This commit is contained in:
root
2025-09-08 09:55:33 +00:00
parent cc1991870b
commit 66ef5a097b
3 changed files with 42 additions and 85 deletions

View File

@@ -78,7 +78,7 @@ For offline inference mode benchmark, please check the below command:
# install FlashCosyVoice for token2wav batching
# git clone https://github.com/yuekaizhang/FlashCosyVoice.git /workspace/FlashCosyVoice -b trt
# cd /workspace/FlashCosyVoice
# pip install -e .
# pip install -e .
# cd -
# wget https://huggingface.co/yuekai/cosyvoice2_flow_onnx/resolve/main/flow.decoder.estimator.fp32.dynamic_batch.onnx -O $model_scope_model_local_dir/flow.decoder.estimator.fp32.dynamic_batch.onnx
@@ -116,7 +116,7 @@ The following results were obtained by decoding on a single L20 GPU with 26 prom
| HF | 1 | 39.26 | 44.31 | 0.2494 |
| HF | 2 | 30.54 | 35.62 | 0.2064 |
| HF | 4 | 18.63 | 23.90 | 0.1421 |
| HF | 8 | 11.22 | 16.45 | 0.0947 |
| HF | 8 | 11.22 | 16.45 | 0.0947 |
| HF | 16 | 8.42 | 13.78 | 0.0821 |
| TRTLLM | 1 | 12.46 | 17.31 | 0.0987 |
| TRTLLM | 2 | 7.64 |12.65 | 0.0739 |

View File

@@ -65,6 +65,7 @@ def extract_speech_ids(speech_tokens_str):
print(f"Unexpected token: {token_str}")
return speech_ids
def convert_cosy2_tokens_to_speech_id_str(cosy2_tokens):
"""Convert CosyVoice2 tokens to speech IDs string like <|s_23456|>"""
speech_id_str = ""
@@ -167,7 +168,6 @@ def get_args():
return args
def data_collator(batch, tokenizer, s3_tokenizer):
"""Simplified data collator for batch_size=1 processing"""
collator_start_time = time.time()
@@ -202,7 +202,6 @@ def data_collator(batch, tokenizer, s3_tokenizer):
item["prompt_audio"]["sampling_rate"],
)
ref_audio_org = torch.from_numpy(ref_audio_org).float().unsqueeze(0)
# ref_audio_org = ref_audio_org.mean(dim=0, keepdim=True)
print(ref_audio_org.shape)
if ref_sr != target_sample_rate:
@@ -220,7 +219,6 @@ def data_collator(batch, tokenizer, s3_tokenizer):
prompt_audio_cosy2tokens = item["prompt_audio_cosy2_tokens"]
prompt_audio_cosy2tokens_list.append(prompt_audio_cosy2tokens)
else:
# convert to float first
mels.append(s3tokenizer.log_mel_spectrogram(ref_audio.squeeze(0)))
if len(mels) > 0:
@@ -287,33 +285,23 @@ def main(args):
os.makedirs(args.output_dir, exist_ok=True)
assert torch.cuda.is_available()
# world_size, local_rank, rank = init_distributed()
local_rank, world_size, rank = 0, 1, 0
device = torch.device(f"cuda:{local_rank}")
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(args.llm_model_name_or_path)
# model = LLM(model=args.llm_model_name_or_path, gpu_memory_utilization=0.4)
# Initialize backend based on argument
if args.backend == "hf":
# Load HuggingFace model
model = AutoModelForCausalLM.from_pretrained(args.llm_model_name_or_path)
model.eval()
model.to(device)
runner = None
elif args.backend == "trtllm":
# Validate engine_dir is provided
if args.engine_dir is None:
raise ValueError("--engine-dir is required when backend is 'trtllm'")
# import tensorrt_llm
#from tensorrt_llm.runtime import ModelRunnerCpp
# Initialize TensorRT-LLM runner
runtime_rank = tensorrt_llm.mpi_rank()
model = None
# Prepare input for runner initialization
runner_kwargs = dict(
engine_dir=args.engine_dir,
rank=runtime_rank,
@@ -328,7 +316,6 @@ def main(args):
runner = ModelRunnerCpp.from_dir(**runner_kwargs)
elif args.backend == "vllm":
# from vllm import LLM, SamplingParams
model = LLM(model=args.llm_model_name_or_path, gpu_memory_utilization=0.4)
runner = None
else:
@@ -349,7 +336,6 @@ def main(args):
trust_remote_code=True,
)
# sampler = DistributedSampler(dataset, num_replicas=world_size, rank=rank)
sampler = None
dataloader = DataLoader(
dataset,
@@ -385,7 +371,6 @@ def main(args):
total_speech_tokenization_time_in_collator += batch["speech_tokenization_time"]
total_text_tokenization_time_in_collator += batch["text_tokenization_time"]
with torch.no_grad():
# Generate speech tokens using LLM
llm_start_time = time.time()
if args.backend == "hf":
input_ids_list = batch["input_ids"]
@@ -393,31 +378,22 @@ def main(args):
input_ids = input_ids_list[0].unsqueeze(0)
attention_mask = torch.ones_like(input_ids)
else:
# Handle batch > 1 if needed
max_len = max([len(input_ids) for input_ids in input_ids_list])
# input_ids_list_new = [
# torch.cat([torch.full((max_len - len(input_ids),), tokenizer.pad_token_id), input_ids])
# for input_ids in input_ids_list
# ]
input_ids_list_new = [
torch.cat([input_ids, torch.full((max_len - len(input_ids),), tokenizer.pad_token_id)])
for input_ids in input_ids_list
]
input_ids = torch.stack(input_ids_list_new)
# compute attention mask
attention_mask = torch.zeros_like(input_ids)
for i in range(len(input_ids_list)):
attention_mask[i, :len(input_ids_list[i])] = 1
# breakpoint()
input_ids = input_ids.to(device)
outputs = model.generate(
input_ids=input_ids.to(device),
attention_mask=attention_mask.to(device),
max_new_tokens=2048, # Max length for generation
max_new_tokens=2048,
do_sample=True,
top_p=args.top_p,
temperature=args.temperature,
@@ -426,14 +402,11 @@ def main(args):
)
torch.cuda.synchronize()
elif args.backend == "trtllm":
# Convert input_ids to list of tensors for TensorRT-LLM
batch_input_ids = [ids for ids in batch["input_ids"]]
input_lengths = [x.size(0) for x in batch_input_ids]
# Get end_id from tokenizer
end_id = tokenizer.convert_tokens_to_ids("<|eos1|>") if "<|eos1|>" in tokenizer.get_vocab() else tokenizer.eos_token_id
print(f"end_id: {end_id}, tokenizer.eos_token_id: {tokenizer.eos_token_id} ========================")
# random_seed=42, repetition_penalty=1.1,
outputs = runner.generate(
batch_input_ids=batch_input_ids,
max_new_tokens=2048,
@@ -451,7 +424,6 @@ def main(args):
return_all_generated_tokens=False
)
torch.cuda.synchronize()
# Extract output_ids from TensorRT-LLM output
output_ids, sequence_lengths = outputs["output_ids"], outputs["sequence_lengths"]
num_output_sents, num_beams, _ = output_ids.size()
assert num_beams == 1
@@ -463,18 +435,12 @@ def main(args):
for i in range(batch_size * num_return_sequences):
batch_idx = i // num_return_sequences
seq_idx = i % num_return_sequences
# inputs = output_ids[i][0][:input_lengths[batch_idx]].tolist()
# input_text = tokenizer.decode(inputs)
# print(f'Input [Text {batch_idx}]: \"{input_text}\"')
output_begin = input_lengths[batch_idx]
output_end = sequence_lengths[i][beam]
# outputs_i = output_ids[i][beam][output_begin:output_end].tolist()
outputs_i = output_ids[i][beam][:output_end].tolist()
outputs.append(outputs_i)
elif args.backend == "vllm":
input_ids_list = [ids.tolist() for ids in batch["input_ids"]]
# prompts = [batch["prompt_text_after_apply_template"][i] for i in range(len(batch["prompt_text_after_apply_template"]))]
# print(prompts)
sampling_params = SamplingParams(
temperature=args.temperature,
top_p=args.top_p,
@@ -483,26 +449,21 @@ def main(args):
max_tokens=2048,
)
outputs = model.generate(prompt_token_ids=input_ids_list, sampling_params=sampling_params)
# outputs = model.generate(prompts, sampling_params)
print(outputs)
# breakpoint()
for j, output in enumerate(outputs):
outputs[j] = input_ids_list[j] + output.outputs[0].token_ids
llm_end_time = time.time()
total_llm_time += (llm_end_time - llm_start_time)
items_for_token2wav = []
items_for_token_2wav = []
for i in range(len(batch["ids"])):
llm_post_processing_start_time = time.time()
# Extract generated tokens (excluding input)
input_length = len(batch["input_ids"][i])
generated_ids = outputs[i][input_length:] # Remove last token if needed
generated_ids = outputs[i][input_length:]
speech_tokens_str = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
# Extract speech IDs from token strings like <|s_23456|>
speech_ids = extract_speech_ids(speech_tokens_str)
print(i, speech_ids)
# breakpoint()
if len(speech_ids) == 0:
print(f"Warning: No speech tokens generated for sample {batch['ids'][i]}, skipping")
continue
@@ -517,7 +478,7 @@ def main(args):
llm_post_processing_end_time = time.time()
total_llm_post_processing_time += llm_post_processing_end_time - llm_post_processing_start_time
if current_prompt_audio is not None:
items_for_token2wav.append({
items_for_token_2wav.append({
"speech_ids": speech_ids,
"prompt_audio": current_prompt_audio.squeeze(0),
"id": batch["ids"][i]
@@ -525,8 +486,8 @@ def main(args):
else:
print(f"Warning: No prompt audio available for sample {batch['ids'][i]}, skipping")
for i in range(0, len(items_for_token2wav), args.token2wav_batch_size):
t2w_batch = items_for_token2wav[i:i + args.token2wav_batch_size]
for i in range(0, len(items_for_token_2wav), args.token2wav_batch_size):
t2w_batch = items_for_token_2wav[i:i + args.token2wav_batch_size]
if not t2w_batch:
continue
@@ -535,7 +496,6 @@ def main(args):
t2w_prompt_audios_sample_rate = [16000] * len(t2w_batch)
t2w_ids = [item["id"] for item in t2w_batch]
# Generate audio using CosyVoice2
token2wav_start_time = time.time()
generated_wavs = token2wav_model(
t2w_generated_speech_tokens_list,
@@ -547,7 +507,6 @@ def main(args):
total_token2wav_time += (token2wav_end_time - token2wav_start_time)
audio_save_start_time = time.time()
# Convert to numpy and save
for j, audio_hat in enumerate(generated_wavs):
generated_wave = audio_hat.squeeze().cpu().numpy()
total_audio_samples += len(generated_wave)
@@ -571,7 +530,6 @@ def main(args):
log_file_path = os.path.join(args.output_dir, "log.txt")
with open(log_file_path, 'w') as f:
# Convert Namespace to dict for JSON serialization
args_dict = vars(args)
log_data = {
"args": args_dict,
@@ -602,4 +560,4 @@ if __name__ == "__main__":
from transformers import AutoModelForCausalLM
else:
raise ValueError(f"Unsupported backend: {args.backend}")
main(args)
main(args)

View File

@@ -70,6 +70,7 @@ def convert_onnx_to_trt(trt_model, trt_kwargs, onnx_model, fp16):
f.write(engine_bytes)
logging.info("Succesfully convert onnx to trt...")
class TrtContextWrapper:
def __init__(self, trt_engine, trt_concurrent=1, device='cuda:0'):
self.trt_context_pool = queue.Queue(maxsize=trt_concurrent)
@@ -88,12 +89,13 @@ class TrtContextWrapper:
def release_estimator(self, context, stream):
self.trt_context_pool.put([context, stream])
class CosyVoice2_Token2Wav(torch.nn.Module):
def __init__(self, model_dir: str = "./CosyVoice2-0.5B", enable_trt: bool = False, device_id: int = 0):
super().__init__()
self.device_id = device_id
self.device = f"cuda:{device_id}"
self.flow = CausalMaskedDiffWithXvec()
self.flow.half()
self.flow.load_state_dict(torch.load(f"{model_dir}/flow.pt", map_location="cpu", weights_only=True), strict=True)
@@ -107,22 +109,20 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
option = onnxruntime.SessionOptions()
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
option.intra_op_num_threads = 1
self.spk_model = onnxruntime.InferenceSession(f"{model_dir}/campplus.onnx", sess_options=option,
providers=["CPUExecutionProvider"])
self.spk_model = onnxruntime.InferenceSession(f"{model_dir}/campplus.onnx", sess_options=option, providers=["CPUExecutionProvider"])
self.audio_tokenizer = s3tokenizer.load_model(f"{model_dir}/speech_tokenizer_v2.onnx").to(self.device).eval()
gpu="l20"
gpu = "l20"
if enable_trt:
self.load_trt(f'{model_dir}/flow.decoder.estimator.fp16.dynamic_batch.{gpu}.plan',
f'{model_dir}/flow.decoder.estimator.fp32.dynamic_batch.onnx',
1,
True)
f'{model_dir}/flow.decoder.estimator.fp32.dynamic_batch.onnx',
1,
True)
self.load_spk_trt(f'{model_dir}/campplus.{gpu}.fp32.trt',
f'{model_dir}/campplus.onnx',
1,
False)
f'{model_dir}/campplus.onnx',
1,
False)
def forward_spk_embedding(self, spk_feat):
if isinstance(self.spk_model, onnxruntime.InferenceSession):
@@ -173,7 +173,7 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, trt_concurrent=1, fp16=True):
assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
if not os.path.exists(flow_decoder_estimator_model) or os.path.getsize(flow_decoder_estimator_model) == 0:
trt_kwargs = self.get_trt_kwargs_dynamic_batch(opt_batch_size=2, max_batch_size=16)
trt_kwargs = self.get_trt_kwargs_dynamic_batch(opt_bs=2, max_batch_size=16)
convert_onnx_to_trt(flow_decoder_estimator_model, trt_kwargs, flow_decoder_onnx_model, fp16)
del self.flow.decoder.estimator
import tensorrt as trt
@@ -182,10 +182,11 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
assert estimator_engine is not None, 'failed to load trt {}'.format(flow_decoder_estimator_model)
self.flow.decoder.estimator = TrtContextWrapper(estimator_engine, trt_concurrent=trt_concurrent, device=self.device)
def get_trt_kwargs_dynamic_batch(self, opt_batch_size=2, max_batch_size=64):
def get_trt_kwargs_dynamic_batch(self, opt_bs=2, max_batch_size=64):
min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4), (2,), (2, 80)]
opt_shape = [(opt_batch_size*2, 80, 500), (opt_batch_size*2, 1, 500), (opt_batch_size*2, 80, 500), (opt_batch_size*2, 80, 500), (opt_batch_size*2,), (opt_batch_size*2, 80)]
max_shape = [(max_batch_size*2, 80, 3000), (max_batch_size*2, 1, 3000), (max_batch_size*2, 80, 3000), (max_batch_size*2, 80, 3000), (max_batch_size*2,), (max_batch_size*2, 80)]
opt_shape = [(opt_bs * 2, 80, 500), (opt_bs * 2, 1, 500), (opt_bs * 2, 80, 500), (opt_bs * 2, 80, 500), (opt_bs * 2,), (opt_bs * 2, 80)]
max_shape = [(max_batch_size * 2, 80, 3000), (max_batch_size * 2, 1, 3000), (max_batch_size * 2, 80, 3000), (max_batch_size * 2, 80, 3000), (max_batch_size * 2,),
(max_batch_size * 2, 80)]
input_names = ["x", "mask", "mu", "cond", "t", "spks"]
return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
@@ -203,7 +204,7 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
speech_tokens_i = prompt_speech_tokens[i, :prompt_speech_tokens_lens[i].item()].tolist()
prompt_speech_tokens_list.append(speech_tokens_i)
return prompt_speech_tokens_list
def get_spk_emb(self, prompt_audios_list: list[torch.Tensor]) -> torch.Tensor:
spk_emb_for_flow = []
for audio in prompt_audios_list:
@@ -213,9 +214,9 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
spk_emb = self.forward_spk_embedding(spk_feat)
spk_emb_for_flow.append(spk_emb)
spk_emb_for_flow = torch.tensor(spk_emb_for_flow)
spk_emb_for_flow = torch.tensor(spk_emb_for_flow)
return spk_emb_for_flow
def get_prompt_mels(self, prompt_audios_list: list[torch.Tensor], prompt_audios_sample_rate: list[int]):
prompt_mels_for_flow = []
prompt_mels_lens_for_flow = []
@@ -231,9 +232,9 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
prompt_mels_for_flow = torch.nn.utils.rnn.pad_sequence(prompt_mels_for_flow, batch_first=True, padding_value=0) # [B, T', num_mels=80]
prompt_mels_lens_for_flow = torch.tensor(prompt_mels_lens_for_flow)
return prompt_mels_for_flow, prompt_mels_lens_for_flow
def forward_flow(self, prompt_speech_tokens_list: list[list[int]], generated_speech_tokens_list: list[list[int]], prompt_mels_for_flow: torch.Tensor, prompt_mels_lens_for_flow: torch.Tensor, spk_emb_for_flow: torch.Tensor):
def forward_flow(self, prompt_speech_tokens_list: list[list[int]], generated_speech_tokens_list: list[list[int]], prompt_mels_for_flow: torch.Tensor,
prompt_mels_lens_for_flow: torch.Tensor, spk_emb_for_flow: torch.Tensor):
batch_size = prompt_mels_for_flow.shape[0]
flow_inputs = []
flow_inputs_lens = []
@@ -262,14 +263,12 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
generated_wavs.append(wav)
return generated_wavs
@torch.inference_mode()
def forward(
self, generated_speech_tokens_list: list[list[int]], prompt_audios_list: list[torch.Tensor], prompt_audios_sample_rate: list[int]
):
# assert all item in prompt_audios_sample_rate is 16000
assert all(sample_rate == 16000 for sample_rate in prompt_audios_sample_rate)
prompt_speech_tokens_list = self.prompt_audio_tokenization(prompt_audios_list)
@@ -277,10 +276,11 @@ class CosyVoice2_Token2Wav(torch.nn.Module):
spk_emb_for_flow = self.get_spk_emb(prompt_audios_list)
generated_mels, generated_mels_lens = self.forward_flow(prompt_speech_tokens_list, generated_speech_tokens_list, prompt_mels_for_flow, prompt_mels_lens_for_flow, spk_emb_for_flow)
generated_mels, generated_mels_lens = self.forward_flow(
prompt_speech_tokens_list, generated_speech_tokens_list, prompt_mels_for_flow, prompt_mels_lens_for_flow, spk_emb_for_flow)
generated_wavs = self.forward_hift(generated_mels, generated_mels_lens, prompt_mels_lens_for_flow)
return generated_wavs
@@ -288,13 +288,14 @@ def collate_fn(batch):
ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate = [], [], [], []
for i, item in enumerate(batch):
generated_speech_tokens_list.append(item['target_audio_cosy2_tokens'])
audio = torch.from_numpy(item['prompt_audio']['array']).float()
audio = torch.from_numpy(item['prompt_audio']['array']).float()
prompt_audios_list.append(audio)
prompt_audios_sample_rate.append(item['prompt_audio']['sampling_rate'])
ids.append(item['id'])
return ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--enable-trt", action="store_true")
@@ -305,6 +306,7 @@ def get_args():
parser.add_argument("--warmup", type=int, default=3, help="Number of warmup epochs, performance statistics will only be collected from the last epoch")
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
model = CosyVoice2_Token2Wav(model_dir=args.model_dir, enable_trt=args.enable_trt)
@@ -315,22 +317,19 @@ if __name__ == "__main__":
dataset = load_dataset(dataset_name, split=args.huggingface_dataset_split, trust_remote_code=True)
data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, collate_fn=collate_fn, num_workers=0)
for epoch in range(args.warmup):
start_time = time.time()
for batch in data_loader:
ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate = batch
generated_wavs = model(generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate)
for id, wav in zip(ids, generated_wavs):
torchaudio.save(f"{args.output_dir}/{id}.wav", wav.cpu(), 24000)
end_time = time.time()
epoch_time = end_time - start_time
print(f"Measurement epoch time taken: {epoch_time:.4f} seconds")
print(f"Measurement epoch time taken: {epoch_time:.4f} seconds")