add flow decoder tensorrt infer

This commit is contained in:
zhoubofan.zbf
2024-08-29 23:35:07 +08:00
parent 1d881df8b2
commit 5f21aef786
5 changed files with 149 additions and 19 deletions

View File

@@ -1,8 +1,103 @@
# TODO 跟export_jit一样的逻辑完成flow部分的estimator的onnx导出。 import argparse
# tensorrt的安装方式再这里写一下步骤提示如下如果没有安装那么不要执行这个脚本提示用户先安装不给选择 import logging
import os
import sys
logging.getLogger('matplotlib').setLevel(logging.WARNING)
try: try:
import tensorrt import tensorrt
except ImportError: except ImportError:
print('step1, 下载\n step2. 解压安装whl') error_msg_zh = [
# 安装命令里tensosrt的根目录用环境变量导入比如os.environ['tensorrt_root_dir']/bin/exetrace然后python里subprocess里执行导出命令 "step.1 下载 tensorrt .tar.gz 压缩包并解压,下载地址: https://developer.nvidia.com/tensorrt/download/10x",
# 后面我会在run.sh里写好执行命令 tensorrt_root_dir=xxxx python cosyvoice/bin/export_trt.py --model_dir xxx "step.2 使用 tensorrt whl 包进行安装根据 python 版本对应进行安装,如 pip install ${TensorRT-Path}/python/tensorrt-10.2.0-cp38-none-linux_x86_64.whl",
"step.3 将 tensorrt 的 lib 路径添加进环境变量中export LD_LIBRARY_PATH=${TensorRT-Path}/lib/"
]
print("\n".join(error_msg_zh))
sys.exit(1)
import torch
from cosyvoice.cli.cosyvoice import CosyVoice
def get_args():
parser = argparse.ArgumentParser(description='Export your model for deployment')
parser.add_argument('--model_dir',
type=str,
default='pretrained_models/CosyVoice-300M',
help='Local path to the model directory')
parser.add_argument('--export_half',
action='store_true',
help='Export with half precision (FP16)')
args = parser.parse_args()
print(args)
return args
def main():
args = get_args()
cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_trt=False)
flow = cosyvoice.model.flow
estimator = cosyvoice.model.flow.decoder.estimator
dtype = torch.float32 if not args.export_half else torch.float16
device = torch.device("cuda")
batch_size = 1
seq_len = 1024
hidden_size = flow.output_size
x = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
mask = torch.zeros((batch_size, 1, seq_len), dtype=dtype, device=device)
mu = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
t = torch.tensor([0.], dtype=dtype, device=device)
spks = torch.rand((batch_size, hidden_size), dtype=dtype, device=device)
cond = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
onnx_file_name = 'estimator_fp16.onnx' if args.export_half else 'estimator_fp32.onnx'
onnx_file_path = os.path.join(args.model_dir, onnx_file_name)
dummy_input = (x, mask, mu, t, spks, cond)
estimator = estimator.to(dtype)
torch.onnx.export(
estimator,
dummy_input,
onnx_file_path,
export_params=True,
opset_version=18,
do_constant_folding=True,
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
output_names=['output'],
dynamic_axes={
'x': {2: 'seq_len'},
'mask': {2: 'seq_len'},
'mu': {2: 'seq_len'},
'cond': {2: 'seq_len'},
'output': {2: 'seq_len'},
}
)
tensorrt_path = os.environ.get('tensorrt_root_dir')
if not tensorrt_path:
raise EnvironmentError("Please set the 'tensorrt_root_dir' environment variable.")
if not os.path.isdir(tensorrt_path):
raise FileNotFoundError(f"The directory {tensorrt_path} does not exist.")
trt_lib_path = os.path.join(tensorrt_path, "lib")
if trt_lib_path not in os.environ.get('LD_LIBRARY_PATH', ''):
print(f"Adding TensorRT lib path {trt_lib_path} to LD_LIBRARY_PATH.")
os.environ['LD_LIBRARY_PATH'] = f"{os.environ.get('LD_LIBRARY_PATH', '')}:{trt_lib_path}"
trt_file_name = 'estimator_fp16.plan' if args.export_half else 'estimator_fp32.plan'
trt_file_path = os.path.join(args.model_dir, trt_file_name)
trtexec_cmd = f"{tensorrt_path}/bin/trtexec --onnx={onnx_file_path} --saveEngine={trt_file_path} " \
"--minShapes=x:1x80x1,mask:1x1x1,mu:1x80x1,t:1,spks:1x80,cond:1x80x1 " \
"--maxShapes=x:1x80x4096,mask:1x1x4096,mu:1x80x4096,t:1,spks:1x80,cond:1x80x4096 --verbose"
os.system(trtexec_cmd)
if __name__ == "__main__":
main()

View File

@@ -21,7 +21,7 @@ from cosyvoice.utils.file_utils import logging
class CosyVoice: class CosyVoice:
def __init__(self, model_dir, load_jit=True, load_trt=True): def __init__(self, model_dir, load_jit=True, load_trt=True, use_fp16=False):
instruct = True if '-Instruct' in model_dir else False instruct = True if '-Instruct' in model_dir else False
self.model_dir = model_dir self.model_dir = model_dir
if not os.path.exists(model_dir): if not os.path.exists(model_dir):
@@ -43,8 +43,7 @@ class CosyVoice:
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir), self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
'{}/llm.llm.fp16.zip'.format(model_dir)) '{}/llm.llm.fp16.zip'.format(model_dir))
if load_trt: if load_trt:
# TODO self.model.load_trt(model_dir, use_fp16)
self.model.load_trt()
del configs del configs
def list_avaliable_spks(self): def list_avaliable_spks(self):

View File

@@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import os
import torch import torch
import numpy as np import numpy as np
import threading import threading
@@ -19,6 +20,10 @@ from contextlib import nullcontext
import uuid import uuid
from cosyvoice.utils.common import fade_in_out from cosyvoice.utils.common import fade_in_out
try:
import tensorrt as trt
except ImportError:
...
class CosyVoiceModel: class CosyVoiceModel:
@@ -66,10 +71,20 @@ class CosyVoiceModel:
llm_llm = torch.jit.load(llm_llm_model) llm_llm = torch.jit.load(llm_llm_model)
self.llm.llm = llm_llm self.llm.llm = llm_llm
def load_trt(self): def load_trt(self, model_dir, use_fp16):
# TODO 你需要的TRT推理的准备 trt_file_name = 'estimator_fp16.plan' if use_fp16 else 'estimator_fp32.plan'
self.flow.decoder.estimator = xxx trt_file_path = os.path.join(model_dir, trt_file_name)
self.flow.decoder.session = xxx if not os.path.isfile(trt_file_path):
raise f"{trt_file_path} does not exist. Please use bin/export_trt.py to generate .plan file"
trt.init_libnvinfer_plugins(None, "")
logger = trt.Logger(trt.Logger.WARNING)
runtime = trt.Runtime(logger)
with open(trt_file_path, 'rb') as f:
serialized_engine = f.read()
engine = runtime.deserialize_cuda_engine(serialized_engine)
self.flow.decoder.estimator_context = engine.create_execution_context()
self.flow.decoder.estimator_engine = engine
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid): def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
with self.llm_context: with self.llm_context:

View File

@@ -159,7 +159,7 @@ class ConditionalDecoder(nn.Module):
_type_: _description_ _type_: _description_
""" """
t = self.time_embeddings(t) t = self.time_embeddings(t).to(t.dtype)
t = self.time_mlp(t) t = self.time_mlp(t)
x = pack([x, mu], "b * t")[0] x = pack([x, mu], "b * t")[0]

View File

@@ -30,6 +30,9 @@ class ConditionalCFM(BASECFM):
# Just change the architecture of the estimator here # Just change the architecture of the estimator here
self.estimator = estimator self.estimator = estimator
self.estimator_context = None
self.estimator_engine = None
@torch.inference_mode() @torch.inference_mode()
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None): def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
"""Forward diffusion """Forward diffusion
@@ -50,7 +53,7 @@ class ConditionalCFM(BASECFM):
shape: (batch_size, n_feats, mel_timesteps) shape: (batch_size, n_feats, mel_timesteps)
""" """
z = torch.randn_like(mu) * temperature z = torch.randn_like(mu) * temperature
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device) t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
if self.t_scheduler == 'cosine': if self.t_scheduler == 'cosine':
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi) t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond) return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
@@ -71,6 +74,7 @@ class ConditionalCFM(BASECFM):
cond: Not used but kept for future purposes cond: Not used but kept for future purposes
""" """
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0] t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
t = t.unsqueeze(dim=0)
# I am storing this because I can later plot it by putting a debugger here and saving it to a file # I am storing this because I can later plot it by putting a debugger here and saving it to a file
# Or in future might add like a return_all_steps flag # Or in future might add like a return_all_steps flag
@@ -96,13 +100,30 @@ class ConditionalCFM(BASECFM):
return sol[-1] return sol[-1]
# TODO def forward_estimator(self, x, mask, mu, t, spks, cond):
def forward_estimator(self): if self.estimator_context is not None:
if isinstance(self.estimator, trt):
assert self.training is False, 'tensorrt cannot be used in training' assert self.training is False, 'tensorrt cannot be used in training'
return xxx bs = x.shape[0]
hs = x.shape[1]
seq_len = x.shape[2]
# assert bs == 1 and hs == 80
ret = torch.empty_like(x)
self.estimator_context.set_input_shape("x", x.shape)
self.estimator_context.set_input_shape("mask", mask.shape)
self.estimator_context.set_input_shape("mu", mu.shape)
self.estimator_context.set_input_shape("t", t.shape)
self.estimator_context.set_input_shape("spks", spks.shape)
self.estimator_context.set_input_shape("cond", cond.shape)
bindings = [x.data_ptr(), mask.data_ptr(), mu.data_ptr(), t.data_ptr(), spks.data_ptr(), cond.data_ptr(), ret.data_ptr()]
for i in range(len(bindings)):
self.estimator_context.set_tensor_address(self.estimator_engine.get_tensor_name(i), bindings[i])
handle = torch.cuda.current_stream().cuda_stream
self.estimator_context.execute_async_v3(stream_handle=handle)
return ret
else: else:
return self.estimator.forward return self.estimator.forward(x, mask, mu, t, spks, cond)
def compute_loss(self, x1, mask, mu, spks=None, cond=None): def compute_loss(self, x1, mask, mu, spks=None, cond=None):
"""Computes diffusion loss """Computes diffusion loss