This commit is contained in:
root
2025-09-08 09:55:33 +00:00
parent cc1991870b
commit 66ef5a097b
3 changed files with 42 additions and 85 deletions

View File

@@ -65,6 +65,7 @@ def extract_speech_ids(speech_tokens_str):
print(f"Unexpected token: {token_str}")
return speech_ids
def convert_cosy2_tokens_to_speech_id_str(cosy2_tokens):
"""Convert CosyVoice2 tokens to speech IDs string like <|s_23456|>"""
speech_id_str = ""
@@ -167,7 +168,6 @@ def get_args():
return args
def data_collator(batch, tokenizer, s3_tokenizer):
"""Simplified data collator for batch_size=1 processing"""
collator_start_time = time.time()
@@ -202,7 +202,6 @@ def data_collator(batch, tokenizer, s3_tokenizer):
item["prompt_audio"]["sampling_rate"],
)
ref_audio_org = torch.from_numpy(ref_audio_org).float().unsqueeze(0)
# ref_audio_org = ref_audio_org.mean(dim=0, keepdim=True)
print(ref_audio_org.shape)
if ref_sr != target_sample_rate:
@@ -220,7 +219,6 @@ def data_collator(batch, tokenizer, s3_tokenizer):
prompt_audio_cosy2tokens = item["prompt_audio_cosy2_tokens"]
prompt_audio_cosy2tokens_list.append(prompt_audio_cosy2tokens)
else:
# convert to float first
mels.append(s3tokenizer.log_mel_spectrogram(ref_audio.squeeze(0)))
if len(mels) > 0:
@@ -287,33 +285,23 @@ def main(args):
os.makedirs(args.output_dir, exist_ok=True)
assert torch.cuda.is_available()
# world_size, local_rank, rank = init_distributed()
local_rank, world_size, rank = 0, 1, 0
device = torch.device(f"cuda:{local_rank}")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(args.llm_model_name_or_path)
# model = LLM(model=args.llm_model_name_or_path, gpu_memory_utilization=0.4)
# Initialize backend based on argument
if args.backend == "hf":
# Load HuggingFace model
model = AutoModelForCausalLM.from_pretrained(args.llm_model_name_or_path)
model.eval()
model.to(device)
runner = None
elif args.backend == "trtllm":
# Validate engine_dir is provided
if args.engine_dir is None:
raise ValueError("--engine-dir is required when backend is 'trtllm'")
# import tensorrt_llm
#from tensorrt_llm.runtime import ModelRunnerCpp
# Initialize TensorRT-LLM runner
runtime_rank = tensorrt_llm.mpi_rank()
model = None
# Prepare input for runner initialization
runner_kwargs = dict(
engine_dir=args.engine_dir,
rank=runtime_rank,
@@ -328,7 +316,6 @@ def main(args):
runner = ModelRunnerCpp.from_dir(**runner_kwargs)
elif args.backend == "vllm":
# from vllm import LLM, SamplingParams
model = LLM(model=args.llm_model_name_or_path, gpu_memory_utilization=0.4)
runner = None
else:
@@ -349,7 +336,6 @@ def main(args):
trust_remote_code=True,
)
# sampler = DistributedSampler(dataset, num_replicas=world_size, rank=rank)
sampler = None
dataloader = DataLoader(
dataset,
@@ -385,7 +371,6 @@ def main(args):
total_speech_tokenization_time_in_collator += batch["speech_tokenization_time"]
total_text_tokenization_time_in_collator += batch["text_tokenization_time"]
with torch.no_grad():
# Generate speech tokens using LLM
llm_start_time = time.time()
if args.backend == "hf":
input_ids_list = batch["input_ids"]
@@ -393,31 +378,22 @@ def main(args):
input_ids = input_ids_list[0].unsqueeze(0)
attention_mask = torch.ones_like(input_ids)
else:
# Handle batch > 1 if needed
max_len = max([len(input_ids) for input_ids in input_ids_list])
# input_ids_list_new = [
# torch.cat([torch.full((max_len - len(input_ids),), tokenizer.pad_token_id), input_ids])
# for input_ids in input_ids_list
# ]
input_ids_list_new = [
torch.cat([input_ids, torch.full((max_len - len(input_ids),), tokenizer.pad_token_id)])
for input_ids in input_ids_list
]
input_ids = torch.stack(input_ids_list_new)
# compute attention mask
attention_mask = torch.zeros_like(input_ids)
for i in range(len(input_ids_list)):
attention_mask[i, :len(input_ids_list[i])] = 1
# breakpoint()
input_ids = input_ids.to(device)
outputs = model.generate(
input_ids=input_ids.to(device),
attention_mask=attention_mask.to(device),
max_new_tokens=2048, # Max length for generation
max_new_tokens=2048,
do_sample=True,
top_p=args.top_p,
temperature=args.temperature,
@@ -426,14 +402,11 @@ def main(args):
)
torch.cuda.synchronize()
elif args.backend == "trtllm":
# Convert input_ids to list of tensors for TensorRT-LLM
batch_input_ids = [ids for ids in batch["input_ids"]]
input_lengths = [x.size(0) for x in batch_input_ids]
# Get end_id from tokenizer
end_id = tokenizer.convert_tokens_to_ids("<|eos1|>") if "<|eos1|>" in tokenizer.get_vocab() else tokenizer.eos_token_id
print(f"end_id: {end_id}, tokenizer.eos_token_id: {tokenizer.eos_token_id} ========================")
# random_seed=42, repetition_penalty=1.1,
outputs = runner.generate(
batch_input_ids=batch_input_ids,
max_new_tokens=2048,
@@ -451,7 +424,6 @@ def main(args):
return_all_generated_tokens=False
)
torch.cuda.synchronize()
# Extract output_ids from TensorRT-LLM output
output_ids, sequence_lengths = outputs["output_ids"], outputs["sequence_lengths"]
num_output_sents, num_beams, _ = output_ids.size()
assert num_beams == 1
@@ -463,18 +435,12 @@ def main(args):
for i in range(batch_size * num_return_sequences):
batch_idx = i // num_return_sequences
seq_idx = i % num_return_sequences
# inputs = output_ids[i][0][:input_lengths[batch_idx]].tolist()
# input_text = tokenizer.decode(inputs)
# print(f'Input [Text {batch_idx}]: \"{input_text}\"')
output_begin = input_lengths[batch_idx]
output_end = sequence_lengths[i][beam]
# outputs_i = output_ids[i][beam][output_begin:output_end].tolist()
outputs_i = output_ids[i][beam][:output_end].tolist()
outputs.append(outputs_i)
elif args.backend == "vllm":
input_ids_list = [ids.tolist() for ids in batch["input_ids"]]
# prompts = [batch["prompt_text_after_apply_template"][i] for i in range(len(batch["prompt_text_after_apply_template"]))]
# print(prompts)
sampling_params = SamplingParams(
temperature=args.temperature,
top_p=args.top_p,
@@ -483,26 +449,21 @@ def main(args):
max_tokens=2048,
)
outputs = model.generate(prompt_token_ids=input_ids_list, sampling_params=sampling_params)
# outputs = model.generate(prompts, sampling_params)
print(outputs)
# breakpoint()
for j, output in enumerate(outputs):
outputs[j] = input_ids_list[j] + output.outputs[0].token_ids
llm_end_time = time.time()
total_llm_time += (llm_end_time - llm_start_time)
items_for_token2wav = []
items_for_token_2wav = []
for i in range(len(batch["ids"])):
llm_post_processing_start_time = time.time()
# Extract generated tokens (excluding input)
input_length = len(batch["input_ids"][i])
generated_ids = outputs[i][input_length:] # Remove last token if needed
generated_ids = outputs[i][input_length:]
speech_tokens_str = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
# Extract speech IDs from token strings like <|s_23456|>
speech_ids = extract_speech_ids(speech_tokens_str)
print(i, speech_ids)
# breakpoint()
if len(speech_ids) == 0:
print(f"Warning: No speech tokens generated for sample {batch['ids'][i]}, skipping")
continue
@@ -517,7 +478,7 @@ def main(args):
llm_post_processing_end_time = time.time()
total_llm_post_processing_time += llm_post_processing_end_time - llm_post_processing_start_time
if current_prompt_audio is not None:
items_for_token2wav.append({
items_for_token_2wav.append({
"speech_ids": speech_ids,
"prompt_audio": current_prompt_audio.squeeze(0),
"id": batch["ids"][i]
@@ -525,8 +486,8 @@ def main(args):
else:
print(f"Warning: No prompt audio available for sample {batch['ids'][i]}, skipping")
for i in range(0, len(items_for_token2wav), args.token2wav_batch_size):
t2w_batch = items_for_token2wav[i:i + args.token2wav_batch_size]
for i in range(0, len(items_for_token_2wav), args.token2wav_batch_size):
t2w_batch = items_for_token_2wav[i:i + args.token2wav_batch_size]
if not t2w_batch:
continue
@@ -535,7 +496,6 @@ def main(args):
t2w_prompt_audios_sample_rate = [16000] * len(t2w_batch)
t2w_ids = [item["id"] for item in t2w_batch]
# Generate audio using CosyVoice2
token2wav_start_time = time.time()
generated_wavs = token2wav_model(
t2w_generated_speech_tokens_list,
@@ -547,7 +507,6 @@ def main(args):
total_token2wav_time += (token2wav_end_time - token2wav_start_time)
audio_save_start_time = time.time()
# Convert to numpy and save
for j, audio_hat in enumerate(generated_wavs):
generated_wave = audio_hat.squeeze().cpu().numpy()
total_audio_samples += len(generated_wave)
@@ -571,7 +530,6 @@ def main(args):
log_file_path = os.path.join(args.output_dir, "log.txt")
with open(log_file_path, 'w') as f:
# Convert Namespace to dict for JSON serialization
args_dict = vars(args)
log_data = {
"args": args_dict,
@@ -602,4 +560,4 @@ if __name__ == "__main__":
from transformers import AutoModelForCausalLM
else:
raise ValueError(f"Unsupported backend: {args.backend}")
main(args)
main(args)