
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
|
||||||
@@ -71,6 +71,7 @@ class ConditionalCFM(BASECFM):
|
|||||||
cond: Not used but kept for future purposes
|
cond: Not used but kept for future purposes
|
||||||
"""
|
"""
|
||||||
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
||||||
|
t = t.unsqueeze(dim=0)
|
||||||
|
|
||||||
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
||||||
# Or in future might add like a return_all_steps flag
|
# Or in future might add like a return_all_steps flag
|
||||||
@@ -96,6 +97,33 @@ class ConditionalCFM(BASECFM):
|
|||||||
|
|
||||||
return sol[-1]
|
return sol[-1]
|
||||||
|
|
||||||
|
def forward_estimator(self, x, mask, mu, t, spks, cond):
|
||||||
|
|
||||||
|
if self.estimator is not None:
|
||||||
|
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
||||||
|
else:
|
||||||
|
assert self.training is False, 'tensorrt cannot be used in training'
|
||||||
|
bs = x.shape[0]
|
||||||
|
hs = x.shape[1]
|
||||||
|
seq_len = x.shape[2]
|
||||||
|
# assert bs == 1 and hs == 80
|
||||||
|
ret = torch.empty_like(x)
|
||||||
|
self.estimator_context.set_input_shape("x", x.shape)
|
||||||
|
self.estimator_context.set_input_shape("mask", mask.shape)
|
||||||
|
self.estimator_context.set_input_shape("mu", mu.shape)
|
||||||
|
self.estimator_context.set_input_shape("t", t.shape)
|
||||||
|
self.estimator_context.set_input_shape("spks", spks.shape)
|
||||||
|
self.estimator_context.set_input_shape("cond", cond.shape)
|
||||||
|
bindings = [x.data_ptr(), mask.data_ptr(), mu.data_ptr(), t.data_ptr(), spks.data_ptr(), cond.data_ptr(), ret.data_ptr()]
|
||||||
|
names = ['x', 'mask', 'mu', 't', 'spks', 'cond', 'estimator_out']
|
||||||
|
|
||||||
|
for i in range(len(bindings)):
|
||||||
|
self.estimator_context.set_tensor_address(names[i], bindings[i])
|
||||||
|
|
||||||
|
handle = torch.cuda.current_stream().cuda_stream
|
||||||
|
self.estimator_context.execute_async_v3(stream_handle=handle)
|
||||||
|
return ret
|
||||||
|
|
||||||
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
||||||
"""Computes diffusion loss
|
"""Computes diffusion loss
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user