remove cache router

This commit is contained in:
root
2025-09-26 15:14:31 +08:00
parent 31a0adc73d
commit 79116ac32e
7 changed files with 219 additions and 243 deletions

View File

@@ -59,12 +59,14 @@ import tritonclient.grpc.aio as grpcclient_aio # Renamed original import
import tritonclient.grpc as grpcclient_sync # Added sync client import
from tritonclient.utils import np_to_triton_dtype, InferenceServerException # Added InferenceServerException
from datetime import datetime
# --- Added UserData and callback ---
class UserData:
def __init__(self):
self._completed_requests = queue.Queue()
self._first_chunk_time = None
self._second_chunk_time = None
self._start_time = None
def record_start_time(self):
@@ -75,14 +77,44 @@ class UserData:
return self._first_chunk_time - self._start_time
return None
def get_second_chunk_latency(self):
if self._first_chunk_time and self._second_chunk_time:
return self._second_chunk_time - self._first_chunk_time
return None
def callback(user_data, result, error):
if user_data._first_chunk_time is None and not error:
user_data._first_chunk_time = time.time() # Record time of first successful chunk
if not error:
if user_data._first_chunk_time is None:
user_data._first_chunk_time = time.time() # Record time of first successful chunk
elif user_data._second_chunk_time is None:
user_data._second_chunk_time = time.time()
if error:
user_data._completed_requests.put(error)
else:
user_data._completed_requests.put(result)
def stream_callback(user_data_map, result, error):
request_id = None
if error:
# Note: InferenceServerException doesn't have a public request_id() method in all versions.
# This part might need adjustment depending on the tritonclient library version.
# A more robust way would be to wrap the error with the request_id if possible.
# For now, we assume we can't get request_id from error and it will timeout on the client side.
print(f"An error occurred in the stream callback: {error}")
else:
request_id = result.get_response().id
if request_id:
user_data = user_data_map.get(request_id)
if user_data:
callback(user_data, result, error)
else:
print(f"Warning: Could not find user_data for request_id {request_id}")
# --- End Added UserData and callback ---
@@ -142,6 +174,68 @@ def write_triton_stats(stats, summary_file):
)
def subtract_stats(stats_after, stats_before):
"""Subtracts two Triton inference statistics objects."""
# Deep copy to avoid modifying the original stats_after
stats_diff = json.loads(json.dumps(stats_after))
model_stats_before_map = {
s["name"]: {
"version": s["version"],
"last_inference": s.get("last_inference", 0),
"inference_count": s.get("inference_count", 0),
"execution_count": s.get("execution_count", 0),
"inference_stats": s.get("inference_stats", {}),
"batch_stats": s.get("batch_stats", []),
}
for s in stats_before["model_stats"]
}
for model_stat_after in stats_diff["model_stats"]:
model_name = model_stat_after["name"]
if model_name in model_stats_before_map:
model_stat_before = model_stats_before_map[model_name]
# Subtract counts
model_stat_after["inference_count"] = str(
int(model_stat_after.get("inference_count", 0)) - int(model_stat_before.get("inference_count", 0))
)
model_stat_after["execution_count"] = str(
int(model_stat_after.get("execution_count", 0)) - int(model_stat_before.get("execution_count", 0))
)
# Subtract aggregate stats (like queue, compute times)
if "inference_stats" in model_stat_after and "inference_stats" in model_stat_before:
for key in ["success", "fail", "queue", "compute_input", "compute_infer", "compute_output", "cache_hit", "cache_miss"]:
if key in model_stat_after["inference_stats"] and key in model_stat_before["inference_stats"]:
if "ns" in model_stat_after["inference_stats"][key]:
ns_after = int(model_stat_after["inference_stats"][key]["ns"])
ns_before = int(model_stat_before["inference_stats"][key]["ns"])
model_stat_after["inference_stats"][key]["ns"] = str(ns_after - ns_before)
if "count" in model_stat_after["inference_stats"][key]:
count_after = int(model_stat_after["inference_stats"][key]["count"])
count_before = int(model_stat_before["inference_stats"][key]["count"])
model_stat_after["inference_stats"][key]["count"] = str(count_after - count_before)
# Subtract batch execution stats
if "batch_stats" in model_stat_after and "batch_stats" in model_stat_before:
batch_stats_before_map = {b["batch_size"]: b for b in model_stat_before["batch_stats"]}
for batch_stat_after in model_stat_after["batch_stats"]:
bs = batch_stat_after["batch_size"]
if bs in batch_stats_before_map:
batch_stat_before = batch_stats_before_map[bs]
for key in ["compute_input", "compute_infer", "compute_output"]:
if key in batch_stat_after and key in batch_stat_before:
count_after = int(batch_stat_after[key]["count"])
count_before = int(batch_stat_before[key]["count"])
batch_stat_after[key]["count"] = str(count_after - count_before)
ns_after = int(batch_stat_after[key]["ns"])
ns_before = int(batch_stat_before[key]["ns"])
batch_stat_after[key]["ns"] = str(ns_after - ns_before)
return stats_diff
def get_args():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
@@ -357,10 +451,10 @@ def run_sync_streaming_inference(
"""Helper function to run the blocking sync streaming call."""
start_time_total = time.time()
user_data.record_start_time() # Record start time for first chunk latency calculation
# e.g. 08:47:34.827758
# Establish stream
sync_triton_client.start_stream(callback=functools.partial(callback, user_data))
print(f"Record start time in human readable: {datetime.now()}")
# input()
# Send request
sync_triton_client.async_stream_infer(
model_name,
@@ -374,11 +468,11 @@ def run_sync_streaming_inference(
audios = []
while True:
try:
result = user_data._completed_requests.get() # Add timeout
result = user_data._completed_requests.get(timeout=20) # Add timeout
if isinstance(result, InferenceServerException):
print(f"Received InferenceServerException: {result}")
sync_triton_client.stop_stream()
return None, None, None # Indicate error
# Don't stop the stream here, just return error
return None, None, None, None
# Get response metadata
response = result.get_response()
final = response.parameters["triton_final_response"].bool_param
@@ -393,13 +487,13 @@ def run_sync_streaming_inference(
except queue.Empty:
print(f"Timeout waiting for response for request id {request_id}")
sync_triton_client.stop_stream()
return None, None, None # Indicate error
# Don't stop stream here, just return error
return None, None, None, None
sync_triton_client.stop_stream()
end_time_total = time.time()
total_request_latency = end_time_total - start_time_total
first_chunk_latency = user_data.get_first_chunk_latency()
second_chunk_latency = user_data.get_second_chunk_latency()
# Reconstruct audio using cross-fade (from client_grpc_streaming.py)
actual_duration = 0
@@ -448,7 +542,7 @@ def run_sync_streaming_inference(
print("Warning: No audio chunks received.")
actual_duration = 0
return total_request_latency, first_chunk_latency, actual_duration
return total_request_latency, first_chunk_latency, second_chunk_latency, actual_duration
async def send_streaming(
@@ -468,10 +562,12 @@ async def send_streaming(
latency_data = []
task_id = int(name[5:])
sync_triton_client = None # Initialize client variable
user_data_map = {}
try: # Wrap in try...finally to ensure client closing
print(f"{name}: Initializing sync client for streaming...")
sync_triton_client = grpcclient_sync.InferenceServerClient(url=server_url, verbose=False) # Create client here
sync_triton_client.start_stream(callback=functools.partial(stream_callback, user_data_map))
print(f"{name}: Starting streaming processing for {len(manifest_item_list)} items.")
for i, item in enumerate(manifest_item_list):
@@ -494,10 +590,11 @@ async def send_streaming(
request_id = str(uuid.uuid4())
user_data = UserData()
user_data_map[request_id] = user_data
audio_save_path = os.path.join(audio_save_dir, f"{item['target_audio_path']}.wav")
total_request_latency, first_chunk_latency, actual_duration = await asyncio.to_thread(
print("target_text: ", target_text, "time: ", datetime.now())
total_request_latency, first_chunk_latency, second_chunk_latency, actual_duration = await asyncio.to_thread(
run_sync_streaming_inference,
sync_triton_client,
model_name,
@@ -511,12 +608,18 @@ async def send_streaming(
)
if total_request_latency is not None:
print(f"{name}: Item {i} - First Chunk Latency: {first_chunk_latency:.4f}s, Total Latency: {total_request_latency:.4f}s, Duration: {actual_duration:.4f}s")
latency_data.append((total_request_latency, first_chunk_latency, actual_duration))
print(
f"{name}: Item {i} - First Chunk Latency: {first_chunk_latency:.4f}s, "
f"Second Chunk Latency: {second_chunk_latency if second_chunk_latency is not None else 'N/A'}, "
f"Total Latency: {total_request_latency:.4f}s, Duration: {actual_duration:.4f}s"
)
latency_data.append((total_request_latency, first_chunk_latency, second_chunk_latency, actual_duration))
total_duration += actual_duration
else:
print(f"{name}: Item {i} failed.")
del user_data_map[request_id]
except FileNotFoundError:
print(f"Error: Audio file not found for item {i}: {item['audio_filepath']}")
except Exception as e:
@@ -527,7 +630,8 @@ async def send_streaming(
finally: # Ensure client is closed
if sync_triton_client:
try:
print(f"{name}: Closing sync client...")
print(f"{name}: Closing stream and sync client...")
sync_triton_client.stop_stream()
sync_triton_client.close()
except Exception as e:
print(f"{name}: Error closing sync client: {e}")
@@ -685,9 +789,22 @@ async def main():
"target_text": dataset[i]["target_text"],
}
)
# manifest_item_list = manifest_item_list[:4]
else:
manifest_item_list = load_manifests(args.manifest_path)
# --- Statistics Fetching (Before) ---
stats_client = None
stats_before = None
try:
print("Initializing temporary async client for fetching stats...")
stats_client = grpcclient_aio.InferenceServerClient(url=url, verbose=False)
print("Fetching inference statistics before running tasks...")
stats_before = await stats_client.get_inference_statistics(model_name="", as_json=True)
except Exception as e:
print(f"Could not retrieve statistics before running tasks: {e}")
# --- End Statistics Fetching (Before) ---
num_tasks = min(args.num_tasks, len(manifest_item_list))
manifest_item_list = split_data(manifest_item_list, num_tasks)
@@ -776,8 +893,9 @@ async def main():
elif args.mode == "streaming":
# Calculate stats for total request latency and first chunk latency
total_latency_list = [total for (total, first, duration) in latency_data if total is not None]
first_chunk_latency_list = [first for (total, first, duration) in latency_data if first is not None]
total_latency_list = [total for (total, first, second, duration) in latency_data if total is not None]
first_chunk_latency_list = [first for (total, first, second, duration) in latency_data if first is not None]
second_chunk_latency_list = [second for (total, first, second, duration) in latency_data if second is not None]
s += "\n--- Total Request Latency ---\n"
if total_latency_list:
@@ -804,6 +922,19 @@ async def main():
s += f"average_first_chunk_latency_ms: {avg_first_chunk_latency_ms:.2f}\n"
else:
s += "No first chunk latency data collected (check for errors or if all requests failed before first chunk).\n"
s += "\n--- Second Chunk Latency ---\n"
if second_chunk_latency_list:
avg_second_chunk_latency_ms = sum(second_chunk_latency_list) / len(second_chunk_latency_list) * 1000.0
variance_second_chunk_latency = np.var(second_chunk_latency_list, dtype=np.float64) * 1000.0
s += f"second_chunk_latency_variance: {variance_second_chunk_latency:.2f}\n"
s += f"second_chunk_latency_50_percentile_ms: {np.percentile(second_chunk_latency_list, 50) * 1000.0:.2f}\n"
s += f"second_chunk_latency_90_percentile_ms: {np.percentile(second_chunk_latency_list, 90) * 1000.0:.2f}\n"
s += f"second_chunk_latency_95_percentile_ms: {np.percentile(second_chunk_latency_list, 95) * 1000.0:.2f}\n"
s += f"second_chunk_latency_99_percentile_ms: {np.percentile(second_chunk_latency_list, 99) * 1000.0:.2f}\n"
s += f"average_second_chunk_latency_ms: {avg_second_chunk_latency_ms:.2f}\n"
else:
s += "No second chunk latency data collected (check for errors or if all requests failed before second chunk).\n"
else:
s += "No latency data collected.\n"
# --- End Statistics Reporting ---
@@ -822,20 +953,23 @@ async def main():
# --- Statistics Fetching using temporary Async Client ---
# Use a separate async client for fetching stats regardless of mode
stats_client = None
try:
print("Initializing temporary async client for fetching stats...")
stats_client = grpcclient_aio.InferenceServerClient(url=url, verbose=False)
print("Fetching inference statistics...")
# Fetching for all models, filtering might be needed depending on server setup
stats = await stats_client.get_inference_statistics(model_name="", as_json=True)
print("Fetching model config...")
metadata = await stats_client.get_model_config(model_name=args.model_name, as_json=True)
if stats_client and stats_before:
print("Fetching inference statistics after running tasks...")
stats_after = await stats_client.get_inference_statistics(model_name="", as_json=True)
write_triton_stats(stats, f"{args.log_dir}/stats_summary-{name}.txt")
print("Calculating statistics difference...")
stats = subtract_stats(stats_after, stats_before)
with open(f"{args.log_dir}/model_config-{name}.json", "w") as f:
json.dump(metadata, f, indent=4)
print("Fetching model config...")
metadata = await stats_client.get_model_config(model_name=args.model_name, as_json=True)
write_triton_stats(stats, f"{args.log_dir}/stats_summary-{name}.txt")
with open(f"{args.log_dir}/model_config-{name}.json", "w") as f:
json.dump(metadata, f, indent=4)
else:
print("Stats client not available or initial stats were not fetched. Skipping stats reporting.")
except Exception as e:
print(f"Could not retrieve statistics or config: {e}")