mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-04 09:29:25 +08:00
Merge branch 'main' of github.com:FunAudioLLM/CosyVoice into main
This commit is contained in:
13
README.md
13
README.md
@@ -31,7 +31,7 @@
|
||||
|
||||
- [x] 2025/08
|
||||
|
||||
- [x] Thanks to the contribution from NVIDIA Yuekai Zhang, add triton trtllm runtime support
|
||||
- [x] Thanks to the contribution from NVIDIA Yuekai Zhang, add triton trtllm runtime support and cosyvoice2 grpo training support
|
||||
|
||||
- [x] 2025/07
|
||||
|
||||
@@ -246,6 +246,17 @@ docker run -d --runtime=nvidia -p 50000:50000 cosyvoice:v1.0 /bin/bash -c "cd /o
|
||||
cd fastapi && python3 client.py --port 50000 --mode <sft|zero_shot|cross_lingual|instruct>
|
||||
```
|
||||
|
||||
#### Using Nvidia TensorRT-LLM for deployment
|
||||
|
||||
Using TensorRT-LLM to accelerate cosyvoice2 llm could give 4x acceleration comparing with huggingface transformers implementation.
|
||||
To quick start:
|
||||
|
||||
``` sh
|
||||
cd runtime/triton_trtllm
|
||||
docker compose up -d
|
||||
```
|
||||
For more details, you could check [here](https://github.com/FunAudioLLM/CosyVoice/tree/main/runtime/triton_trtllm)
|
||||
|
||||
## Discussion & Communication
|
||||
|
||||
You can directly discuss on [Github Issues](https://github.com/FunAudioLLM/CosyVoice/issues).
|
||||
|
||||
@@ -46,6 +46,6 @@ RUN git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
|
||||
|
||||
RUN conda activate ${VENV} && conda install -y -c conda-forge pynini==2.1.5
|
||||
RUN conda activate ${VENV} && cd CosyVoice && \
|
||||
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
|
||||
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com --no-cache-dir
|
||||
|
||||
WORKDIR /workspace/CosyVoice
|
||||
|
||||
6
examples/grpo/cosyvoice2/Dockerfile
Normal file
6
examples/grpo/cosyvoice2/Dockerfile
Normal file
@@ -0,0 +1,6 @@
|
||||
FROM verlai/verl:app-verl0.4-vllm0.8.5-mcore0.12.2-te2.2
|
||||
COPY requirements.txt /myworkspace/requirements.txt
|
||||
RUN pip install -r /myworkspace/requirements.txt
|
||||
RUN pip install -U nvidia-pytriton
|
||||
RUN git clone https://github.com/yuekaizhang/verl.git /myworkspace/verl -b thread && cd /myworkspace/verl && pip install --no-deps -e .
|
||||
RUN git clone https://github.com/yuekaizhang/PytritonSenseVoice.git /myworkspace/PytritonSenseVoice && cd /myworkspace/PytritonSenseVoice && pip install -e .
|
||||
125
examples/grpo/cosyvoice2/README.md
Normal file
125
examples/grpo/cosyvoice2/README.md
Normal file
@@ -0,0 +1,125 @@
|
||||
# CosyVoice2 LLM Reinforcement Learning Recipe
|
||||
|
||||
This recipe demonstrates how to fine-tune the **CosyVoice2** large language model with reinforcement learning algorithms—specifically **GRPO**—using the [veRL](https://github.com/volcengine/verl) framework. Our experiments show that applying GRPO reduces the character error rate (CER) on the CosyVoice3 `zero_shot_zh` set from 4.08% to 3.36%.
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [Environment Setup](#environment-setup)
|
||||
- [Data Preparation](#data-preparation)
|
||||
- [Reward Function & ASR Server](#reward-function--asr-server)
|
||||
- [Training](#training)
|
||||
- [Evaluation](#evaluation)
|
||||
- [Export Model](#export-model)
|
||||
- [Results](#results)
|
||||
- [Acknowledgement](#acknowledgement)
|
||||
|
||||
## Environment Setup
|
||||
We recommend using the pre-built Docker image below. Alternatively, you can manually install the dependencies following the Dockerfile.
|
||||
```bash
|
||||
docker pull soar97/verl:app-verl0.4-vllm0.8.5-mcore0.12.2-te2.2
|
||||
```
|
||||
If Docker is not available, you can refer to `run.sh` `stage -2` to install the dependencies locally.
|
||||
|
||||
## Data Preparation
|
||||
|
||||
`prepare_data.py` expects a JSON/JSONL file with at least the following schema:
|
||||
|
||||
```jsonc
|
||||
{
|
||||
"text": "An example sentence to be synthesized."
|
||||
}
|
||||
```
|
||||
You can download the JSONL files from the metadata directory of the [SparkAudio/voxbox](https://huggingface.co/datasets/SparkAudio/voxbox/tree/main/metadata) dataset on Hugging Face.
|
||||
|
||||
Stage `0` converts raw JSONL files into the parquet format expected by veRL:
|
||||
|
||||
```bash
|
||||
bash run.sh 0 0
|
||||
```
|
||||
Create two JSONL files—`train.jsonl` and `test.jsonl`.
|
||||
The script will then generate two Parquet files:
|
||||
|
||||
```
|
||||
data/parquet_tiny/train.parquet
|
||||
data/parquet_tiny/test.parquet
|
||||
```
|
||||
|
||||
Each sample is automatically wrapped into a CosyVoice2-style prompt so that the LLM learns to output CosyVoice2 speech tokens.
|
||||
|
||||
|
||||
## Reward Function & ASR Server
|
||||
|
||||
To compute rewards, we run a lightweight server that:
|
||||
|
||||
1. Converts generated speech tokens back to a 16 kHz waveform with the **CosyVoice2** pretrained U-Net model.
|
||||
2. Transcribes the waveform with **SenseVoice** ASR.
|
||||
3. Calculates the pinyin-level error rate relative to the ground-truth text and maps it to a score between 0 and 1.
|
||||
|
||||
Start the server (stage `1`) in a dedicated terminal or on a separate GPU:
|
||||
|
||||
```bash
|
||||
bash run.sh 1 1
|
||||
# Triton server listens on ports 8000/8001/8002
|
||||
```
|
||||
|
||||
The custom reward implementation is located in [`reward_tts.py`](./reward_tts.py) and calls the server to obtain the reward score.
|
||||
|
||||
## Training
|
||||
|
||||
Run stage `2` to start GRPO training:
|
||||
|
||||
```bash
|
||||
bash run.sh 2 2
|
||||
```
|
||||
|
||||
Key CLI arguments passed to `verl.trainer.main_ppo`:
|
||||
|
||||
* `algorithm.adv_estimator=grpo` – use GRPO instead of PPO.
|
||||
* `data.train_files=data/parquet_aishell3/train.parquet` and `data.val_files=data/parquet_aishell3/test.parquet`
|
||||
* `custom_reward_function.path=reward_tts.py` – custom reward function described above.
|
||||
|
||||
Adjust `CUDA_VISIBLE_DEVICES`, batch sizes, and other hyperparameters to match your hardware.
|
||||
> [!TIP]
|
||||
> Note: the lm_head bias is disabled during training to make the model compatible with VLLM and Transformers' Qwen model.
|
||||
|
||||
## Evaluation
|
||||
|
||||
After training is complete, collect the sharded FSDP weights and export a Hugging Face-style checkpoint (stage `3`):
|
||||
|
||||
```bash
|
||||
bash run.sh 3 3 # merges weights into $llm_path/merged_hf_model
|
||||
```
|
||||
|
||||
You can then evaluate the model on the CosyVoice3 zero-shot Chinese test set (stage `4`):
|
||||
|
||||
```bash
|
||||
bash run.sh 4 4
|
||||
```
|
||||
|
||||
This command launches distributed inference via `infer_dataset.py` and computes WER with `scripts/compute_wer.sh`.
|
||||
|
||||
> [!TIP]
|
||||
> The script also supports the Seed-TTS test set by setting `dataset=test_zh`.
|
||||
|
||||
## Export Model
|
||||
|
||||
To use the RL-trained model with the official CosyVoice repository:
|
||||
|
||||
```bash
|
||||
bash run.sh 5 5
|
||||
```
|
||||
|
||||
The script converts the Hugging Face checkpoint back into the format expected by the CosyVoice repository.
|
||||
> [!TIP]
|
||||
> However, we observed a slight accuracy drop when using the RL-trained model after conversion, compared with the Hugging Face format.
|
||||
|
||||
## Results
|
||||
|
||||
| Model | Seed-TTS `test_zh` CER | CosyVoice3 `zero_shot_zh` CER | Comment |
|
||||
|-------|------------------------|------------------------------|---------|
|
||||
| CosyVoice2 LLM (official) | 1.45% | 4.08% | See the [paper](https://arxiv.org/abs/2412.10117) |
|
||||
| CosyVoice2 LLM + GRPO | 1.37% | **3.36%** | See the [decoding results](yuekai/official-cosyvoice-llm-grpo-aishell3), Hugging Face-format model |
|
||||
|
||||
## Acknowledgement
|
||||
|
||||
This work was inspired by the implementation in [ch-tts-llasa-rl-grpo](https://github.com/channel-io/ch-tts-llasa-rl-grpo).
|
||||
71
examples/grpo/cosyvoice2/huggingface_to_pretrained.py
Normal file
71
examples/grpo/cosyvoice2/huggingface_to_pretrained.py
Normal file
@@ -0,0 +1,71 @@
|
||||
|
||||
# SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
python3 hf2pretrained.py --hf-cosyvoice2-llm-path /workspace/rl-exp/checkpoint-400 --output-path /workspace/CosyVoice2-0.5B/llm-new.pt
|
||||
"""
|
||||
from argparse import ArgumentParser
|
||||
import torch
|
||||
from safetensors import safe_open
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--hf-cosyvoice2-llm-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The RL trained CosyVoice2 model path in HuggingFace format",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-path",
|
||||
type=str,
|
||||
default="./llm.pt",
|
||||
help="The path to save the llm.pt",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(args.hf_cosyvoice2_llm_path)
|
||||
speech_start_idx = tokenizer.convert_tokens_to_ids("<|s_0|>")
|
||||
cosyvoice2_token_size = 6561 + 3
|
||||
llm_embedding_vocab_size = 2
|
||||
|
||||
hf_tensors = {}
|
||||
with safe_open(f"{args.hf_cosyvoice2_llm_path}/model.safetensors", framework="pt", device="cpu") as f:
|
||||
for k in f.keys():
|
||||
if k.startswith("lm_head.bias"):
|
||||
# RL trained model disable bias for lm_head
|
||||
continue
|
||||
new_k = "llm.model." + k
|
||||
hf_tensors[new_k] = f.get_tensor(k)
|
||||
if k.startswith("lm_head"):
|
||||
hf_tensors["llm_decoder.weight"] = f.get_tensor(k)[speech_start_idx:speech_start_idx + cosyvoice2_token_size]
|
||||
hf_tensors["llm_decoder.bias"] = torch.zeros_like(hf_tensors["llm_decoder.weight"][:, 0])
|
||||
if k.startswith("model.embed_tokens"):
|
||||
hf_tensors["speech_embedding.weight"] = f.get_tensor(k)[speech_start_idx:speech_start_idx + cosyvoice2_token_size]
|
||||
hf_tensors["llm_embedding.weight"] = f.get_tensor(k)[speech_start_idx + cosyvoice2_token_size:speech_start_idx + cosyvoice2_token_size + llm_embedding_vocab_size]
|
||||
|
||||
# use tie_word_embeddings=True
|
||||
hf_tensors["llm.model.model.embed_tokens.weight"] = hf_tensors["llm.model.model.embed_tokens.weight"][:151936]
|
||||
hf_tensors["llm.model.lm_head.weight"] = hf_tensors["llm.model.model.embed_tokens.weight"]
|
||||
|
||||
torch.save(hf_tensors, args.output_path)
|
||||
397
examples/grpo/cosyvoice2/infer_dataset.py
Normal file
397
examples/grpo/cosyvoice2/infer_dataset.py
Normal file
@@ -0,0 +1,397 @@
|
||||
# SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Example Usage
|
||||
dataset=zero_shot_zh
|
||||
output_dir=./outputs_rl_aishell3_step${step}_${dataset}_jit_trt_fp16_reward_tts
|
||||
|
||||
token2wav_path=/workspace/CosyVoice2-0.5B
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
|
||||
torchrun --nproc_per_node=8 \
|
||||
infer_dataset.py \
|
||||
--output-dir $output_dir \
|
||||
--llm-model-name-or-path $llm_path/merged_hf_model \
|
||||
--token2wav-path $token2wav_path \
|
||||
--split-name ${dataset} || exit 1
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice2
|
||||
from cosyvoice.utils.file_utils import load_wav
|
||||
from datasets import load_dataset
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
from torch.utils.data import DataLoader, Dataset, DistributedSampler
|
||||
from tqdm import tqdm
|
||||
import soundfile as sf
|
||||
import s3tokenizer
|
||||
from functools import partial
|
||||
|
||||
sys.path.append("/workspace/CosyVoice/third_party/Matcha-TTS")
|
||||
try:
|
||||
torch.multiprocessing.set_start_method("spawn")
|
||||
except RuntimeError:
|
||||
pass
|
||||
|
||||
|
||||
TEMPLATE = "{% for message in messages %}{%- if message['role'] == 'user' %}{{- '<|im_start|>' + message['role'] + '\n' + 'Convert the text to speech: ' + message['content'] + '<|im_end|>\n'}}{%- elif message['role'] == 'assistant' %}{{- '<|im_start|>' + message['role'] + '\n' + '<|SPEECH_GENERATION_START|>' + message['content']}}{%- endif %}{%- endfor %}"
|
||||
|
||||
|
||||
def audio_decode_cosyvoice2(
|
||||
audio_tokens, prompt_text, prompt_speech_16k, codec_decoder
|
||||
):
|
||||
"""
|
||||
Generate audio from tokens with optional tone and prompt embedding.
|
||||
"""
|
||||
model_inputs_dict = codec_decoder.frontend.frontend_zero_shot(
|
||||
"empty", prompt_text, prompt_speech_16k, 24000
|
||||
)
|
||||
tts_mel, _ = codec_decoder.model.flow.inference(
|
||||
token=audio_tokens.to(codec_decoder.model.device),
|
||||
token_len=torch.tensor([audio_tokens.shape[1]], dtype=torch.int32).to(
|
||||
codec_decoder.model.device
|
||||
),
|
||||
prompt_token=model_inputs_dict["flow_prompt_speech_token"].to(
|
||||
codec_decoder.model.device
|
||||
),
|
||||
prompt_token_len=torch.tensor(
|
||||
[model_inputs_dict["flow_prompt_speech_token_len"]], dtype=torch.int32
|
||||
).to(codec_decoder.model.device),
|
||||
prompt_feat=model_inputs_dict["prompt_speech_feat"].to(
|
||||
codec_decoder.model.device
|
||||
),
|
||||
prompt_feat_len=model_inputs_dict["prompt_speech_feat_len"].to(
|
||||
codec_decoder.model.device
|
||||
),
|
||||
embedding=model_inputs_dict["flow_embedding"].to(codec_decoder.model.device),
|
||||
finalize=True,
|
||||
)
|
||||
|
||||
audio_hat, _ = codec_decoder.model.hift.inference(
|
||||
speech_feat=tts_mel, cache_source=torch.zeros(1, 1, 0)
|
||||
)
|
||||
|
||||
return audio_hat
|
||||
|
||||
|
||||
def extract_speech_ids(speech_tokens_str):
|
||||
"""Extract speech IDs from token strings like <|s_23456|>"""
|
||||
speech_ids = []
|
||||
for token_str in speech_tokens_str:
|
||||
if token_str.startswith('<|s_') and token_str.endswith('|>'):
|
||||
num_str = token_str[4:-2]
|
||||
num = int(num_str)
|
||||
speech_ids.append(num)
|
||||
else:
|
||||
print(f"Unexpected token: {token_str}")
|
||||
return speech_ids
|
||||
|
||||
|
||||
def convert_cosy2_tokens_to_speech_id_str(cosy2_tokens):
|
||||
"""Convert CosyVoice2 tokens to speech IDs string like <|s_23456|>"""
|
||||
speech_id_str = ""
|
||||
for token in cosy2_tokens:
|
||||
speech_id_str += f"<|s_{token}|>"
|
||||
return speech_id_str
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(description="Speech generation using LLM + CosyVoice2")
|
||||
parser.add_argument(
|
||||
"--split-name",
|
||||
type=str,
|
||||
default="wenetspeech4tts",
|
||||
help="huggingface dataset split name, see yuekai/CV3-Eval, yuekai/seed_tts_cosy2",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-dir", required=True, type=str, help="dir to save result"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch-size",
|
||||
default=1,
|
||||
type=int,
|
||||
help="batch size (per-device) for inference",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-workers", type=int, default=1, help="workers for dataloader"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prefetch", type=int, default=5, help="prefetch for dataloader"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--llm-model-name-or-path",
|
||||
required=True,
|
||||
type=str,
|
||||
help="LLM model path (includes both model and tokenizer)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--token2wav-path",
|
||||
required=True,
|
||||
type=str,
|
||||
help="CosyVoice2 token2wav model path",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prompt-text",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The prompt text for CosyVoice2",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prompt-speech-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The path to the prompt speech for CosyVoice2",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--top-p",
|
||||
type=float,
|
||||
default=0.95,
|
||||
help="top p for sampling",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--temperature",
|
||||
type=float,
|
||||
default=0.8,
|
||||
help="temperature for sampling",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--top-k",
|
||||
type=int,
|
||||
default=50,
|
||||
help="top k for sampling",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def data_collator(batch, tokenizer, s3_tokenizer):
|
||||
"""Simplified data collator for batch_size=1 processing"""
|
||||
target_sample_rate = 16000 # CosyVoice2 uses 16kHz for prompt audio
|
||||
device = s3_tokenizer.device if s3_tokenizer is not None else torch.device("cpu")
|
||||
input_ids_list, prompt_audio_list, prompt_text_list = [], [], []
|
||||
mels, prompt_audio_cosy2tokens_list = [], []
|
||||
for item in batch:
|
||||
prompt_text, target_text = (
|
||||
item["prompt_text"],
|
||||
item["target_text"],
|
||||
)
|
||||
prompt_text_list.append(prompt_text)
|
||||
# Combine prompt and target text
|
||||
full_text = prompt_text + target_text
|
||||
|
||||
# get prompt audio for CosyVoice2 (convert to 16kHz)
|
||||
ref_audio_org, ref_sr = (
|
||||
item["prompt_audio"]["array"],
|
||||
item["prompt_audio"]["sampling_rate"],
|
||||
)
|
||||
ref_audio_org = torch.from_numpy(ref_audio_org).float().unsqueeze(0)
|
||||
# ref_audio_org = ref_audio_org.mean(dim=0, keepdim=True)
|
||||
print(ref_audio_org.shape)
|
||||
|
||||
if ref_sr != target_sample_rate:
|
||||
resampler = torchaudio.transforms.Resample(ref_sr, target_sample_rate)
|
||||
ref_audio = resampler(ref_audio_org)
|
||||
else:
|
||||
ref_audio = ref_audio_org
|
||||
|
||||
prompt_audio_list.append(ref_audio)
|
||||
|
||||
if "prompt_audio_cosy2_tokens" in item:
|
||||
prompt_audio_cosy2tokens = item["prompt_audio_cosy2_tokens"]
|
||||
prompt_audio_cosy2tokens_list.append(prompt_audio_cosy2tokens)
|
||||
else:
|
||||
# convert to float first
|
||||
mels.append(s3tokenizer.log_mel_spectrogram(ref_audio.squeeze(0)))
|
||||
|
||||
if len(mels) > 0:
|
||||
mels, mels_lens = s3tokenizer.padding(mels)
|
||||
codes, codes_lens = s3_tokenizer.quantize(mels.to(device), mels_lens.to(device))
|
||||
for i in range(len(codes)):
|
||||
prompt_audio_cosy2tokens_list.append(codes[i, :codes_lens[i].item()])
|
||||
for prompt_audio_cosy2tokens in prompt_audio_cosy2tokens_list:
|
||||
prompt_audio_cosy2_id_str = convert_cosy2_tokens_to_speech_id_str(prompt_audio_cosy2tokens)
|
||||
# Create chat template for LLM generation
|
||||
chat = [
|
||||
{"role": "user", "content": full_text},
|
||||
{"role": "assistant", "content": prompt_audio_cosy2_id_str}
|
||||
]
|
||||
if 'system' in tokenizer.chat_template:
|
||||
tokenizer.chat_template = TEMPLATE
|
||||
input_ids = tokenizer.apply_chat_template(
|
||||
chat,
|
||||
tokenize=True,
|
||||
return_tensors='pt',
|
||||
continue_final_message=True
|
||||
)
|
||||
input_ids_list.append(input_ids.squeeze(0))
|
||||
|
||||
# For batch_size=1, no need to pad
|
||||
if len(input_ids_list) == 1:
|
||||
input_ids = input_ids_list[0].unsqueeze(0)
|
||||
else:
|
||||
# Handle batch > 1 if needed
|
||||
max_len = max([len(input_ids) for input_ids in input_ids_list])
|
||||
input_ids_list = [
|
||||
torch.cat([torch.full((max_len - len(input_ids),), tokenizer.pad_token_id), input_ids])
|
||||
for input_ids in input_ids_list
|
||||
]
|
||||
input_ids = torch.stack(input_ids_list)
|
||||
|
||||
ids = [item["id"] for item in batch]
|
||||
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"ids": ids,
|
||||
"prompt_text": prompt_text_list,
|
||||
"prompt_audio_list": prompt_audio_list,
|
||||
}
|
||||
|
||||
|
||||
def init_distributed():
|
||||
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
||||
local_rank = int(os.environ.get("LOCAL_RANK", 0))
|
||||
rank = int(os.environ.get("RANK", 0))
|
||||
print(
|
||||
"Inference on multiple gpus, this gpu {}".format(local_rank)
|
||||
+ ", rank {}, world_size {}".format(rank, world_size)
|
||||
)
|
||||
torch.cuda.set_device(local_rank)
|
||||
dist.init_process_group("nccl")
|
||||
return world_size, local_rank, rank
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
|
||||
assert torch.cuda.is_available()
|
||||
world_size, local_rank, rank = init_distributed()
|
||||
device = torch.device(f"cuda:{local_rank}")
|
||||
|
||||
# Load LLM model and tokenizer directly
|
||||
tokenizer = AutoTokenizer.from_pretrained(args.llm_model_name_or_path)
|
||||
model = AutoModelForCausalLM.from_pretrained(args.llm_model_name_or_path)
|
||||
model.eval()
|
||||
model.to(device)
|
||||
|
||||
cosyvoice_codec = CosyVoice2(
|
||||
args.token2wav_path, load_jit=True, load_trt=True, fp16=True
|
||||
)
|
||||
if args.prompt_speech_path:
|
||||
prompt_speech_16k = load_wav(args.prompt_speech_path, 16000)
|
||||
else:
|
||||
prompt_speech_16k = None
|
||||
s3_tokenizer = s3tokenizer.load_model("speech_tokenizer_v2_25hz").to(device) if 'zero' in args.split_name else None
|
||||
dataset_name = "yuekai/CV3-Eval" if 'zero' in args.split_name else "yuekai/seed_tts_cosy2"
|
||||
dataset = load_dataset(
|
||||
dataset_name,
|
||||
split=args.split_name,
|
||||
trust_remote_code=True,
|
||||
)
|
||||
|
||||
sampler = DistributedSampler(dataset, num_replicas=world_size, rank=rank)
|
||||
|
||||
dataloader = DataLoader(
|
||||
dataset,
|
||||
batch_size=args.batch_size,
|
||||
sampler=sampler,
|
||||
shuffle=False,
|
||||
num_workers=args.num_workers,
|
||||
prefetch_factor=args.prefetch,
|
||||
collate_fn=partial(data_collator, tokenizer=tokenizer, s3_tokenizer=s3_tokenizer),
|
||||
)
|
||||
|
||||
total_steps = len(dataset)
|
||||
|
||||
if rank == 0:
|
||||
progress_bar = tqdm(total=total_steps, desc="Processing", unit="wavs")
|
||||
|
||||
for batch in dataloader:
|
||||
with torch.no_grad():
|
||||
input_ids = batch["input_ids"].to(device)
|
||||
|
||||
# Generate speech tokens using LLM
|
||||
outputs = model.generate(
|
||||
input_ids,
|
||||
max_new_tokens=2048, # Max length for generation
|
||||
do_sample=True,
|
||||
top_p=args.top_p,
|
||||
temperature=args.temperature,
|
||||
top_k=args.top_k,
|
||||
)
|
||||
|
||||
# Process each sample in the batch
|
||||
for i in range(len(batch["ids"])):
|
||||
# Extract generated tokens (excluding input)
|
||||
input_length = input_ids[i].shape[0]
|
||||
generated_ids = outputs[i][input_length:-1] # Remove last token if needed
|
||||
speech_tokens_str = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
||||
|
||||
# Extract speech IDs from token strings like <|s_23456|>
|
||||
speech_ids = extract_speech_ids(speech_tokens_str)
|
||||
|
||||
if len(speech_ids) == 0:
|
||||
print(f"Warning: No speech tokens generated for sample {batch['ids'][i]}, skipping")
|
||||
continue
|
||||
|
||||
# Convert to tensor for CosyVoice2
|
||||
audio_tokens = torch.tensor(speech_ids, dtype=torch.long, device=device).unsqueeze(0)
|
||||
|
||||
if args.prompt_text is not None:
|
||||
current_prompt_text = args.prompt_text
|
||||
current_prompt_audio = prompt_speech_16k
|
||||
else:
|
||||
current_prompt_text = batch["prompt_text"][i]
|
||||
current_prompt_audio = batch["prompt_audio_list"][i]
|
||||
|
||||
if current_prompt_audio is not None:
|
||||
# Generate audio using CosyVoice2
|
||||
audio_hat = audio_decode_cosyvoice2(
|
||||
audio_tokens,
|
||||
current_prompt_text,
|
||||
current_prompt_audio,
|
||||
cosyvoice_codec,
|
||||
)
|
||||
|
||||
# Convert to numpy and save
|
||||
generated_wave = audio_hat.squeeze(0).cpu().numpy()
|
||||
target_sample_rate = 24000
|
||||
|
||||
utt = batch["ids"][i]
|
||||
sf.write(f"{args.output_dir}/{utt}.wav", generated_wave, target_sample_rate)
|
||||
|
||||
print(f"Generated audio for sample {utt} with {len(speech_ids)} tokens")
|
||||
else:
|
||||
print(f"Warning: No prompt audio available for sample {batch['ids'][i]}, skipping")
|
||||
|
||||
if rank == 0:
|
||||
progress_bar.update(world_size * len(batch["ids"]))
|
||||
|
||||
if rank == 0:
|
||||
progress_bar.close()
|
||||
|
||||
dist.barrier()
|
||||
dist.destroy_process_group()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
86
examples/grpo/cosyvoice2/prepare_data.py
Normal file
86
examples/grpo/cosyvoice2/prepare_data.py
Normal file
@@ -0,0 +1,86 @@
|
||||
# Copyright 2024 Bytedance Ltd. and/or its affiliates
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Preprocess the Text to Speech dataset to parquet format
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import os
|
||||
import re
|
||||
|
||||
import datasets
|
||||
|
||||
from verl.utils.hdfs_io import copy, makedirs
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--train_file", required=True, help="Path to training JSON/JSONL file")
|
||||
parser.add_argument("--test_file", required=True, help="Path to test JSON/JSONL file")
|
||||
parser.add_argument("--local_dir", default=None, required=True)
|
||||
parser.add_argument("--hdfs_dir", default=None)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Load datasets from local JSON files
|
||||
train_dataset = datasets.load_dataset("json", data_files=args.train_file)['train']
|
||||
test_dataset = datasets.load_dataset("json", data_files=args.test_file)['train']
|
||||
|
||||
# add a row to each data item that represents a unique id
|
||||
def make_map_fn(split):
|
||||
def process_fn(example, idx):
|
||||
text = example.pop("text")
|
||||
|
||||
# use cosyvoice2 official huggingface compatible checkpoint template
|
||||
question = text
|
||||
answer = ""
|
||||
|
||||
data = {
|
||||
"data_source": f"{args.train_file}_{args.test_file}", # Use file names as data source
|
||||
"prompt": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": question,
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": answer,
|
||||
},
|
||||
],
|
||||
"ability": "text-to-speech",
|
||||
"reward_model": {"style": "rule", "ground_truth": text},
|
||||
"extra_info": {
|
||||
"split": split,
|
||||
"index": idx,
|
||||
"text": text,
|
||||
},
|
||||
}
|
||||
return data
|
||||
|
||||
return process_fn
|
||||
|
||||
train_dataset = train_dataset.map(function=make_map_fn("train"), with_indices=True)
|
||||
test_dataset = test_dataset.map(function=make_map_fn("test"), with_indices=True)
|
||||
|
||||
local_dir = args.local_dir
|
||||
hdfs_dir = args.hdfs_dir
|
||||
|
||||
print(train_dataset)
|
||||
print(test_dataset)
|
||||
train_dataset.to_parquet(os.path.join(local_dir, "train.parquet"))
|
||||
test_dataset.to_parquet(os.path.join(local_dir, "test.parquet"))
|
||||
|
||||
if hdfs_dir is not None:
|
||||
makedirs(hdfs_dir)
|
||||
|
||||
copy(src=local_dir, dst=hdfs_dir)
|
||||
135
examples/grpo/cosyvoice2/pretrained_to_huggingface.py
Normal file
135
examples/grpo/cosyvoice2/pretrained_to_huggingface.py
Normal file
@@ -0,0 +1,135 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Usage: Instruct TTS
|
||||
python3 infer.py \
|
||||
--token2wav-path /workspace/CosyVoice2-0.5B \
|
||||
--prompt-text "吃燕窝就选燕之屋,本节目由26年专注高品质燕窝的燕之屋冠名播出。豆奶牛奶换着喝,营养更均衡,本节目由豆本豆豆奶特约播出。" \
|
||||
--prompt-speech-path ./assets/prompt_audio.wav \
|
||||
--model-path ./transformers_cosyvoice2_llm \
|
||||
--input-text "用四川话说<|endofprompt|>扁担长,板凳宽,扁担绑在板凳上。吃葡萄不吐葡萄皮,不吃葡萄倒吐葡萄皮。"
|
||||
"""
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice2
|
||||
import sys
|
||||
from argparse import ArgumentParser
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
import torch
|
||||
|
||||
sys.path.append("/workspace/CosyVoice/third_party/Matcha-TTS")
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = ArgumentParser()
|
||||
|
||||
parser.add_argument(
|
||||
"--pretrained-cosyvoice2-path",
|
||||
type=str,
|
||||
default="/workspace/CosyVoice2-0.5B",
|
||||
help="Token2Wav path, default to %(default)r",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save-path",
|
||||
type=str,
|
||||
default='./transformers_cosyvoice2_llm',
|
||||
help="The path to save the model",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
cosy2_model = CosyVoice2(
|
||||
args.pretrained_cosyvoice2_path, load_jit=False, load_trt=False, fp16=False
|
||||
)
|
||||
|
||||
llm = cosy2_model.model.llm.llm.model
|
||||
|
||||
speech_embedding = cosy2_model.model.llm.speech_embedding
|
||||
llm_decoder = cosy2_model.model.llm.llm_decoder
|
||||
llm_embedding = cosy2_model.model.llm.llm_embedding
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(f"{args.pretrained_cosyvoice2_path}/CosyVoice-BlankEN")
|
||||
special_tokens = {
|
||||
'eos_token': '<|endoftext|>',
|
||||
'pad_token': '<|endoftext|>',
|
||||
'additional_special_tokens': [
|
||||
'<|im_start|>', '<|im_end|>', '<|endofprompt|>',
|
||||
'[breath]', '<strong>', '</strong>', '[noise]',
|
||||
'[laughter]', '[cough]', '[clucking]', '[accent]',
|
||||
'[quick_breath]',
|
||||
"<laughter>", "</laughter>",
|
||||
"[hissing]", "[sigh]", "[vocalized-noise]",
|
||||
"[lipsmack]", "[mn]"
|
||||
]
|
||||
}
|
||||
tokenizer.add_special_tokens(special_tokens)
|
||||
|
||||
original_tokenizer_vocab_size = len(tokenizer)
|
||||
cosyvoice2_token_size = 6561
|
||||
new_tokens = [f"<|s_{i}|>" for i in range(cosyvoice2_token_size)] + [
|
||||
"<|eos1|>", "<|eos2|>", "<|eos3|>", "<|sos|>", "<|task_id|>"
|
||||
]
|
||||
num_added_tokens = tokenizer.add_tokens(new_tokens)
|
||||
|
||||
llm.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=128)
|
||||
vocab_size = llm.get_input_embeddings().weight.shape[0]
|
||||
|
||||
feature_size = speech_embedding.embedding_dim
|
||||
new_lm_head = torch.nn.Linear(in_features=feature_size, out_features=vocab_size, bias=True)
|
||||
|
||||
with torch.no_grad():
|
||||
# set the weight and bias of the new lm_head to 0
|
||||
new_lm_head.weight.data.zero_()
|
||||
# make bias value -inf
|
||||
new_lm_head.bias.data.fill_(-float('inf'))
|
||||
new_lm_head.weight[original_tokenizer_vocab_size:original_tokenizer_vocab_size + cosyvoice2_token_size + 3] = llm_decoder.weight
|
||||
new_lm_head.bias[original_tokenizer_vocab_size:original_tokenizer_vocab_size + cosyvoice2_token_size + 3] = llm_decoder.bias
|
||||
|
||||
llm.lm_head = new_lm_head
|
||||
input_embeddings = llm.get_input_embeddings()
|
||||
|
||||
with torch.no_grad():
|
||||
input_embeddings.weight[original_tokenizer_vocab_size:original_tokenizer_vocab_size + cosyvoice2_token_size + 3] = speech_embedding.weight
|
||||
input_embeddings.weight[original_tokenizer_vocab_size + cosyvoice2_token_size + 3:original_tokenizer_vocab_size + cosyvoice2_token_size + 3 + 2] = llm_embedding.weight
|
||||
|
||||
eos_token_ids = [original_tokenizer_vocab_size + cosyvoice2_token_size,
|
||||
original_tokenizer_vocab_size + cosyvoice2_token_size + 1,
|
||||
original_tokenizer_vocab_size + cosyvoice2_token_size + 2]
|
||||
llm.generation_config.eos_token_id = eos_token_ids
|
||||
llm.generation_config.temperature = 1.0
|
||||
llm.generation_config.top_p = 0.8
|
||||
llm.generation_config.top_k = 25
|
||||
|
||||
llm.config.eos_token_id = original_tokenizer_vocab_size + cosyvoice2_token_size
|
||||
llm.config.vocab_size = vocab_size
|
||||
llm.config.tie_word_embeddings = False
|
||||
llm.config.use_bias = True
|
||||
llm.to(torch.bfloat16)
|
||||
llm.save_pretrained(args.save_path)
|
||||
|
||||
TEMPLATE = (
|
||||
"{%- for message in messages %}"
|
||||
"{%- if message['role'] == 'user' %}"
|
||||
"{{- '<|sos|>' + message['content'] + '<|task_id|>' }}"
|
||||
"{%- elif message['role'] == 'assistant' %}"
|
||||
"{{- message['content']}}"
|
||||
"{%- endif %}"
|
||||
"{%- endfor %}"
|
||||
)
|
||||
tokenizer.chat_template = TEMPLATE
|
||||
tokenizer.save_pretrained(args.save_path)
|
||||
31
examples/grpo/cosyvoice2/requirements.txt
Normal file
31
examples/grpo/cosyvoice2/requirements.txt
Normal file
@@ -0,0 +1,31 @@
|
||||
conformer==0.3.2
|
||||
diffusers==0.29.0
|
||||
gdown==5.1.0
|
||||
gradio
|
||||
hydra-core==1.3.2
|
||||
HyperPyYAML==1.2.2
|
||||
inflect==7.3.1
|
||||
librosa==0.10.2
|
||||
lightning==2.2.4
|
||||
matplotlib==3.7.5
|
||||
modelscope==1.15.0
|
||||
networkx==3.1
|
||||
omegaconf==2.3.0
|
||||
onnx==1.16.0
|
||||
onnxruntime-gpu==1.18.0
|
||||
protobuf==4.25
|
||||
pydantic==2.7.0
|
||||
pyworld==0.3.4
|
||||
rich==13.7.1
|
||||
soundfile==0.12.1
|
||||
tensorboard==2.14.0
|
||||
wget==3.2
|
||||
WeTextProcessing==1.0.3
|
||||
s3tokenizer
|
||||
tensorrt
|
||||
sherpa_onnx
|
||||
jiwer
|
||||
zhon
|
||||
numpy==1.25.2
|
||||
pypinyin
|
||||
openai-whisper
|
||||
233
examples/grpo/cosyvoice2/reward_tts.py
Normal file
233
examples/grpo/cosyvoice2/reward_tts.py
Normal file
@@ -0,0 +1,233 @@
|
||||
# SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Reward calculation for CosyVoice2-0.5B.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import re
|
||||
import json
|
||||
import time
|
||||
import argparse
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import requests
|
||||
|
||||
|
||||
REWARD_SERVER_URL = "http://localhost:8000/v2/models/token2wav_asr/infer"
|
||||
|
||||
|
||||
def _parse_ids(token_str: str) -> List[int]:
|
||||
return [int(t) for t in re.findall(r"<\|s_(\d+)\|>", token_str)]
|
||||
|
||||
|
||||
def _remote_reward(tokens: List[int], ground_truth: str, timeout: float = 200.0) -> float:
|
||||
"""Send token IDs and ground-truth text to the Triton server and get reward."""
|
||||
|
||||
tokens_arr = np.array(tokens, dtype=np.int32).reshape(1, -1)
|
||||
lens_arr = np.array([[tokens_arr.shape[1]]], dtype=np.int32)
|
||||
|
||||
gt_arr = np.array([ground_truth.encode("utf-8")], dtype=object)
|
||||
|
||||
payload = {
|
||||
"inputs": [
|
||||
{
|
||||
"name": "TOKENS",
|
||||
"shape": list(tokens_arr.shape),
|
||||
"datatype": "INT32",
|
||||
"data": tokens_arr.tolist(),
|
||||
},
|
||||
{
|
||||
"name": "TOKEN_LENS",
|
||||
"shape": list(lens_arr.shape),
|
||||
"datatype": "INT32",
|
||||
"data": lens_arr.tolist(),
|
||||
},
|
||||
{
|
||||
"name": "GT_TEXT",
|
||||
"shape": [1, 1],
|
||||
"datatype": "BYTES",
|
||||
"data": [ground_truth],
|
||||
},
|
||||
]
|
||||
}
|
||||
rsp = requests.post(
|
||||
REWARD_SERVER_URL,
|
||||
headers={"Content-Type": "application/json"},
|
||||
json=payload,
|
||||
timeout=timeout,
|
||||
verify=False,
|
||||
params={"request_id": "0"},
|
||||
)
|
||||
rsp.raise_for_status()
|
||||
result = rsp.json()
|
||||
|
||||
try:
|
||||
# Reward is returned as the first output
|
||||
return float(result["outputs"][0]["data"][0])
|
||||
except (KeyError, IndexError, TypeError):
|
||||
return 0.0
|
||||
|
||||
|
||||
def compute_score(
|
||||
data_source: str,
|
||||
solution_str: str,
|
||||
ground_truth: str,
|
||||
extra_info: dict | None = None,
|
||||
*,
|
||||
debug_dump: bool = False,
|
||||
) -> float:
|
||||
"""Return reward in [0, 1] using the Triton ASR service.
|
||||
|
||||
The reward is based on the pinyin-level WER between the ASR transcript
|
||||
produced from *solution_str* and the provided *ground_truth* text.
|
||||
"""
|
||||
|
||||
# Decode token IDs
|
||||
ids = _parse_ids(solution_str)
|
||||
|
||||
# Query remote server for reward
|
||||
try:
|
||||
reward = _remote_reward(ids, ground_truth)
|
||||
except Exception as e:
|
||||
reward = 0.0
|
||||
|
||||
if debug_dump:
|
||||
print(
|
||||
f"\033[92m[{data_source}] Remote reward: {reward:.4f}\033[0m"
|
||||
)
|
||||
|
||||
return reward
|
||||
|
||||
|
||||
# CLI quick test
|
||||
if __name__ == "__main__":
|
||||
import sys
|
||||
|
||||
def get_args():
|
||||
"""Parse command line arguments."""
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Test TTS CER scoring with data from JSONL file",
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--input", "-i",
|
||||
type=str,
|
||||
default="data/emilia_zh-cosy-tiny-test.jsonl",
|
||||
help="Path to input JSONL file"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--max-samples", "-n",
|
||||
type=int,
|
||||
default=None,
|
||||
help="Maximum number of samples to process (default: all)"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--no-interactive",
|
||||
action="store_true",
|
||||
help="Run in non-interactive mode (process all samples without prompts)"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--debug",
|
||||
action="store_true",
|
||||
help="Enable debug mode"
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
def load_jsonl(file_path: str):
|
||||
"""Load data from jsonl file."""
|
||||
data = []
|
||||
with open(file_path, 'r', encoding='utf-8') as f:
|
||||
for line in f:
|
||||
data.append(json.loads(line.strip()))
|
||||
return data
|
||||
|
||||
def code_to_solution_str(code_list: List[int]) -> str:
|
||||
"""Convert code list to solution string format."""
|
||||
return ''.join([f"<|s_{code}|>" for code in code_list])
|
||||
|
||||
# Parse command line arguments
|
||||
args = get_args()
|
||||
|
||||
try:
|
||||
# Load data from jsonl file
|
||||
print(f"Loading data from: {args.input}")
|
||||
data_list = load_jsonl(args.input)
|
||||
print(f"Loaded {len(data_list)} samples")
|
||||
|
||||
# Limit samples if specified
|
||||
if args.max_samples is not None:
|
||||
data_list = data_list[:args.max_samples]
|
||||
print(f"Processing first {len(data_list)} samples (limited by --max-samples)")
|
||||
|
||||
# Process each sample
|
||||
begin_time = time.time()
|
||||
for i, sample in enumerate(data_list):
|
||||
print(f"\n--- Sample {i+1}/{len(data_list)} ---")
|
||||
print(f"Index: {sample.get('index', 'unknown')}")
|
||||
print(f"Text: {sample['text']}")
|
||||
|
||||
# Extract required fields
|
||||
code_list = sample['code']
|
||||
ground_truth = sample['text']
|
||||
data_source = sample.get('index', f'sample_{i}') # Use index as data_source
|
||||
|
||||
# Convert code list to solution string
|
||||
solution_str = code_to_solution_str(code_list)
|
||||
print(f"Solution tokens: {len(code_list)} tokens")
|
||||
if args.debug:
|
||||
print(f"Solution string: {solution_str}")
|
||||
else:
|
||||
print(f"Solution string preview: {solution_str[:100]}..." if len(solution_str) > 100 else f"Solution string: {solution_str}")
|
||||
|
||||
# Call compute_score function
|
||||
try:
|
||||
score = compute_score(
|
||||
data_source=data_source,
|
||||
solution_str=solution_str,
|
||||
ground_truth=ground_truth,
|
||||
extra_info=None,
|
||||
debug_dump=args.debug
|
||||
)
|
||||
print(f"Final Score: {score:.4f}")
|
||||
except Exception as e:
|
||||
print(f"Error computing score: {e}")
|
||||
|
||||
# Ask user if they want to continue (for interactive mode)
|
||||
if not args.no_interactive and i < len(data_list) - 1:
|
||||
try:
|
||||
response = input("\nPress Enter to continue or 'q' to quit: ").strip().lower()
|
||||
if response == 'q':
|
||||
break
|
||||
except KeyboardInterrupt:
|
||||
print("\nStopped by user")
|
||||
break
|
||||
|
||||
print(f"\nProcessed {min(i+1, len(data_list))} samples")
|
||||
end_time = time.time()
|
||||
print(f"Time taken: {end_time - begin_time} seconds")
|
||||
except FileNotFoundError:
|
||||
print(f"Error: File not found - {args.input}")
|
||||
print("Please check the file path or use --input to specify correct path")
|
||||
print("Run with --help for usage information")
|
||||
except Exception as e:
|
||||
print(f"Error: {e}")
|
||||
159
examples/grpo/cosyvoice2/run.sh
Normal file
159
examples/grpo/cosyvoice2/run.sh
Normal file
@@ -0,0 +1,159 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
set -eou pipefail
|
||||
|
||||
stage=-1
|
||||
stop_stage=4
|
||||
|
||||
log() {
|
||||
# This function is from espnet
|
||||
local fname=${BASH_SOURCE[1]##*/}
|
||||
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
|
||||
}
|
||||
|
||||
export PYTHONPATH=/workspace/CosyVoice
|
||||
model_scope_model_path=./CosyVoice2-0.5B
|
||||
sft_model_path=./transformers_cosyvoice2_llm
|
||||
|
||||
if [ $stage -le -2 ] && [ $stop_stage -ge -2 ]; then
|
||||
log "stage -2: install dependencies locally if pre-built docker image is not available"
|
||||
conda create -n cosyvoice2 python=3.10 -y
|
||||
conda activate cosyvoice2
|
||||
# install verl
|
||||
git clone https://github.com/yuekaizhang/verl.git -b thread
|
||||
cd verl
|
||||
USE_MEGATRON=0 bash scripts/install_vllm_sglang_mcore.sh
|
||||
pip install --no-deps -e .
|
||||
cd -
|
||||
# install requirements
|
||||
pip install -r requirements.txt
|
||||
pip install -U nvidia-pytriton
|
||||
git clone https://github.com/yuekaizhang/PytritonSenseVoice.git && cd PytritonSenseVoice && pip install -e .
|
||||
fi
|
||||
|
||||
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
|
||||
log "stage -1: download official CosyVoice2-0.5B LLM model and convert to huggingface compatible checkpoint"
|
||||
modelscope download --model iic/CosyVoice2-0.5B --local_dir $model_scope_model_path
|
||||
python3 pretrained_to_huggingface.py \
|
||||
--pretrained-cosyvoice2-path $model_scope_model_path \
|
||||
--save-path $sft_model_path
|
||||
|
||||
# Or, you could use the following command to download the huggingface compatible checkpoint
|
||||
# huggingface-cli download --local-dir $sft_model_path yuekai/cosyvoice2_llm
|
||||
|
||||
# Note: we remove the lm_head's bias to make it compatible with the Qwen2.5-0.5B model in Transformers.
|
||||
fi
|
||||
|
||||
data_dir=data/parquet_aishell3
|
||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||
log "stage 0: prepare data into verl format"
|
||||
mkdir -p $data_dir
|
||||
wget -O data/aishell-3.jsonl https://huggingface.co/datasets/SparkAudio/voxbox/resolve/main/metadata/aishell-3.jsonl
|
||||
# total 88035 samples
|
||||
head -n 80000 data/aishell-3.jsonl > data/train.jsonl
|
||||
tail -n 100 data/aishell-3.jsonl > data/test.jsonl
|
||||
python prepare_data.py \
|
||||
--train_file data/train.jsonl \
|
||||
--test_file data/test.jsonl \
|
||||
--local_dir $data_dir
|
||||
fi
|
||||
|
||||
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
|
||||
log "stage 1: start token2wav asr server for reward function"
|
||||
python3 token2wav_asr_server.py --number-of-devices 8
|
||||
fi
|
||||
|
||||
exp_name=official_llm_aishell3_grpo
|
||||
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
log "stage 2: grpo train"
|
||||
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
|
||||
export MKL_SERVICE_FORCE_INTEL=TRUE
|
||||
n_gpus_per_node=8
|
||||
micro_batch_size=4
|
||||
train_batch_size=32
|
||||
python3 -m verl.trainer.main_ppo \
|
||||
algorithm.adv_estimator=grpo \
|
||||
data.train_files=$data_dir/train.parquet \
|
||||
data.val_files=$data_dir/test.parquet \
|
||||
data.train_batch_size=$train_batch_size \
|
||||
data.max_prompt_length=1024 \
|
||||
data.max_response_length=512 \
|
||||
data.truncation='error' \
|
||||
actor_rollout_ref.model.use_remove_padding=False \
|
||||
actor_rollout_ref.model.path=$sft_model_path \
|
||||
actor_rollout_ref.actor.optim.lr=1e-6 \
|
||||
actor_rollout_ref.actor.ppo_mini_batch_size=32 \
|
||||
actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=$micro_batch_size \
|
||||
actor_rollout_ref.actor.use_kl_loss=False \
|
||||
actor_rollout_ref.model.enable_gradient_checkpointing=True \
|
||||
actor_rollout_ref.actor.fsdp_config.param_offload=False \
|
||||
actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \
|
||||
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=$micro_batch_size \
|
||||
actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
|
||||
actor_rollout_ref.rollout.name=vllm \
|
||||
actor_rollout_ref.rollout.gpu_memory_utilization=0.6 \
|
||||
actor_rollout_ref.rollout.do_sample=true \
|
||||
actor_rollout_ref.rollout.temperature=0.8 \
|
||||
actor_rollout_ref.rollout.top_p=0.95 \
|
||||
actor_rollout_ref.rollout.top_k=25 \
|
||||
actor_rollout_ref.rollout.n=4 \
|
||||
actor_rollout_ref.rollout.val_kwargs.do_sample=true \
|
||||
actor_rollout_ref.rollout.val_kwargs.temperature=0.8 \
|
||||
actor_rollout_ref.rollout.val_kwargs.top_p=0.95 \
|
||||
actor_rollout_ref.rollout.val_kwargs.top_k=25 \
|
||||
reward_model.reward_manager=prime \
|
||||
custom_reward_function.path=reward_tts.py \
|
||||
custom_reward_function.name=compute_score \
|
||||
trainer.project_name='cosyvoice2_grpo' \
|
||||
trainer.experiment_name=$exp_name \
|
||||
trainer.logger=['console','wandb'] \
|
||||
trainer.n_gpus_per_node=$n_gpus_per_node \
|
||||
trainer.nnodes=1 \
|
||||
trainer.save_freq=100 \
|
||||
trainer.test_freq=100 \
|
||||
trainer.resume_mode='auto' \
|
||||
trainer.total_epochs=1 \
|
||||
trainer.val_before_train=False
|
||||
fi
|
||||
|
||||
steps=(100 200 300 400 500)
|
||||
for step in ${steps[@]}; do
|
||||
llm_path=./checkpoints/cosyvoice2_grpo/$exp_name/global_step_${step}
|
||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
log "stage 3: merge the model"
|
||||
python -m verl.model_merger merge \
|
||||
--backend fsdp \
|
||||
--local_dir $llm_path/actor \
|
||||
--target_dir $llm_path/merged_hf_model || exit 1
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
log "stage 4: Test the model"
|
||||
dataset=zero_shot_zh # from CosyVoice3 test set
|
||||
# dataset=test_zh # from seed_tts test set
|
||||
output_dir=./outputs_${exp_name}_${step}_${dataset}
|
||||
|
||||
token2wav_path=/workspace/CosyVoice2-0.5B
|
||||
model_path=$llm_path/merged_hf_model
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
|
||||
torchrun --nproc_per_node=8 \
|
||||
infer_dataset.py \
|
||||
--output-dir $output_dir \
|
||||
--llm-model-name-or-path $model_path \
|
||||
--token2wav-path $token2wav_path \
|
||||
--split-name ${dataset} || exit 1
|
||||
|
||||
bash scripts/compute_wer.sh $output_dir ${dataset}
|
||||
fi
|
||||
done
|
||||
|
||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
log "stage 5: Convert the RL trained model to CosyVoice repo format"
|
||||
python3 huggingface_to_pretrained.py \
|
||||
--hf-cosyvoice2-llm-path $llm_path/merged_hf_model \
|
||||
--output-path /workspace/CosyVoice2-0.5B/llm-new.pt
|
||||
# You need to manually move the llm-new.pt to overwrite /workspace/CosyVoice2-0.5B/llm.pt
|
||||
# However, we found that the RL trained model accuracy would slightly drop after this conversion.
|
||||
# Please be careful or use the huggingface format inference code.
|
||||
fi
|
||||
33
examples/grpo/cosyvoice2/scripts/compute_wer.sh
Normal file
33
examples/grpo/cosyvoice2/scripts/compute_wer.sh
Normal file
@@ -0,0 +1,33 @@
|
||||
wav_dir=$1
|
||||
wav_files=$(ls $wav_dir/*.wav)
|
||||
# if wav_files is empty, then exit
|
||||
if [ -z "$wav_files" ]; then
|
||||
exit 1
|
||||
fi
|
||||
split_name=$2
|
||||
model_path=models/sherpa-onnx-paraformer-zh-2023-09-14
|
||||
|
||||
if [ ! -d $model_path ]; then
|
||||
pip install sherpa-onnx
|
||||
wget -nc https://github.com/k2-fsa/sherpa-onnx/releases/download/asr-models/sherpa-onnx-paraformer-zh-2023-09-14.tar.bz2
|
||||
mkdir models
|
||||
tar xvf sherpa-onnx-paraformer-zh-2023-09-14.tar.bz2 -C models
|
||||
fi
|
||||
|
||||
python3 scripts/offline-decode-files.py \
|
||||
--tokens=$model_path/tokens.txt \
|
||||
--paraformer=$model_path/model.int8.onnx \
|
||||
--num-threads=2 \
|
||||
--decoding-method=greedy_search \
|
||||
--debug=false \
|
||||
--sample-rate=24000 \
|
||||
--log-dir $wav_dir \
|
||||
--feature-dim=80 \
|
||||
--split-name $split_name \
|
||||
--name sherpa_onnx \
|
||||
$wav_files
|
||||
|
||||
# python3 scripts/paraformer-pytriton-client.py \
|
||||
# --log-dir $wav_dir \
|
||||
# --split-name $split_name \
|
||||
# $wav_files
|
||||
756
examples/grpo/cosyvoice2/scripts/offline-decode-files.py
Normal file
756
examples/grpo/cosyvoice2/scripts/offline-decode-files.py
Normal file
@@ -0,0 +1,756 @@
|
||||
#!/usr/bin/env python3
|
||||
#
|
||||
# Copyright (c) 2023 by manyeyes
|
||||
# Copyright (c) 2023 Xiaomi Corporation
|
||||
|
||||
"""
|
||||
This file demonstrates how to use sherpa-onnx Python API to transcribe
|
||||
file(s) with a non-streaming model.
|
||||
|
||||
(1) For paraformer
|
||||
|
||||
./python-api-examples/offline-decode-files.py \
|
||||
--tokens=/path/to/tokens.txt \
|
||||
--paraformer=/path/to/paraformer.onnx \
|
||||
--num-threads=2 \
|
||||
--decoding-method=greedy_search \
|
||||
--debug=false \
|
||||
--sample-rate=16000 \
|
||||
--feature-dim=80 \
|
||||
/path/to/0.wav \
|
||||
/path/to/1.wav
|
||||
|
||||
(2) For transducer models from icefall
|
||||
|
||||
./python-api-examples/offline-decode-files.py \
|
||||
--tokens=/path/to/tokens.txt \
|
||||
--encoder=/path/to/encoder.onnx \
|
||||
--decoder=/path/to/decoder.onnx \
|
||||
--joiner=/path/to/joiner.onnx \
|
||||
--num-threads=2 \
|
||||
--decoding-method=greedy_search \
|
||||
--debug=false \
|
||||
--sample-rate=16000 \
|
||||
--feature-dim=80 \
|
||||
/path/to/0.wav \
|
||||
/path/to/1.wav
|
||||
|
||||
(3) For CTC models from NeMo
|
||||
|
||||
python3 ./python-api-examples/offline-decode-files.py \
|
||||
--tokens=./sherpa-onnx-nemo-ctc-en-citrinet-512/tokens.txt \
|
||||
--nemo-ctc=./sherpa-onnx-nemo-ctc-en-citrinet-512/model.onnx \
|
||||
--num-threads=2 \
|
||||
--decoding-method=greedy_search \
|
||||
--debug=false \
|
||||
./sherpa-onnx-nemo-ctc-en-citrinet-512/test_wavs/0.wav \
|
||||
./sherpa-onnx-nemo-ctc-en-citrinet-512/test_wavs/1.wav \
|
||||
./sherpa-onnx-nemo-ctc-en-citrinet-512/test_wavs/8k.wav
|
||||
|
||||
(4) For Whisper models
|
||||
|
||||
python3 ./python-api-examples/offline-decode-files.py \
|
||||
--whisper-encoder=./sherpa-onnx-whisper-base.en/base.en-encoder.int8.onnx \
|
||||
--whisper-decoder=./sherpa-onnx-whisper-base.en/base.en-decoder.int8.onnx \
|
||||
--tokens=./sherpa-onnx-whisper-base.en/base.en-tokens.txt \
|
||||
--whisper-task=transcribe \
|
||||
--num-threads=1 \
|
||||
./sherpa-onnx-whisper-base.en/test_wavs/0.wav \
|
||||
./sherpa-onnx-whisper-base.en/test_wavs/1.wav \
|
||||
./sherpa-onnx-whisper-base.en/test_wavs/8k.wav
|
||||
|
||||
(5) For CTC models from WeNet
|
||||
|
||||
python3 ./python-api-examples/offline-decode-files.py \
|
||||
--wenet-ctc=./sherpa-onnx-zh-wenet-wenetspeech/model.onnx \
|
||||
--tokens=./sherpa-onnx-zh-wenet-wenetspeech/tokens.txt \
|
||||
./sherpa-onnx-zh-wenet-wenetspeech/test_wavs/0.wav \
|
||||
./sherpa-onnx-zh-wenet-wenetspeech/test_wavs/1.wav \
|
||||
./sherpa-onnx-zh-wenet-wenetspeech/test_wavs/8k.wav
|
||||
|
||||
(6) For tdnn models of the yesno recipe from icefall
|
||||
|
||||
python3 ./python-api-examples/offline-decode-files.py \
|
||||
--sample-rate=8000 \
|
||||
--feature-dim=23 \
|
||||
--tdnn-model=./sherpa-onnx-tdnn-yesno/model-epoch-14-avg-2.onnx \
|
||||
--tokens=./sherpa-onnx-tdnn-yesno/tokens.txt \
|
||||
./sherpa-onnx-tdnn-yesno/test_wavs/0_0_0_1_0_0_0_1.wav \
|
||||
./sherpa-onnx-tdnn-yesno/test_wavs/0_0_1_0_0_0_1_0.wav \
|
||||
./sherpa-onnx-tdnn-yesno/test_wavs/0_0_1_0_0_1_1_1.wav
|
||||
|
||||
Please refer to
|
||||
https://k2-fsa.github.io/sherpa/onnx/index.html
|
||||
to install sherpa-onnx and to download non-streaming pre-trained models
|
||||
used in this file.
|
||||
"""
|
||||
import argparse
|
||||
import time
|
||||
import wave
|
||||
from pathlib import Path
|
||||
from typing import List, Tuple, Dict, Iterable, TextIO, Union
|
||||
|
||||
import numpy as np
|
||||
import sherpa_onnx
|
||||
import soundfile as sf
|
||||
from datasets import load_dataset
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
import kaldialign
|
||||
from zhon.hanzi import punctuation
|
||||
import string
|
||||
punctuation_all = punctuation + string.punctuation
|
||||
Pathlike = Union[str, Path]
|
||||
|
||||
|
||||
def remove_punctuation(text: str) -> str:
|
||||
for x in punctuation_all:
|
||||
if x == '\'':
|
||||
continue
|
||||
text = text.replace(x, '')
|
||||
return text
|
||||
|
||||
|
||||
def store_transcripts(
|
||||
filename: Pathlike, texts: Iterable[Tuple[str, str, str]], char_level: bool = False
|
||||
) -> None:
|
||||
"""Save predicted results and reference transcripts to a file.
|
||||
|
||||
Args:
|
||||
filename:
|
||||
File to save the results to.
|
||||
texts:
|
||||
An iterable of tuples. The first element is the cur_id, the second is
|
||||
the reference transcript and the third element is the predicted result.
|
||||
If it is a multi-talker ASR system, the ref and hyp may also be lists of
|
||||
strings.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
with open(filename, "w", encoding="utf8") as f:
|
||||
for cut_id, ref, hyp in texts:
|
||||
if char_level:
|
||||
ref = list("".join(ref))
|
||||
hyp = list("".join(hyp))
|
||||
print(f"{cut_id}:\tref={ref}", file=f)
|
||||
print(f"{cut_id}:\thyp={hyp}", file=f)
|
||||
|
||||
|
||||
def write_error_stats(
|
||||
f: TextIO,
|
||||
test_set_name: str,
|
||||
results: List[Tuple[str, str]],
|
||||
enable_log: bool = True,
|
||||
compute_CER: bool = False,
|
||||
sclite_mode: bool = False,
|
||||
) -> float:
|
||||
"""Write statistics based on predicted results and reference transcripts.
|
||||
|
||||
It will write the following to the given file:
|
||||
|
||||
- WER
|
||||
- number of insertions, deletions, substitutions, corrects and total
|
||||
reference words. For example::
|
||||
|
||||
Errors: 23 insertions, 57 deletions, 212 substitutions, over 2606
|
||||
reference words (2337 correct)
|
||||
|
||||
- The difference between the reference transcript and predicted result.
|
||||
An instance is given below::
|
||||
|
||||
THE ASSOCIATION OF (EDISON->ADDISON) ILLUMINATING COMPANIES
|
||||
|
||||
The above example shows that the reference word is `EDISON`,
|
||||
but it is predicted to `ADDISON` (a substitution error).
|
||||
|
||||
Another example is::
|
||||
|
||||
FOR THE FIRST DAY (SIR->*) I THINK
|
||||
|
||||
The reference word `SIR` is missing in the predicted
|
||||
results (a deletion error).
|
||||
results:
|
||||
An iterable of tuples. The first element is the cut_id, the second is
|
||||
the reference transcript and the third element is the predicted result.
|
||||
enable_log:
|
||||
If True, also print detailed WER to the console.
|
||||
Otherwise, it is written only to the given file.
|
||||
Returns:
|
||||
Return None.
|
||||
"""
|
||||
subs: Dict[Tuple[str, str], int] = defaultdict(int)
|
||||
ins: Dict[str, int] = defaultdict(int)
|
||||
dels: Dict[str, int] = defaultdict(int)
|
||||
|
||||
# `words` stores counts per word, as follows:
|
||||
# corr, ref_sub, hyp_sub, ins, dels
|
||||
words: Dict[str, List[int]] = defaultdict(lambda: [0, 0, 0, 0, 0])
|
||||
num_corr = 0
|
||||
ERR = "*"
|
||||
|
||||
if compute_CER:
|
||||
for i, res in enumerate(results):
|
||||
cut_id, ref, hyp = res
|
||||
ref = list("".join(ref))
|
||||
hyp = list("".join(hyp))
|
||||
results[i] = (cut_id, ref, hyp)
|
||||
|
||||
for cut_id, ref, hyp in results:
|
||||
ali = kaldialign.align(ref, hyp, ERR, sclite_mode=sclite_mode)
|
||||
for ref_word, hyp_word in ali:
|
||||
if ref_word == ERR:
|
||||
ins[hyp_word] += 1
|
||||
words[hyp_word][3] += 1
|
||||
elif hyp_word == ERR:
|
||||
dels[ref_word] += 1
|
||||
words[ref_word][4] += 1
|
||||
elif hyp_word != ref_word:
|
||||
subs[(ref_word, hyp_word)] += 1
|
||||
words[ref_word][1] += 1
|
||||
words[hyp_word][2] += 1
|
||||
else:
|
||||
words[ref_word][0] += 1
|
||||
num_corr += 1
|
||||
ref_len = sum([len(r) for _, r, _ in results])
|
||||
sub_errs = sum(subs.values())
|
||||
ins_errs = sum(ins.values())
|
||||
del_errs = sum(dels.values())
|
||||
tot_errs = sub_errs + ins_errs + del_errs
|
||||
tot_err_rate = "%.2f" % (100.0 * tot_errs / ref_len)
|
||||
|
||||
if enable_log:
|
||||
logging.info(
|
||||
f"[{test_set_name}] %WER {tot_errs / ref_len:.2%} "
|
||||
f"[{tot_errs} / {ref_len}, {ins_errs} ins, "
|
||||
f"{del_errs} del, {sub_errs} sub ]"
|
||||
)
|
||||
|
||||
print(f"%WER = {tot_err_rate}", file=f)
|
||||
print(
|
||||
f"Errors: {ins_errs} insertions, {del_errs} deletions, "
|
||||
f"{sub_errs} substitutions, over {ref_len} reference "
|
||||
f"words ({num_corr} correct)",
|
||||
file=f,
|
||||
)
|
||||
print(
|
||||
"Search below for sections starting with PER-UTT DETAILS:, "
|
||||
"SUBSTITUTIONS:, DELETIONS:, INSERTIONS:, PER-WORD STATS:",
|
||||
file=f,
|
||||
)
|
||||
|
||||
print("", file=f)
|
||||
print("PER-UTT DETAILS: corr or (ref->hyp) ", file=f)
|
||||
for cut_id, ref, hyp in results:
|
||||
ali = kaldialign.align(ref, hyp, ERR)
|
||||
combine_successive_errors = True
|
||||
if combine_successive_errors:
|
||||
ali = [[[x], [y]] for x, y in ali]
|
||||
for i in range(len(ali) - 1):
|
||||
if ali[i][0] != ali[i][1] and ali[i + 1][0] != ali[i + 1][1]:
|
||||
ali[i + 1][0] = ali[i][0] + ali[i + 1][0]
|
||||
ali[i + 1][1] = ali[i][1] + ali[i + 1][1]
|
||||
ali[i] = [[], []]
|
||||
ali = [
|
||||
[
|
||||
list(filter(lambda a: a != ERR, x)),
|
||||
list(filter(lambda a: a != ERR, y)),
|
||||
]
|
||||
for x, y in ali
|
||||
]
|
||||
ali = list(filter(lambda x: x != [[], []], ali))
|
||||
ali = [
|
||||
[
|
||||
ERR if x == [] else " ".join(x),
|
||||
ERR if y == [] else " ".join(y),
|
||||
]
|
||||
for x, y in ali
|
||||
]
|
||||
|
||||
print(
|
||||
f"{cut_id}:\t"
|
||||
+ " ".join(
|
||||
(
|
||||
ref_word if ref_word == hyp_word else f"({ref_word}->{hyp_word})"
|
||||
for ref_word, hyp_word in ali
|
||||
)
|
||||
),
|
||||
file=f,
|
||||
)
|
||||
|
||||
print("", file=f)
|
||||
print("SUBSTITUTIONS: count ref -> hyp", file=f)
|
||||
|
||||
for count, (ref, hyp) in sorted([(v, k) for k, v in subs.items()], reverse=True):
|
||||
print(f"{count} {ref} -> {hyp}", file=f)
|
||||
|
||||
print("", file=f)
|
||||
print("DELETIONS: count ref", file=f)
|
||||
for count, ref in sorted([(v, k) for k, v in dels.items()], reverse=True):
|
||||
print(f"{count} {ref}", file=f)
|
||||
|
||||
print("", file=f)
|
||||
print("INSERTIONS: count hyp", file=f)
|
||||
for count, hyp in sorted([(v, k) for k, v in ins.items()], reverse=True):
|
||||
print(f"{count} {hyp}", file=f)
|
||||
|
||||
print("", file=f)
|
||||
print("PER-WORD STATS: word corr tot_errs count_in_ref count_in_hyp", file=f)
|
||||
for _, word, counts in sorted(
|
||||
[(sum(v[1:]), k, v) for k, v in words.items()], reverse=True
|
||||
):
|
||||
(corr, ref_sub, hyp_sub, ins, dels) = counts
|
||||
tot_errs = ref_sub + hyp_sub + ins + dels
|
||||
ref_count = corr + ref_sub + dels
|
||||
hyp_count = corr + hyp_sub + ins
|
||||
|
||||
print(f"{word} {corr} {tot_errs} {ref_count} {hyp_count}", file=f)
|
||||
return float(tot_err_rate)
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tokens",
|
||||
type=str,
|
||||
help="Path to tokens.txt",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--hotwords-file",
|
||||
type=str,
|
||||
default="",
|
||||
help="""
|
||||
The file containing hotwords, one words/phrases per line, like
|
||||
HELLO WORLD
|
||||
你好世界
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--hotwords-score",
|
||||
type=float,
|
||||
default=1.5,
|
||||
help="""
|
||||
The hotword score of each token for biasing word/phrase. Used only if
|
||||
--hotwords-file is given.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--modeling-unit",
|
||||
type=str,
|
||||
default="",
|
||||
help="""
|
||||
The modeling unit of the model, valid values are cjkchar, bpe, cjkchar+bpe.
|
||||
Used only when hotwords-file is given.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--bpe-vocab",
|
||||
type=str,
|
||||
default="",
|
||||
help="""
|
||||
The path to the bpe vocabulary, the bpe vocabulary is generated by
|
||||
sentencepiece, you can also export the bpe vocabulary through a bpe model
|
||||
by `scripts/export_bpe_vocab.py`. Used only when hotwords-file is given
|
||||
and modeling-unit is bpe or cjkchar+bpe.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--encoder",
|
||||
default="",
|
||||
type=str,
|
||||
help="Path to the encoder model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoder",
|
||||
default="",
|
||||
type=str,
|
||||
help="Path to the decoder model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--joiner",
|
||||
default="",
|
||||
type=str,
|
||||
help="Path to the joiner model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--paraformer",
|
||||
default="",
|
||||
type=str,
|
||||
help="Path to the model.onnx from Paraformer",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--nemo-ctc",
|
||||
default="",
|
||||
type=str,
|
||||
help="Path to the model.onnx from NeMo CTC",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--wenet-ctc",
|
||||
default="",
|
||||
type=str,
|
||||
help="Path to the model.onnx from WeNet CTC",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--tdnn-model",
|
||||
default="",
|
||||
type=str,
|
||||
help="Path to the model.onnx for the tdnn model of the yesno recipe",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--num-threads",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of threads for neural network computation",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--whisper-encoder",
|
||||
default="",
|
||||
type=str,
|
||||
help="Path to whisper encoder model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--whisper-decoder",
|
||||
default="",
|
||||
type=str,
|
||||
help="Path to whisper decoder model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--whisper-language",
|
||||
default="",
|
||||
type=str,
|
||||
help="""It specifies the spoken language in the input audio file.
|
||||
Example values: en, fr, de, zh, jp.
|
||||
Available languages for multilingual models can be found at
|
||||
https://github.com/openai/whisper/blob/main/whisper/tokenizer.py#L10
|
||||
If not specified, we infer the language from the input audio file.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--whisper-task",
|
||||
default="transcribe",
|
||||
choices=["transcribe", "translate"],
|
||||
type=str,
|
||||
help="""For multilingual models, if you specify translate, the output
|
||||
will be in English.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--whisper-tail-paddings",
|
||||
default=-1,
|
||||
type=int,
|
||||
help="""Number of tail padding frames.
|
||||
We have removed the 30-second constraint from whisper, so you need to
|
||||
choose the amount of tail padding frames by yourself.
|
||||
Use -1 to use a default value for tail padding.
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--blank-penalty",
|
||||
type=float,
|
||||
default=0.0,
|
||||
help="""
|
||||
The penalty applied on blank symbol during decoding.
|
||||
Note: It is a positive value that would be applied to logits like
|
||||
this `logits[:, 0] -= blank_penalty` (suppose logits.shape is
|
||||
[batch_size, vocab] and blank id is 0).
|
||||
""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--decoding-method",
|
||||
type=str,
|
||||
default="greedy_search",
|
||||
help="Valid values are greedy_search and modified_beam_search",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--debug",
|
||||
type=bool,
|
||||
default=False,
|
||||
help="True to show debug messages",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sample-rate",
|
||||
type=int,
|
||||
default=16000,
|
||||
help="""Sample rate of the feature extractor. Must match the one
|
||||
expected by the model. Note: The input sound files can have a
|
||||
different sample rate from this argument.""",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--feature-dim",
|
||||
type=int,
|
||||
default=80,
|
||||
help="Feature dimension. Must match the one expected by the model",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"sound_files",
|
||||
type=str,
|
||||
nargs="+",
|
||||
help="The input sound file(s) to decode. Each file must be of WAVE"
|
||||
"format with a single channel, and each sample has 16-bit, "
|
||||
"i.e., int16_t. "
|
||||
"The sample rate of the file can be arbitrary and does not need to "
|
||||
"be 16 kHz",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--name",
|
||||
type=str,
|
||||
default="",
|
||||
help="The directory containing the input sound files to decode",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--log-dir",
|
||||
type=str,
|
||||
default="",
|
||||
help="The directory containing the input sound files to decode",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--label",
|
||||
type=str,
|
||||
default=None,
|
||||
help="wav_base_name label",
|
||||
)
|
||||
|
||||
# Dataset related arguments for loading labels when label file is not provided
|
||||
parser.add_argument(
|
||||
"--dataset-name",
|
||||
type=str,
|
||||
default="yuekai/seed_tts_cosy2",
|
||||
help="Huggingface dataset name for loading labels",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--split-name",
|
||||
type=str,
|
||||
default="wenetspeech4tts",
|
||||
help="Dataset split name for loading labels",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def assert_file_exists(filename: str):
|
||||
assert Path(filename).is_file(), (
|
||||
f"{filename} does not exist!\n"
|
||||
"Please refer to "
|
||||
"https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html to download it"
|
||||
)
|
||||
|
||||
|
||||
def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]:
|
||||
"""
|
||||
Args:
|
||||
wave_filename:
|
||||
Path to a wave file. It should be single channel and can be of type
|
||||
32-bit floating point PCM. Its sample rate does not need to be 24kHz.
|
||||
|
||||
Returns:
|
||||
Return a tuple containing:
|
||||
- A 1-D array of dtype np.float32 containing the samples,
|
||||
which are normalized to the range [-1, 1].
|
||||
- Sample rate of the wave file.
|
||||
"""
|
||||
|
||||
samples, sample_rate = sf.read(wave_filename, dtype="float32")
|
||||
assert (
|
||||
samples.ndim == 1
|
||||
), f"Expected single channel, but got {samples.ndim} channels."
|
||||
|
||||
samples_float32 = samples.astype(np.float32)
|
||||
|
||||
return samples_float32, sample_rate
|
||||
|
||||
|
||||
def normalize_text_alimeeting(text: str) -> str:
|
||||
"""
|
||||
Text normalization similar to M2MeT challenge baseline.
|
||||
See: https://github.com/yufan-aslp/AliMeeting/blob/main/asr/local/text_normalize.pl
|
||||
"""
|
||||
import re
|
||||
text = text.replace('\u00A0', '') # test_hard
|
||||
text = text.replace(" ", "")
|
||||
text = text.replace("<sil>", "")
|
||||
text = text.replace("<%>", "")
|
||||
text = text.replace("<->", "")
|
||||
text = text.replace("<$>", "")
|
||||
text = text.replace("<#>", "")
|
||||
text = text.replace("<_>", "")
|
||||
text = text.replace("<space>", "")
|
||||
text = text.replace("`", "")
|
||||
text = text.replace("&", "")
|
||||
text = text.replace(",", "")
|
||||
if re.search("[a-zA-Z]", text):
|
||||
text = text.upper()
|
||||
text = text.replace("A", "A")
|
||||
text = text.replace("a", "A")
|
||||
text = text.replace("b", "B")
|
||||
text = text.replace("c", "C")
|
||||
text = text.replace("k", "K")
|
||||
text = text.replace("t", "T")
|
||||
text = text.replace(",", "")
|
||||
text = text.replace("丶", "")
|
||||
text = text.replace("。", "")
|
||||
text = text.replace("、", "")
|
||||
text = text.replace("?", "")
|
||||
text = remove_punctuation(text)
|
||||
return text
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
assert_file_exists(args.tokens)
|
||||
assert args.num_threads > 0, args.num_threads
|
||||
|
||||
assert len(args.nemo_ctc) == 0, args.nemo_ctc
|
||||
assert len(args.wenet_ctc) == 0, args.wenet_ctc
|
||||
assert len(args.whisper_encoder) == 0, args.whisper_encoder
|
||||
assert len(args.whisper_decoder) == 0, args.whisper_decoder
|
||||
assert len(args.tdnn_model) == 0, args.tdnn_model
|
||||
|
||||
assert_file_exists(args.paraformer)
|
||||
|
||||
recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer(
|
||||
paraformer=args.paraformer,
|
||||
tokens=args.tokens,
|
||||
num_threads=args.num_threads,
|
||||
sample_rate=args.sample_rate,
|
||||
feature_dim=args.feature_dim,
|
||||
decoding_method=args.decoding_method,
|
||||
debug=args.debug,
|
||||
)
|
||||
|
||||
print("Started!")
|
||||
start_time = time.time()
|
||||
|
||||
streams, results = [], []
|
||||
total_duration = 0
|
||||
|
||||
for i, wave_filename in enumerate(args.sound_files):
|
||||
assert_file_exists(wave_filename)
|
||||
samples, sample_rate = read_wave(wave_filename)
|
||||
duration = len(samples) / sample_rate
|
||||
total_duration += duration
|
||||
s = recognizer.create_stream()
|
||||
s.accept_waveform(sample_rate, samples)
|
||||
|
||||
streams.append(s)
|
||||
if i % 10 == 0:
|
||||
recognizer.decode_streams(streams)
|
||||
results += [s.result.text for s in streams]
|
||||
streams = []
|
||||
print(f"Processed {i} files")
|
||||
# process the last batch
|
||||
if streams:
|
||||
recognizer.decode_streams(streams)
|
||||
results += [s.result.text for s in streams]
|
||||
end_time = time.time()
|
||||
print("Done!")
|
||||
|
||||
results_dict = {}
|
||||
for wave_filename, result in zip(args.sound_files, results):
|
||||
print(f"{wave_filename}\n{result}")
|
||||
print("-" * 10)
|
||||
wave_basename = Path(wave_filename).stem
|
||||
results_dict[wave_basename] = result
|
||||
|
||||
elapsed_seconds = end_time - start_time
|
||||
rtf = elapsed_seconds / total_duration
|
||||
print(f"num_threads: {args.num_threads}")
|
||||
print(f"decoding_method: {args.decoding_method}")
|
||||
print(f"Wave duration: {total_duration:.3f} s")
|
||||
print(f"Elapsed time: {elapsed_seconds:.3f} s")
|
||||
print(
|
||||
f"Real time factor (RTF): {elapsed_seconds:.3f}/{total_duration:.3f} = {rtf:.3f}"
|
||||
)
|
||||
|
||||
# Load labels either from file or from dataset
|
||||
labels_dict = {}
|
||||
|
||||
if args.label:
|
||||
# Load labels from file (original functionality)
|
||||
print(f"Loading labels from file: {args.label}")
|
||||
with open(args.label, "r") as f:
|
||||
for line in f:
|
||||
# fields = line.strip().split(" ")
|
||||
# fields = [item for item in fields if item]
|
||||
# assert len(fields) == 4
|
||||
# prompt_text, prompt_audio, text, audio_path = fields
|
||||
|
||||
fields = line.strip().split("|")
|
||||
fields = [item for item in fields if item]
|
||||
assert len(fields) == 4
|
||||
audio_path, prompt_text, prompt_audio, text = fields
|
||||
labels_dict[Path(audio_path).stem] = normalize_text_alimeeting(text)
|
||||
else:
|
||||
# Load labels from dataset (new functionality)
|
||||
print(f"Loading labels from dataset: {args.dataset_name}, split: {args.split_name}")
|
||||
if 'zero' in args.split_name:
|
||||
dataset_name = "yuekai/CV3-Eval"
|
||||
else:
|
||||
dataset_name = "yuekai/seed_tts_cosy2"
|
||||
dataset = load_dataset(
|
||||
dataset_name,
|
||||
split=args.split_name,
|
||||
trust_remote_code=True,
|
||||
)
|
||||
|
||||
for item in dataset:
|
||||
audio_id = item["id"]
|
||||
labels_dict[audio_id] = normalize_text_alimeeting(item["target_text"])
|
||||
|
||||
print(f"Loaded {len(labels_dict)} labels from dataset")
|
||||
|
||||
# Perform evaluation if labels are available
|
||||
if labels_dict:
|
||||
|
||||
final_results = []
|
||||
for key, value in results_dict.items():
|
||||
if key in labels_dict:
|
||||
final_results.append((key, labels_dict[key], value))
|
||||
else:
|
||||
print(f"Warning: No label found for {key}, skipping...")
|
||||
|
||||
if final_results:
|
||||
store_transcripts(
|
||||
filename=f"{args.log_dir}/recogs-{args.name}.txt", texts=final_results
|
||||
)
|
||||
with open(f"{args.log_dir}/errs-{args.name}.txt", "w") as f:
|
||||
write_error_stats(f, "test-set", final_results, enable_log=True)
|
||||
|
||||
with open(f"{args.log_dir}/errs-{args.name}.txt", "r") as f:
|
||||
print(f.readline()) # WER
|
||||
print(f.readline()) # Detailed errors
|
||||
else:
|
||||
print("No matching labels found for evaluation")
|
||||
else:
|
||||
print("No labels available for evaluation")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
346
examples/grpo/cosyvoice2/token2wav_asr_server.py
Normal file
346
examples/grpo/cosyvoice2/token2wav_asr_server.py
Normal file
@@ -0,0 +1,346 @@
|
||||
# SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Pytriton server for token2wav conversion and ASR"""
|
||||
|
||||
from datasets import load_dataset
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice2
|
||||
from omnisense.models import OmniSenseVoiceSmall
|
||||
from pytriton.proxy.types import Request
|
||||
from pytriton.triton import Triton, TritonConfig
|
||||
from pytriton.model_config import DynamicBatcher, ModelConfig, Tensor
|
||||
from pytriton.decorators import batch
|
||||
import argparse
|
||||
import io
|
||||
import logging
|
||||
from typing import Any, List
|
||||
import numpy as np
|
||||
import torch
|
||||
from scipy.signal import resample
|
||||
import sys
|
||||
import random
|
||||
import re
|
||||
from jiwer import wer
|
||||
from pypinyin import lazy_pinyin, Style
|
||||
from tn.chinese.normalizer import Normalizer as ZhNormalizer
|
||||
|
||||
# Chinese text normalizer (cached globally)
|
||||
zh_tn_model = ZhNormalizer(
|
||||
cache_dir="./cache",
|
||||
remove_erhua=False,
|
||||
remove_interjections=False,
|
||||
remove_puncts=True,
|
||||
overwrite_cache=True,
|
||||
)
|
||||
|
||||
|
||||
sys.path.append("/workspace/CosyVoice/third_party/Matcha-TTS")
|
||||
|
||||
logger = logging.getLogger("token2wav_asr_server")
|
||||
|
||||
|
||||
class _ASR_Server:
|
||||
"""Wraps a single OmniSenseVoiceSmall model instance for Triton."""
|
||||
|
||||
def __init__(self, device_id: int):
|
||||
self._model = OmniSenseVoiceSmall("iic/SenseVoiceSmall", quantize=False, device_id=device_id)
|
||||
|
||||
@batch
|
||||
def __call__(self, WAV: np.ndarray, WAV_LENS: np.ndarray, LANGUAGE: np.ndarray, TEXT_NORM: np.ndarray):
|
||||
"""
|
||||
WAV: np.ndarray, WAV_LENS: np.ndarray
|
||||
LANGUAGE: np.ndarray, TEXTNORM: np.ndarray for backward compatibility, not used
|
||||
See: https://github.com/modelscope/FunASR/tree/main/runtime/triton_gpu
|
||||
"""
|
||||
logger.debug("WAV: %s, WAV_LENS: %s, shapes: %s %s", type(WAV), type(WAV_LENS), WAV.shape, WAV_LENS.shape)
|
||||
wavs = [WAV[i, :WAV_LENS[i, 0]] for i in range(len(WAV))]
|
||||
|
||||
results = self._model.transcribe_single_batch(
|
||||
wavs,
|
||||
language="zh",
|
||||
textnorm="woitn",
|
||||
)
|
||||
texts = [result.text for result in results]
|
||||
transcripts = np.char.encode(np.array(texts).reshape(-1, 1), "utf-8")
|
||||
return {"TRANSCRIPTS": transcripts}
|
||||
|
||||
|
||||
def audio_decode_cosyvoice2(
|
||||
audio_tokens, prompt_text, prompt_speech_16k, codec_decoder
|
||||
):
|
||||
"""
|
||||
Generate audio from tokens with optional tone and prompt embedding.
|
||||
"""
|
||||
model_inputs_dict = codec_decoder.frontend.frontend_zero_shot(
|
||||
"empty", prompt_text, prompt_speech_16k, 24000
|
||||
)
|
||||
tts_mel, _ = codec_decoder.model.flow.inference(
|
||||
token=audio_tokens.to(codec_decoder.model.device),
|
||||
token_len=torch.tensor([audio_tokens.shape[1]], dtype=torch.int32).to(
|
||||
codec_decoder.model.device
|
||||
),
|
||||
prompt_token=model_inputs_dict["flow_prompt_speech_token"].to(
|
||||
codec_decoder.model.device
|
||||
),
|
||||
prompt_token_len=torch.tensor(
|
||||
[model_inputs_dict["flow_prompt_speech_token_len"]], dtype=torch.int32
|
||||
).to(codec_decoder.model.device),
|
||||
prompt_feat=model_inputs_dict["prompt_speech_feat"].to(
|
||||
codec_decoder.model.device
|
||||
),
|
||||
prompt_feat_len=model_inputs_dict["prompt_speech_feat_len"].to(
|
||||
codec_decoder.model.device
|
||||
),
|
||||
embedding=model_inputs_dict["flow_embedding"].to(codec_decoder.model.device),
|
||||
finalize=True,
|
||||
)
|
||||
|
||||
audio_hat, _ = codec_decoder.model.hift.inference(
|
||||
speech_feat=tts_mel, cache_source=torch.zeros(1, 1, 0)
|
||||
)
|
||||
|
||||
return audio_hat
|
||||
|
||||
|
||||
def get_random_prompt_from_dataset(dataset):
|
||||
"""
|
||||
Get random prompt text and speech from the pre-loaded dataset.
|
||||
Returns (prompt_text, prompt_speech_16k)
|
||||
"""
|
||||
random_idx = random.randint(0, len(dataset) - 1)
|
||||
sample = dataset[random_idx]
|
||||
|
||||
# Extract audio data
|
||||
audio_data = sample["audio"]
|
||||
audio_array = audio_data["array"]
|
||||
sample_rate = audio_data["sampling_rate"]
|
||||
|
||||
# Convert audio to 16kHz if needed
|
||||
if sample_rate != 16000:
|
||||
num_samples = int(len(audio_array) * (16000 / sample_rate))
|
||||
audio_array = resample(audio_array, num_samples)
|
||||
|
||||
# Convert to torch tensor
|
||||
prompt_speech_16k = torch.from_numpy(audio_array).float().unsqueeze(0)
|
||||
prompt_text = sample["text"]
|
||||
# remove space in prompt_text
|
||||
prompt_text = prompt_text.replace(" ", "")
|
||||
return prompt_text, prompt_speech_16k
|
||||
|
||||
|
||||
class _Token2Wav_ASR:
|
||||
"""Wraps a single OmniSenseVoiceSmall model instance for Triton."""
|
||||
|
||||
def __init__(self, device_id: int):
|
||||
self.asr_model = OmniSenseVoiceSmall("iic/SenseVoiceSmall", quantize=False, device_id=device_id)
|
||||
self.dataset = load_dataset("yuekai/aishell", "test", trust_remote_code=True)["test"]
|
||||
|
||||
# Make sure the CosyVoice2 decoder lives on the same GPU as the ASR model
|
||||
# CosyVoice2 internally uses generic "cuda" device, so we first switch the
|
||||
# current CUDA context to the desired card before the object is created.
|
||||
# Afterwards, all parameters loaded with the generic "cuda" device will
|
||||
# reside on this GPU. We keep the selected id in `self.device_id` and
|
||||
# will set the context again for every forward call to avoid race
|
||||
# conditions when several instances are used in the same process.
|
||||
|
||||
self.device_id = device_id
|
||||
|
||||
# Construct the TTS codec decoder under the correct CUDA device context
|
||||
with torch.cuda.device(self.device_id):
|
||||
self.codec_decoder = CosyVoice2(
|
||||
"/workspace/CosyVoice2-0.5B", load_jit=True, load_trt=True, fp16=True
|
||||
)
|
||||
|
||||
@batch
|
||||
def __call__(self, TOKENS: np.ndarray, TOKEN_LENS: np.ndarray, GT_TEXT: np.ndarray):
|
||||
"""
|
||||
WAV: np.ndarray, WAV_LENS: np.ndarray
|
||||
LANGUAGE: np.ndarray, TEXTNORM: np.ndarray for backward compatibility, not used
|
||||
See: https://github.com/modelscope/FunASR/tree/main/runtime/triton_gpu
|
||||
"""
|
||||
# Ensure the default CUDA device is set correctly for this invocation
|
||||
torch.cuda.set_device(self.device_id)
|
||||
|
||||
if self.device_id == 0:
|
||||
print(f"device_id: {self.device_id}, TOKENS: {TOKENS.shape}, TOKEN_LENS: {TOKEN_LENS.shape}")
|
||||
|
||||
tokens_list = [TOKENS[i, :TOKEN_LENS[i, 0]] for i in range(len(TOKENS))]
|
||||
|
||||
# Decode ground-truth text strings (BYTES → str)
|
||||
if GT_TEXT.ndim == 2:
|
||||
gt_texts = [GT_TEXT[i, 0].decode("utf-8") for i in range(len(GT_TEXT))]
|
||||
else:
|
||||
gt_texts = [GT_TEXT[i].decode("utf-8") for i in range(len(GT_TEXT))]
|
||||
|
||||
wavs = []
|
||||
for tokens in tokens_list:
|
||||
prompt_text, prompt_speech_16k = get_random_prompt_from_dataset(self.dataset)
|
||||
audio_tokens = torch.tensor(tokens, dtype=torch.long, device=self.asr_model.device).unsqueeze(0)
|
||||
audio_hat = audio_decode_cosyvoice2(
|
||||
audio_tokens,
|
||||
prompt_text,
|
||||
prompt_speech_16k,
|
||||
self.codec_decoder,
|
||||
)
|
||||
# resample to 16000 using soundfile
|
||||
audio_hat = audio_hat.squeeze(0).float().cpu()
|
||||
audio_hat = audio_hat.numpy()
|
||||
num_samples = int(len(audio_hat) * (16000 / 24000))
|
||||
audio_hat = resample(audio_hat, num_samples)
|
||||
wavs.append(audio_hat)
|
||||
|
||||
results = self.asr_model.transcribe_single_batch(
|
||||
wavs,
|
||||
language="zh",
|
||||
textnorm="woitn",
|
||||
)
|
||||
texts = [result.text for result in results]
|
||||
|
||||
# ---------------- Reward computation ----------------
|
||||
rewards = []
|
||||
for gt_text, hyp_text in zip(gt_texts, texts):
|
||||
gt_norm = zh_tn_model.normalize(gt_text).lower()
|
||||
hyp_norm = zh_tn_model.normalize(hyp_text).lower()
|
||||
|
||||
gt_pinyin = lazy_pinyin(
|
||||
gt_norm,
|
||||
style=Style.TONE3,
|
||||
tone_sandhi=True,
|
||||
neutral_tone_with_five=True,
|
||||
)
|
||||
hyp_pinyin = lazy_pinyin(
|
||||
hyp_norm,
|
||||
style=Style.TONE3,
|
||||
tone_sandhi=True,
|
||||
neutral_tone_with_five=True,
|
||||
)
|
||||
|
||||
c = float(wer(" ".join(gt_pinyin), " ".join(hyp_pinyin)))
|
||||
reward_val = 1.0 - np.tanh(3.0 * c)
|
||||
reward_val = max(0.0, min(1.0, reward_val))
|
||||
rewards.append(reward_val)
|
||||
print(f"gt_text: {gt_text}, hyp_text: {hyp_text}, reward_val: {reward_val}")
|
||||
|
||||
transcripts = np.char.encode(np.array(texts).reshape(-1, 1), "utf-8")
|
||||
rewards_arr = np.array(rewards, dtype=np.float32).reshape(-1, 1)
|
||||
|
||||
return {"REWARDS": rewards_arr, "TRANSCRIPTS": transcripts}
|
||||
|
||||
|
||||
def _infer_function_factory(device_ids: List[int], model_name: str):
|
||||
"""Creates a list of inference functions, one for each requested device ID."""
|
||||
infer_funcs = []
|
||||
for device_id in device_ids:
|
||||
if model_name == "sensevoice":
|
||||
infer_funcs.append(_ASR_Server(device_id=device_id))
|
||||
else:
|
||||
infer_funcs.append(_Token2Wav_ASR(device_id=device_id))
|
||||
return infer_funcs
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description=__doc__)
|
||||
parser.add_argument(
|
||||
"--max-batch-size",
|
||||
type=int,
|
||||
default=32,
|
||||
help="Batch size of request.",
|
||||
required=False,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--verbose",
|
||||
action="store_true",
|
||||
default=False,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--number-of-instances-per-device",
|
||||
type=int,
|
||||
default=1,
|
||||
help="Number of model instances to load.",
|
||||
required=False,
|
||||
)
|
||||
parser.add_argument(
|
||||
"--number-of-devices",
|
||||
type=int,
|
||||
default=8,
|
||||
help="Number of devices to use.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model-name",
|
||||
type=str,
|
||||
default="token2wav_asr",
|
||||
choices=["token2wav_asr", "sensevoice"],
|
||||
help="Model name.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
log_level = logging.DEBUG if args.verbose else logging.INFO
|
||||
logging.basicConfig(level=log_level, format="%(asctime)s - %(levelname)s - %(name)s: %(message)s")
|
||||
|
||||
triton_config = TritonConfig(
|
||||
http_port=8000,
|
||||
grpc_port=8001,
|
||||
metrics_port=8002,
|
||||
)
|
||||
|
||||
device_ids = [i for i in range(args.number_of_devices)]
|
||||
device_ids = device_ids * args.number_of_instances_per_device
|
||||
|
||||
with Triton(config=triton_config) as triton:
|
||||
logger.info("Loading SenseVoice model on device ids: %s", device_ids)
|
||||
if args.model_name == "sensevoice":
|
||||
triton.bind(
|
||||
model_name="sensevoice",
|
||||
infer_func=_infer_function_factory(device_ids, args.model_name),
|
||||
inputs=[
|
||||
Tensor(name="WAV", dtype=np.float32, shape=(-1,)),
|
||||
Tensor(name="WAV_LENS", dtype=np.int32, shape=(-1,)),
|
||||
Tensor(name="LANGUAGE", dtype=np.int32, shape=(-1,)),
|
||||
Tensor(name="TEXT_NORM", dtype=np.int32, shape=(-1,)),
|
||||
],
|
||||
outputs=[
|
||||
Tensor(name="TRANSCRIPTS", dtype=bytes, shape=(-1,)),
|
||||
],
|
||||
config=ModelConfig(
|
||||
max_batch_size=args.max_batch_size,
|
||||
batcher=DynamicBatcher(max_queue_delay_microseconds=10000), # 10ms
|
||||
),
|
||||
strict=True,
|
||||
)
|
||||
else:
|
||||
triton.bind(
|
||||
model_name="token2wav_asr",
|
||||
infer_func=_infer_function_factory(device_ids, args.model_name),
|
||||
inputs=[
|
||||
Tensor(name="TOKENS", dtype=np.int32, shape=(-1,)),
|
||||
Tensor(name="TOKEN_LENS", dtype=np.int32, shape=(-1,)),
|
||||
Tensor(name="GT_TEXT", dtype=bytes, shape=(-1,)),
|
||||
],
|
||||
outputs=[
|
||||
Tensor(name="REWARDS", dtype=np.float32, shape=(-1,)),
|
||||
Tensor(name="TRANSCRIPTS", dtype=bytes, shape=(-1,)),
|
||||
],
|
||||
config=ModelConfig(
|
||||
max_batch_size=args.max_batch_size,
|
||||
batcher=DynamicBatcher(max_queue_delay_microseconds=10000), # 10ms
|
||||
),
|
||||
strict=True,
|
||||
)
|
||||
logger.info("Serving inference")
|
||||
triton.serve()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -9,5 +9,5 @@ RUN apt-get -y install git unzip git-lfs g++
|
||||
RUN git lfs install
|
||||
RUN git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git
|
||||
# here we use python==3.10 because we cannot find an image which have both python3.8 and torch2.0.1-cu118 installed
|
||||
RUN cd CosyVoice && pip3 install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com
|
||||
RUN cd CosyVoice && pip3 install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com --no-cache-dir
|
||||
RUN cd CosyVoice/runtime/python/grpc && python3 -m grpc_tools.protoc -I. --python_out=. --grpc_python_out=. cosyvoice.proto
|
||||
@@ -1,15 +1,17 @@
|
||||
## Best Practices for Serving CosyVoice with NVIDIA Triton Inference Server
|
||||
## Accelerating CosyVoice with NVIDIA Triton Inference Server and TensorRT-LLM
|
||||
|
||||
Thanks to the contribution from NVIDIA Yuekai Zhang.
|
||||
Contributed by Yuekai Zhang (NVIDIA).
|
||||
|
||||
### Quick Start
|
||||
|
||||
Launch the service directly with Docker Compose:
|
||||
```sh
|
||||
docker compose up
|
||||
```
|
||||
|
||||
### Build the Docker Image
|
||||
Build the image from scratch:
|
||||
|
||||
To build the image from scratch:
|
||||
```sh
|
||||
docker build . -f Dockerfile.server -t soar97/triton-cosyvoice:25.06
|
||||
```
|
||||
@@ -21,71 +23,124 @@ docker run -it --name "cosyvoice-server" --gpus all --net host -v $your_mount_di
|
||||
```
|
||||
|
||||
### Understanding `run.sh`
|
||||
|
||||
The `run.sh` script orchestrates the entire workflow through numbered stages.
|
||||
|
||||
Run a subset of stages with:
|
||||
You can run a subset of stages with:
|
||||
```sh
|
||||
bash run.sh <start_stage> <stop_stage> [service_type]
|
||||
```
|
||||
- `<start_stage>` – stage to start from (0-5).
|
||||
- `<stop_stage>` – stage to stop after (0-5).
|
||||
- `<start_stage>`: The stage to start from (0-5).
|
||||
- `<stop_stage>`: The stage to stop after (0-5).
|
||||
|
||||
Stages:
|
||||
- **Stage 0** – Download the cosyvoice-2 0.5B model from HuggingFace.
|
||||
- **Stage 1** – Convert the HuggingFace checkpoint to TensorRT-LLM format and build TensorRT engines.
|
||||
- **Stage 2** – Create the Triton model repository and configure the model files (adjusts depending on whether `Decoupled=True/False` will be used later).
|
||||
- **Stage 3** – Launch the Triton Inference Server.
|
||||
- **Stage 4** – Run the single-utterance HTTP client.
|
||||
- **Stage 5** – Run the gRPC benchmark client.
|
||||
**Stages:**
|
||||
|
||||
- **Stage 0**: Downloads the `cosyvoice-2 0.5B` model from HuggingFace.
|
||||
- **Stage 1**: Converts the HuggingFace checkpoint to the TensorRT-LLM format and builds the TensorRT engines.
|
||||
- **Stage 2**: Creates the Triton model repository and configures the model files. The configuration is adjusted based on whether `Decoupled=True` (streaming) or `Decoupled=False` (offline) will be used.
|
||||
- **Stage 3**: Launches the Triton Inference Server.
|
||||
- **Stage 4**: Runs the single-utterance HTTP client for testing.
|
||||
- **Stage 5**: Runs the gRPC benchmark client.
|
||||
- **Stage 6**: Runs the offline inference benchmark test.
|
||||
|
||||
### Export Models and Launch Server
|
||||
|
||||
### Export Models to TensorRT-LLM and Launch the Server
|
||||
Inside the Docker container, prepare the models and start the Triton server by running stages 0-3:
|
||||
```sh
|
||||
# Runs stages 0, 1, 2, and 3
|
||||
# This command runs stages 0, 1, 2, and 3
|
||||
bash run.sh 0 3
|
||||
```
|
||||
*Note: Stage 2 prepares the model repository differently depending on whether you intend to run with `Decoupled=False` or `Decoupled=True`. Rerun stage 2 if you switch the service type.*
|
||||
> [!TIP]
|
||||
> Both streaming and offline (non-streaming) TTS modes are supported. For streaming TTS, set `Decoupled=True`. For offline TTS, set `Decoupled=False`. You need to rerun stage 2 if you switch between modes.
|
||||
|
||||
### Single-Utterance HTTP Client
|
||||
Send a single HTTP inference request:
|
||||
|
||||
Sends a single HTTP inference request. This is intended for testing the offline TTS mode (`Decoupled=False`):
|
||||
```sh
|
||||
bash run.sh 4 4
|
||||
```
|
||||
|
||||
### Benchmark with a Dataset
|
||||
Benchmark the running Triton server. Pass either `streaming` or `offline` as the third argument.
|
||||
```sh
|
||||
bash run.sh 5 5
|
||||
### Benchmark with client-server mode
|
||||
|
||||
# You can also customise parameters such as num_task and dataset split directly:
|
||||
To benchmark the running Triton server, pass `streaming` or `offline` as the third argument:
|
||||
```sh
|
||||
bash run.sh 5 5 # [streaming|offline]
|
||||
|
||||
# You can also customize parameters such as the number of tasks and the dataset split:
|
||||
# python3 client_grpc.py --num-tasks 2 --huggingface-dataset yuekai/seed_tts_cosy2 --split-name test_zh --mode [streaming|offline]
|
||||
```
|
||||
> [!TIP]
|
||||
> Only offline CosyVoice TTS is currently supported. Setting the client to `streaming` simply enables NVIDIA Triton’s decoupled mode so that responses are returned as soon as they are ready.
|
||||
> It is recommended to run the benchmark multiple times to get stable results after the initial server warm-up.
|
||||
|
||||
### Benchmark Results
|
||||
Decoding on a single L20 GPU with 26 prompt_audio/target_text [pairs](https://huggingface.co/datasets/yuekai/seed_tts) (≈221 s of audio):
|
||||
|
||||
| Mode | Note | Concurrency | Avg Latency (ms) | P50 Latency (ms) | RTF |
|
||||
|------|------|-------------|------------------|------------------|-----|
|
||||
| Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 1 | 758.04 | 615.79 | 0.0891 |
|
||||
| Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 2 | 1025.93 | 901.68 | 0.0657 |
|
||||
| Decoupled=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 4 | 1914.13 | 1783.58 | 0.0610 |
|
||||
| Decoupled=True | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 1 | 659.87 | 655.63 | 0.0891 |
|
||||
| Decoupled=True | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 2 | 1103.16 | 992.96 | 0.0693 |
|
||||
| Decoupled=True | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 4 | 1790.91 | 1668.63 | 0.0604 |
|
||||
|
||||
### OpenAI-Compatible Server
|
||||
To launch an OpenAI-compatible service, run:
|
||||
### Benchmark with offline inference mode
|
||||
For offline inference mode benchmark, please check the below command:
|
||||
```sh
|
||||
git clone https://github.com/yuekaizhang/Triton-OpenAI-Speech.git
|
||||
pip install -r requirements.txt
|
||||
# After the Triton service is up, start the FastAPI bridge:
|
||||
python3 tts_server.py --url http://localhost:8000 --ref_audios_dir ./ref_audios/ --port 10086 --default_sample_rate 24000
|
||||
# Test with curl
|
||||
bash test/test_cosyvoice.sh
|
||||
# install FlashCosyVoice for token2wav batching
|
||||
# git clone https://github.com/yuekaizhang/FlashCosyVoice.git /workspace/FlashCosyVoice -b trt
|
||||
# cd /workspace/FlashCosyVoice
|
||||
# pip install -e .
|
||||
# cd -
|
||||
# wget https://huggingface.co/yuekai/cosyvoice2_flow_onnx/resolve/main/flow.decoder.estimator.fp32.dynamic_batch.onnx -O $model_scope_model_local_dir/flow.decoder.estimator.fp32.dynamic_batch.onnx
|
||||
|
||||
bash run.sh 6 6
|
||||
|
||||
# You can also switch to huggingface backend by setting backend=hf
|
||||
```
|
||||
|
||||
### Acknowledgements
|
||||
This section originates from the NVIDIA CISI project. We also provide other multimodal resources—see [mair-hub](https://github.com/nvidia-china-sae/mair-hub) for details.
|
||||
|
||||
### Benchmark Results
|
||||
The following results were obtained by decoding on a single L20 GPU with 26 prompt audio/target text pairs from the [yuekai/seed_tts](https://huggingface.co/datasets/yuekai/seed_tts) dataset (approximately 170 seconds of audio):
|
||||
|
||||
**Client-Server Mode: Streaming TTS (First Chunk Latency)**
|
||||
| Mode | Concurrency | Avg Latency (ms) | P50 Latency (ms) | RTF |
|
||||
|---|---|---|---|---|
|
||||
| Streaming, use_spk2info_cache=False | 1 | 220.43 | 218.07 | 0.1237 |
|
||||
| Streaming, use_spk2info_cache=False | 2 | 476.97 | 369.25 | 0.1022 |
|
||||
| Streaming, use_spk2info_cache=False | 4 | 1107.34 | 1243.75| 0.0922 |
|
||||
| Streaming, use_spk2info_cache=True | 1 | 189.88 | 184.81 | 0.1155 |
|
||||
| Streaming, use_spk2info_cache=True | 2 | 323.04 | 316.83 | 0.0905 |
|
||||
| Streaming, use_spk2info_cache=True | 4 | 977.68 | 903.68| 0.0733 |
|
||||
|
||||
> If your service only needs a fixed speaker, you can set `use_spk2info_cache=True` in `run.sh`. To add more speakers, refer to the instructions [here](https://github.com/qi-hua/async_cosyvoice?tab=readme-ov-file#9-spk2info-%E8%AF%B4%E6%98%8E).
|
||||
|
||||
**Client-Server Mode: Offline TTS (Full Sentence Latency)**
|
||||
| Mode | Note | Concurrency | Avg Latency (ms) | P50 Latency (ms) | RTF |
|
||||
|---|---|---|---|---|---|
|
||||
| Offline, Decoupled=False, use_spk2info_cache=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 1 | 758.04 | 615.79 | 0.0891 |
|
||||
| Offline, Decoupled=False, use_spk2info_cache=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 2 | 1025.93 | 901.68 | 0.0657 |
|
||||
| Offline, Decoupled=False, use_spk2info_cache=False | [Commit](https://github.com/yuekaizhang/CosyVoice/commit/b44f12110224cb11c03aee4084b1597e7b9331cb) | 4 | 1914.13 | 1783.58 | 0.0610 |
|
||||
|
||||
**Offline Inference Mode: Hugginface LLM V.S. TensorRT-LLM**
|
||||
| Backend | Batch Size | llm_time_seconds | total_time_seconds | RTF |
|
||||
|---------|------------|------------------|-----------------------|--|
|
||||
| HF | 1 | 39.26 | 44.31 | 0.2494 |
|
||||
| HF | 2 | 30.54 | 35.62 | 0.2064 |
|
||||
| HF | 4 | 18.63 | 23.90 | 0.1421 |
|
||||
| HF | 8 | 11.22 | 16.45 | 0.0947 |
|
||||
| HF | 16 | 8.42 | 13.78 | 0.0821 |
|
||||
| TRTLLM | 1 | 12.46 | 17.31 | 0.0987 |
|
||||
| TRTLLM | 2 | 7.64 |12.65 | 0.0739 |
|
||||
| TRTLLM | 4 | 4.89 | 9.38 | 0.0539 |
|
||||
| TRTLLM | 8 | 2.92 | 7.23 | 0.0418 |
|
||||
| TRTLLM | 16 | 2.01 | 6.63 | 0.0386 |
|
||||
### OpenAI-Compatible Server
|
||||
|
||||
To launch an OpenAI-compatible API service, run the following commands:
|
||||
```sh
|
||||
git clone https://github.com/yuekaizhang/Triton-OpenAI-Speech.git
|
||||
cd Triton-OpenAI-Speech
|
||||
pip install -r requirements.txt
|
||||
|
||||
# After the Triton service is running, start the FastAPI bridge:
|
||||
python3 tts_server.py --url http://localhost:8000 --ref_audios_dir ./ref_audios/ --port 10086 --default_sample_rate 24000
|
||||
|
||||
# Test the service with curl:
|
||||
bash test/test_cosyvoice.sh
|
||||
```
|
||||
> [!NOTE]
|
||||
> Currently, only the offline TTS mode is compatible with the OpenAI-compatible server.
|
||||
|
||||
### Acknowledgements
|
||||
|
||||
This work originates from the NVIDIA CISI project. For more multimodal resources, please see [mair-hub](https://github.com/nvidia-china-sae/mair-hub).
|
||||
|
||||
|
||||
@@ -257,7 +257,13 @@ def get_args():
|
||||
default=0.1,
|
||||
help="Chunk overlap duration for streaming reconstruction (in seconds)."
|
||||
)
|
||||
# --- End Added arguments ---
|
||||
|
||||
parser.add_argument(
|
||||
"--use-spk2info-cache",
|
||||
type=bool,
|
||||
default=False,
|
||||
help="Use spk2info cache for reference audio.",
|
||||
)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
@@ -283,7 +289,8 @@ def prepare_request_input_output(
|
||||
reference_text,
|
||||
target_text,
|
||||
sample_rate=16000,
|
||||
padding_duration: int = None # Optional padding for offline mode
|
||||
padding_duration: int = None, # Optional padding for offline mode
|
||||
use_spk2info_cache: bool = False
|
||||
):
|
||||
"""Prepares inputs for Triton inference (offline or streaming)."""
|
||||
assert len(waveform.shape) == 1, "waveform should be 1D"
|
||||
@@ -330,7 +337,8 @@ def prepare_request_input_output(
|
||||
inputs[3].set_data_from_numpy(input_data_numpy)
|
||||
|
||||
outputs = [protocol_client.InferRequestedOutput("waveform")]
|
||||
|
||||
if use_spk2info_cache:
|
||||
inputs = inputs[-1:]
|
||||
return inputs, outputs
|
||||
|
||||
|
||||
@@ -395,38 +403,45 @@ def run_sync_streaming_inference(
|
||||
# Reconstruct audio using cross-fade (from client_grpc_streaming.py)
|
||||
actual_duration = 0
|
||||
if audios:
|
||||
cross_fade_samples = int(chunk_overlap_duration * save_sample_rate)
|
||||
fade_out = np.linspace(1, 0, cross_fade_samples)
|
||||
fade_in = np.linspace(0, 1, cross_fade_samples)
|
||||
reconstructed_audio = None
|
||||
# Only spark_tts model uses cross-fade
|
||||
if model_name == "spark_tts":
|
||||
cross_fade_samples = int(chunk_overlap_duration * save_sample_rate)
|
||||
fade_out = np.linspace(1, 0, cross_fade_samples)
|
||||
fade_in = np.linspace(0, 1, cross_fade_samples)
|
||||
reconstructed_audio = None
|
||||
|
||||
# Simplified reconstruction based on client_grpc_streaming.py
|
||||
if not audios:
|
||||
print("Warning: No audio chunks received.")
|
||||
reconstructed_audio = np.array([], dtype=np.float32) # Empty array
|
||||
elif len(audios) == 1:
|
||||
reconstructed_audio = audios[0]
|
||||
# Simplified reconstruction based on client_grpc_streaming.py
|
||||
if not audios:
|
||||
print("Warning: No audio chunks received.")
|
||||
reconstructed_audio = np.array([], dtype=np.float32) # Empty array
|
||||
elif len(audios) == 1:
|
||||
reconstructed_audio = audios[0]
|
||||
else:
|
||||
reconstructed_audio = audios[0][:-cross_fade_samples] # Start with first chunk minus overlap
|
||||
for i in range(1, len(audios)):
|
||||
# Cross-fade section
|
||||
cross_faded_overlap = (audios[i][:cross_fade_samples] * fade_in +
|
||||
audios[i - 1][-cross_fade_samples:] * fade_out)
|
||||
# Middle section of the current chunk
|
||||
middle_part = audios[i][cross_fade_samples:-cross_fade_samples]
|
||||
# Concatenate
|
||||
reconstructed_audio = np.concatenate([reconstructed_audio, cross_faded_overlap, middle_part])
|
||||
# Add the last part of the final chunk
|
||||
reconstructed_audio = np.concatenate([reconstructed_audio, audios[-1][-cross_fade_samples:]])
|
||||
|
||||
if reconstructed_audio is not None and reconstructed_audio.size > 0:
|
||||
actual_duration = len(reconstructed_audio) / save_sample_rate
|
||||
# Save reconstructed audio
|
||||
sf.write(audio_save_path, reconstructed_audio, save_sample_rate, "PCM_16")
|
||||
else:
|
||||
print("Warning: No audio chunks received or reconstructed.")
|
||||
actual_duration = 0 # Set duration to 0 if no audio
|
||||
else:
|
||||
reconstructed_audio = audios[0][:-cross_fade_samples] # Start with first chunk minus overlap
|
||||
for i in range(1, len(audios)):
|
||||
# Cross-fade section
|
||||
cross_faded_overlap = (audios[i][:cross_fade_samples] * fade_in +
|
||||
audios[i - 1][-cross_fade_samples:] * fade_out)
|
||||
# Middle section of the current chunk
|
||||
middle_part = audios[i][cross_fade_samples:-cross_fade_samples]
|
||||
# Concatenate
|
||||
reconstructed_audio = np.concatenate([reconstructed_audio, cross_faded_overlap, middle_part])
|
||||
# Add the last part of the final chunk
|
||||
reconstructed_audio = np.concatenate([reconstructed_audio, audios[-1][-cross_fade_samples:]])
|
||||
|
||||
if reconstructed_audio is not None and reconstructed_audio.size > 0:
|
||||
reconstructed_audio = np.concatenate(audios)
|
||||
print(f"reconstructed_audio: {reconstructed_audio.shape}")
|
||||
actual_duration = len(reconstructed_audio) / save_sample_rate
|
||||
# Save reconstructed audio
|
||||
os.makedirs(os.path.dirname(audio_save_path), exist_ok=True)
|
||||
sf.write(audio_save_path, reconstructed_audio, save_sample_rate, "PCM_16")
|
||||
else:
|
||||
print("Warning: No audio chunks received or reconstructed.")
|
||||
actual_duration = 0 # Set duration to 0 if no audio
|
||||
|
||||
else:
|
||||
print("Warning: No audio chunks received.")
|
||||
@@ -446,6 +461,7 @@ async def send_streaming(
|
||||
save_sample_rate: int = 16000,
|
||||
chunk_overlap_duration: float = 0.1,
|
||||
padding_duration: int = None,
|
||||
use_spk2info_cache: bool = False,
|
||||
):
|
||||
total_duration = 0.0
|
||||
latency_data = []
|
||||
@@ -471,7 +487,8 @@ async def send_streaming(
|
||||
reference_text,
|
||||
target_text,
|
||||
sample_rate,
|
||||
padding_duration=padding_duration
|
||||
padding_duration=padding_duration,
|
||||
use_spk2info_cache=use_spk2info_cache
|
||||
)
|
||||
request_id = str(uuid.uuid4())
|
||||
user_data = UserData()
|
||||
@@ -527,6 +544,7 @@ async def send(
|
||||
padding_duration: int = None,
|
||||
audio_save_dir: str = "./",
|
||||
save_sample_rate: int = 16000,
|
||||
use_spk2info_cache: bool = False,
|
||||
):
|
||||
total_duration = 0.0
|
||||
latency_data = []
|
||||
@@ -545,7 +563,8 @@ async def send(
|
||||
reference_text,
|
||||
target_text,
|
||||
sample_rate,
|
||||
padding_duration=padding_duration
|
||||
padding_duration=padding_duration,
|
||||
use_spk2info_cache=use_spk2info_cache
|
||||
)
|
||||
sequence_id = 100000000 + i + task_id * 10
|
||||
start = time.time()
|
||||
@@ -667,6 +686,7 @@ async def main():
|
||||
manifest_item_list = split_data(manifest_item_list, num_tasks)
|
||||
|
||||
os.makedirs(args.log_dir, exist_ok=True)
|
||||
|
||||
tasks = []
|
||||
start_time = time.time()
|
||||
for i in range(num_tasks):
|
||||
@@ -683,6 +703,7 @@ async def main():
|
||||
audio_save_dir=args.log_dir,
|
||||
padding_duration=1,
|
||||
save_sample_rate=16000 if args.model_name == "spark_tts" else 24000,
|
||||
use_spk2info_cache=args.use_spk2info_cache,
|
||||
)
|
||||
)
|
||||
elif args.mode == "streaming":
|
||||
@@ -698,6 +719,7 @@ async def main():
|
||||
padding_duration=10,
|
||||
save_sample_rate=16000 if args.model_name == "spark_tts" else 24000,
|
||||
chunk_overlap_duration=args.chunk_overlap_duration,
|
||||
use_spk2info_cache=args.use_spk2info_cache,
|
||||
)
|
||||
)
|
||||
# --- End Task Creation ---
|
||||
|
||||
@@ -32,7 +32,7 @@ import triton_python_backend_utils as pb_utils
|
||||
import os
|
||||
import numpy as np
|
||||
import s3tokenizer
|
||||
|
||||
torch.set_num_threads(1)
|
||||
ORIGINAL_VOCAB_SIZE = 151663
|
||||
|
||||
|
||||
|
||||
@@ -20,7 +20,7 @@ dynamic_batching {
|
||||
}
|
||||
parameters [
|
||||
{
|
||||
key: "model_dir",
|
||||
key: "model_dir",
|
||||
value: {string_value:"${model_dir}"}
|
||||
}
|
||||
]
|
||||
|
||||
@@ -28,6 +28,8 @@ import json
|
||||
import math
|
||||
import os
|
||||
import re
|
||||
import threading
|
||||
import time
|
||||
from typing import Dict, List, Tuple, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
@@ -35,13 +37,15 @@ import torch
|
||||
from torch.utils.dlpack import from_dlpack, to_dlpack
|
||||
import triton_python_backend_utils as pb_utils
|
||||
from transformers import AutoTokenizer
|
||||
import torchaudio.compliance.kaldi as kaldi
|
||||
|
||||
import torchaudio
|
||||
import onnxruntime
|
||||
|
||||
|
||||
from matcha.utils.audio import mel_spectrogram
|
||||
|
||||
ORIGINAL_VOCAB_SIZE = 151663
|
||||
torch.set_num_threads(1)
|
||||
|
||||
|
||||
class TritonPythonModel:
|
||||
"""Triton Python model for Spark TTS.
|
||||
@@ -62,6 +66,8 @@ class TritonPythonModel:
|
||||
parameters = self.model_config['parameters']
|
||||
model_params = {k: v["string_value"] for k, v in parameters.items()}
|
||||
self.logger.log_info(f"model_params:{model_params}")
|
||||
self.dynamic_chunk_strategy = model_params.get("dynamic_chunk_strategy", "exponential") # "exponential" or "time_based"
|
||||
self.logger.log_info(f"Using dynamic chunk strategy: {self.dynamic_chunk_strategy}")
|
||||
|
||||
# Initialize tokenizer
|
||||
llm_tokenizer_dir = model_params["llm_tokenizer_dir"]
|
||||
@@ -72,11 +78,15 @@ class TritonPythonModel:
|
||||
self.device = torch.device("cuda")
|
||||
self.decoupled = pb_utils.using_decoupled_model_transaction_policy(self.model_config)
|
||||
|
||||
campplus_model = f'{model_params["model_dir"]}/campplus.onnx'
|
||||
option = onnxruntime.SessionOptions()
|
||||
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
option.intra_op_num_threads = 1
|
||||
self.campplus_session = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"])
|
||||
self.token_frame_rate = 25
|
||||
self.flow_pre_lookahead_len = 3
|
||||
self.token_hop_len = 15
|
||||
|
||||
spk_info_path = os.path.join(model_params["model_dir"], "spk2info.pt")
|
||||
if not os.path.exists(spk_info_path):
|
||||
raise ValueError(f"spk2info.pt not found in {model_params['model_dir']}")
|
||||
spk_info = torch.load(spk_info_path, map_location="cpu", weights_only=False)
|
||||
self.default_spk_info = spk_info["001"]
|
||||
|
||||
def forward_llm(self, input_ids):
|
||||
"""
|
||||
@@ -105,7 +115,7 @@ class TritonPythonModel:
|
||||
"""
|
||||
# convert input_ids to numpy, with shape [1, sequence_length]
|
||||
input_ids = input_ids.cpu().numpy()
|
||||
max_tokens = 1024
|
||||
max_tokens = 750
|
||||
input_dict = {
|
||||
"request_output_len": np.array([[max_tokens]], dtype=np.int32),
|
||||
"end_id": np.array([[self.eos_token_id]], dtype=np.int32),
|
||||
@@ -114,6 +124,8 @@ class TritonPythonModel:
|
||||
"runtime_top_p": np.array([[0.95]], dtype=np.float32),
|
||||
"runtime_top_k": np.array([[50]], dtype=np.int32),
|
||||
"temperature": np.array([[0.8]], dtype=np.float32),
|
||||
"repetition_penalty": np.array([[1.1]], dtype=np.float32),
|
||||
"random_seed": np.array([[42]], dtype=np.uint64),
|
||||
"input_ids": input_ids,
|
||||
"input_lengths": np.array([[input_ids.shape[1]]], dtype=np.int32),
|
||||
}
|
||||
@@ -188,12 +200,40 @@ class TritonPythonModel:
|
||||
|
||||
return prompt_speech_tokens
|
||||
|
||||
def forward_speaker_embedding(self, wav):
|
||||
"""Forward pass through the speaker embedding component.
|
||||
|
||||
Args:
|
||||
wav: Input waveform tensor
|
||||
|
||||
Returns:
|
||||
Prompt speaker embedding tensor
|
||||
"""
|
||||
inference_request = pb_utils.InferenceRequest(
|
||||
model_name='speaker_embedding',
|
||||
requested_output_names=['prompt_spk_embedding'],
|
||||
inputs=[pb_utils.Tensor.from_dlpack("reference_wav", to_dlpack(wav))]
|
||||
)
|
||||
|
||||
inference_response = inference_request.exec()
|
||||
if inference_response.has_error():
|
||||
raise pb_utils.TritonModelException(inference_response.error().message())
|
||||
|
||||
# Extract and convert output tensors
|
||||
prompt_spk_embedding = pb_utils.get_output_tensor_by_name(inference_response, 'prompt_spk_embedding')
|
||||
prompt_spk_embedding = torch.utils.dlpack.from_dlpack(prompt_spk_embedding.to_dlpack())
|
||||
|
||||
return prompt_spk_embedding
|
||||
|
||||
def forward_token2wav(
|
||||
self,
|
||||
prompt_speech_tokens: torch.Tensor,
|
||||
prompt_speech_feat: torch.Tensor,
|
||||
prompt_spk_embedding: torch.Tensor,
|
||||
target_speech_tokens: torch.Tensor) -> torch.Tensor:
|
||||
target_speech_tokens: torch.Tensor,
|
||||
request_id: str,
|
||||
prompt_speech_tokens: torch.Tensor = None,
|
||||
prompt_speech_feat: torch.Tensor = None,
|
||||
prompt_spk_embedding: torch.Tensor = None,
|
||||
token_offset: int = None,
|
||||
finalize: bool = None) -> torch.Tensor:
|
||||
"""Forward pass through the vocoder component.
|
||||
|
||||
Args:
|
||||
@@ -205,16 +245,30 @@ class TritonPythonModel:
|
||||
Returns:
|
||||
Generated waveform tensor
|
||||
"""
|
||||
prompt_speech_tokens_tensor = pb_utils.Tensor.from_dlpack("prompt_speech_tokens", to_dlpack(prompt_speech_tokens))
|
||||
prompt_speech_feat_tensor = pb_utils.Tensor.from_dlpack("prompt_speech_feat", to_dlpack(prompt_speech_feat))
|
||||
prompt_spk_embedding_tensor = pb_utils.Tensor.from_dlpack("prompt_spk_embedding", to_dlpack(prompt_spk_embedding))
|
||||
target_speech_tokens_tensor = pb_utils.Tensor.from_dlpack("target_speech_tokens", to_dlpack(target_speech_tokens))
|
||||
|
||||
inputs_tensor = [target_speech_tokens_tensor]
|
||||
|
||||
if token_offset is not None:
|
||||
assert finalize is not None
|
||||
token_offset_tensor = pb_utils.Tensor("token_offset", np.array([[token_offset]], dtype=np.int32))
|
||||
finalize_tensor = pb_utils.Tensor("finalize", np.array([[finalize]], dtype=np.bool_))
|
||||
inputs_tensor.append(token_offset_tensor)
|
||||
inputs_tensor.append(finalize_tensor)
|
||||
|
||||
if prompt_spk_embedding is not None:
|
||||
assert prompt_speech_feat is not None
|
||||
prompt_speech_tokens_tensor = pb_utils.Tensor.from_dlpack("prompt_speech_tokens", to_dlpack(prompt_speech_tokens))
|
||||
prompt_speech_feat_tensor = pb_utils.Tensor.from_dlpack("prompt_speech_feat", to_dlpack(prompt_speech_feat))
|
||||
prompt_spk_embedding_tensor = pb_utils.Tensor.from_dlpack("prompt_spk_embedding", to_dlpack(prompt_spk_embedding))
|
||||
inputs_tensor.extend([prompt_speech_tokens_tensor, prompt_speech_feat_tensor, prompt_spk_embedding_tensor])
|
||||
|
||||
# Create and execute inference request
|
||||
inference_request = pb_utils.InferenceRequest(
|
||||
model_name='token2wav',
|
||||
requested_output_names=['waveform'],
|
||||
inputs=[prompt_speech_tokens_tensor, prompt_speech_feat_tensor, prompt_spk_embedding_tensor, target_speech_tokens_tensor]
|
||||
inputs=inputs_tensor,
|
||||
request_id=request_id,
|
||||
)
|
||||
|
||||
inference_response = inference_request.exec()
|
||||
@@ -235,17 +289,6 @@ class TritonPythonModel:
|
||||
input_ids = torch.cat([input_ids, prompt_speech_tokens], dim=1)
|
||||
return input_ids
|
||||
|
||||
def _extract_spk_embedding(self, speech):
|
||||
feat = kaldi.fbank(speech,
|
||||
num_mel_bins=80,
|
||||
dither=0,
|
||||
sample_frequency=16000)
|
||||
feat = feat - feat.mean(dim=0, keepdim=True)
|
||||
embedding = self.campplus_session.run(None,
|
||||
{self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
||||
embedding = torch.tensor([embedding]).to(self.device).half()
|
||||
return embedding
|
||||
|
||||
def _extract_speech_feat(self, speech):
|
||||
speech_feat = mel_spectrogram(
|
||||
speech,
|
||||
@@ -263,6 +306,14 @@ class TritonPythonModel:
|
||||
speech_feat = speech_feat.unsqueeze(dim=0)
|
||||
return speech_feat
|
||||
|
||||
def _llm_gen_thread(self, generated_ids_iter, semantic_token_ids_arr, llm_is_done_flag):
|
||||
for generated_ids in generated_ids_iter:
|
||||
generated_ids = generated_ids.tolist()
|
||||
if len(generated_ids) == 0:
|
||||
break
|
||||
semantic_token_ids_arr.extend(generated_ids)
|
||||
llm_is_done_flag[0] = True
|
||||
|
||||
def execute(self, requests):
|
||||
"""Execute inference on the batched requests.
|
||||
|
||||
@@ -275,25 +326,33 @@ class TritonPythonModel:
|
||||
responses = []
|
||||
|
||||
for request in requests:
|
||||
request_id = request.request_id()
|
||||
# Extract input tensors
|
||||
wav = pb_utils.get_input_tensor_by_name(request, "reference_wav")
|
||||
wav_len = pb_utils.get_input_tensor_by_name(request, "reference_wav_len")
|
||||
|
||||
# Process reference audio through audio tokenizer
|
||||
if wav is not None:
|
||||
wav_len = pb_utils.get_input_tensor_by_name(request, "reference_wav_len")
|
||||
prompt_speech_tokens = self.forward_audio_tokenizer(wav, wav_len)
|
||||
prompt_speech_tokens = prompt_speech_tokens.unsqueeze(0)
|
||||
|
||||
prompt_speech_tokens = self.forward_audio_tokenizer(wav, wav_len)
|
||||
prompt_speech_tokens = prompt_speech_tokens.unsqueeze(0)
|
||||
wav_tensor = wav.as_numpy()
|
||||
wav_tensor = torch.from_numpy(wav_tensor)[:, :wav_len.as_numpy()[0][0]]
|
||||
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=24000)(wav_tensor)
|
||||
speech_feat = self._extract_speech_feat(prompt_speech_resample)
|
||||
token_len = min(int(speech_feat.shape[1] / 2), prompt_speech_tokens.shape[-1])
|
||||
prompt_speech_feat = speech_feat[:, :2 * token_len].contiguous().half()
|
||||
prompt_speech_tokens = prompt_speech_tokens[:, :token_len].contiguous()
|
||||
|
||||
wav_tensor = wav.as_numpy()
|
||||
wav_tensor = torch.from_numpy(wav_tensor)[:, :wav_len.as_numpy()[0][0]]
|
||||
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=24000)(wav_tensor)
|
||||
speech_feat = self._extract_speech_feat(prompt_speech_resample)
|
||||
token_len = min(int(speech_feat.shape[1] / 2), prompt_speech_tokens.shape[-1])
|
||||
prompt_speech_feat = speech_feat[:, :2 * token_len].contiguous().half()
|
||||
prompt_speech_tokens = prompt_speech_tokens[:, :token_len].contiguous()
|
||||
|
||||
reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy()
|
||||
reference_text = reference_text[0][0].decode('utf-8')
|
||||
reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy()
|
||||
reference_text = reference_text[0][0].decode('utf-8')
|
||||
prompt_spk_embedding = self.forward_speaker_embedding(wav_tensor)
|
||||
else:
|
||||
# using pre-cached reference text
|
||||
reference_text = self.default_spk_info["prompt_text"]
|
||||
prompt_speech_tokens = self.default_spk_info["speech_token"] + ORIGINAL_VOCAB_SIZE
|
||||
prompt_speech_feat = None
|
||||
prompt_spk_embedding = None
|
||||
|
||||
target_text = pb_utils.get_input_tensor_by_name(request, "target_text").as_numpy()
|
||||
target_text = target_text[0][0].decode('utf-8')
|
||||
@@ -310,22 +369,73 @@ class TritonPythonModel:
|
||||
|
||||
if self.decoupled:
|
||||
response_sender = request.get_response_sender()
|
||||
request_id = request.request_id()
|
||||
generated_ids = []
|
||||
for generated_id in generated_ids_iter:
|
||||
# convert the numpy array into a int32 tensor
|
||||
generated_id = generated_id.tolist()
|
||||
if len(generated_id) > 0:
|
||||
assert len(generated_id) == 1, "Generated ID is not a single integer"
|
||||
generated_ids.append(generated_id[0])
|
||||
generated_ids = torch.tensor(generated_ids).unsqueeze(0).to(torch.int32).to(self.device)
|
||||
prompt_spk_embedding = self._extract_spk_embedding(wav_tensor)
|
||||
audio = self.forward_token2wav(prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, generated_ids)
|
||||
|
||||
# Prepare response
|
||||
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(audio))
|
||||
semantic_token_ids_arr = []
|
||||
llm_is_done_flag = [False]
|
||||
|
||||
llm_thread = threading.Thread(
|
||||
target=self._llm_gen_thread,
|
||||
args=(generated_ids_iter, semantic_token_ids_arr, llm_is_done_flag)
|
||||
)
|
||||
|
||||
llm_thread.start()
|
||||
|
||||
token_offset, chunk_index = 0, 0
|
||||
start_time = time.time()
|
||||
this_token_hop_len = self.token_hop_len
|
||||
|
||||
while True:
|
||||
pending_num = len(semantic_token_ids_arr) - token_offset
|
||||
|
||||
if llm_is_done_flag[0]:
|
||||
break
|
||||
|
||||
if pending_num >= this_token_hop_len + self.flow_pre_lookahead_len:
|
||||
this_tts_speech_token = semantic_token_ids_arr[:token_offset + this_token_hop_len + self.flow_pre_lookahead_len]
|
||||
this_tts_speech_token = torch.tensor(this_tts_speech_token).unsqueeze(dim=0).to(torch.int32).to(self.device)
|
||||
|
||||
sub_tts_speech = self.forward_token2wav(
|
||||
this_tts_speech_token, request_id, prompt_speech_tokens,
|
||||
prompt_speech_feat, prompt_spk_embedding, token_offset, False
|
||||
)
|
||||
|
||||
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
|
||||
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
|
||||
response_sender.send(inference_response)
|
||||
|
||||
token_offset += this_token_hop_len
|
||||
self.logger.log_info(f"chunk_index: {chunk_index}, current_token_hop_len: {this_token_hop_len}")
|
||||
|
||||
if self.dynamic_chunk_strategy == "exponential":
|
||||
this_token_hop_len = self.token_frame_rate * (2 ** chunk_index)
|
||||
elif self.dynamic_chunk_strategy == "time_based":
|
||||
# see https://github.com/qi-hua/async_cosyvoice/blob/main/model.py#L306
|
||||
cost_time = time.time() - start_time
|
||||
duration = token_offset / self.token_frame_rate
|
||||
if chunk_index > 0 and cost_time > 0:
|
||||
avg_chunk_processing_time = cost_time / (chunk_index + 1)
|
||||
if avg_chunk_processing_time > 0:
|
||||
multiples = (duration - cost_time) / avg_chunk_processing_time
|
||||
self.logger.log_info(f"multiples: {multiples}")
|
||||
next_pending_num = len(semantic_token_ids_arr) - token_offset
|
||||
if multiples > 4:
|
||||
this_token_hop_len = (next_pending_num // self.token_hop_len + 1) * self.token_hop_len
|
||||
elif multiples > 2:
|
||||
this_token_hop_len = (next_pending_num // self.token_hop_len) * self.token_hop_len
|
||||
else:
|
||||
this_token_hop_len = self.token_hop_len
|
||||
this_token_hop_len = max(self.token_hop_len, this_token_hop_len)
|
||||
chunk_index += 1
|
||||
else:
|
||||
time.sleep(0.02)
|
||||
|
||||
this_tts_speech_token = torch.tensor(semantic_token_ids_arr).unsqueeze(dim=0).to(torch.int32).to(self.device)
|
||||
sub_tts_speech = self.forward_token2wav(this_tts_speech_token, request_id, prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, token_offset, True)
|
||||
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
|
||||
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
|
||||
response_sender.send(inference_response)
|
||||
|
||||
llm_thread.join()
|
||||
response_sender.send(flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL)
|
||||
self.logger.log_info("send tritonserver_response_complete_final to end")
|
||||
else:
|
||||
@@ -334,8 +444,7 @@ class TritonPythonModel:
|
||||
if generated_ids is None or len(generated_ids) == 0:
|
||||
raise pb_utils.TritonModelException("Generated IDs is None or empty")
|
||||
|
||||
prompt_spk_embedding = self._extract_spk_embedding(wav_tensor)
|
||||
audio = self.forward_token2wav(prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, generated_ids)
|
||||
audio = self.forward_token2wav(generated_ids, request_id, prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding)
|
||||
|
||||
# Prepare response
|
||||
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(audio))
|
||||
|
||||
@@ -23,11 +23,11 @@ model_transaction_policy {
|
||||
}
|
||||
parameters [
|
||||
{
|
||||
key: "llm_tokenizer_dir",
|
||||
key: "llm_tokenizer_dir",
|
||||
value: {string_value:"${llm_tokenizer_dir}"}
|
||||
},
|
||||
{
|
||||
key: "model_dir",
|
||||
key: "model_dir",
|
||||
value: {string_value:"${model_dir}"}
|
||||
}
|
||||
]
|
||||
@@ -37,16 +37,19 @@ input [
|
||||
name: "reference_wav"
|
||||
data_type: TYPE_FP32
|
||||
dims: [-1]
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
name: "reference_wav_len"
|
||||
data_type: TYPE_INT32
|
||||
dims: [1]
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
name: "reference_text"
|
||||
data_type: TYPE_STRING
|
||||
dims: [1]
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
name: "target_text"
|
||||
|
||||
153
runtime/triton_trtllm/model_repo/speaker_embedding/1/model.py
Normal file
153
runtime/triton_trtllm/model_repo/speaker_embedding/1/model.py
Normal file
@@ -0,0 +1,153 @@
|
||||
# Copyright 2025, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
#
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions
|
||||
# are met:
|
||||
# * Redistributions of source code must retain the above copyright
|
||||
# notice, this list of conditions and the following disclaimer.
|
||||
# * Redistributions in binary form must reproduce the above copyright
|
||||
# notice, this list of conditions and the following disclaimer in the
|
||||
# documentation and/or other materials provided with the distribution.
|
||||
# * Neither the name of NVIDIA CORPORATION nor the names of its
|
||||
# contributors may be used to endorse or promote products derived
|
||||
# from this software without specific prior written permission.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||||
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||||
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||||
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
import json
|
||||
import torch
|
||||
from torch.utils.dlpack import to_dlpack
|
||||
|
||||
import triton_python_backend_utils as pb_utils
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
import torchaudio.compliance.kaldi as kaldi
|
||||
from cosyvoice.utils.file_utils import convert_onnx_to_trt
|
||||
from cosyvoice.utils.common import TrtContextWrapper
|
||||
import onnxruntime
|
||||
|
||||
|
||||
class TritonPythonModel:
|
||||
"""Triton Python model for audio tokenization.
|
||||
|
||||
This model takes reference audio input and extracts semantic tokens
|
||||
using s3tokenizer.
|
||||
"""
|
||||
|
||||
def initialize(self, args):
|
||||
"""Initialize the model.
|
||||
|
||||
Args:
|
||||
args: Dictionary containing model configuration
|
||||
"""
|
||||
# Parse model parameters
|
||||
parameters = json.loads(args['model_config'])['parameters']
|
||||
model_params = {k: v["string_value"] for k, v in parameters.items()}
|
||||
|
||||
self.device = torch.device("cuda")
|
||||
|
||||
model_dir = model_params["model_dir"]
|
||||
gpu = "l20"
|
||||
enable_trt = True
|
||||
if enable_trt:
|
||||
self.load_spk_trt(f'{model_dir}/campplus.{gpu}.fp32.trt',
|
||||
f'{model_dir}/campplus.onnx',
|
||||
1,
|
||||
False)
|
||||
else:
|
||||
campplus_model = f'{model_dir}/campplus.onnx'
|
||||
option = onnxruntime.SessionOptions()
|
||||
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
option.intra_op_num_threads = 1
|
||||
self.spk_model = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"])
|
||||
|
||||
def load_spk_trt(self, spk_model, spk_onnx_model, trt_concurrent=1, fp16=True):
|
||||
if not os.path.exists(spk_model) or os.path.getsize(spk_model) == 0:
|
||||
trt_kwargs = self.get_spk_trt_kwargs()
|
||||
convert_onnx_to_trt(spk_model, trt_kwargs, spk_onnx_model, fp16)
|
||||
import tensorrt as trt
|
||||
with open(spk_model, 'rb') as f:
|
||||
spk_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
||||
assert spk_engine is not None, 'failed to load trt {}'.format(spk_model)
|
||||
self.spk_model = TrtContextWrapper(spk_engine, trt_concurrent=trt_concurrent, device=self.device)
|
||||
|
||||
def get_spk_trt_kwargs(self):
|
||||
min_shape = [(1, 4, 80)]
|
||||
opt_shape = [(1, 500, 80)]
|
||||
max_shape = [(1, 3000, 80)]
|
||||
input_names = ["input"]
|
||||
return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
|
||||
|
||||
def _extract_spk_embedding(self, speech):
|
||||
feat = kaldi.fbank(speech,
|
||||
num_mel_bins=80,
|
||||
dither=0,
|
||||
sample_frequency=16000)
|
||||
spk_feat = feat - feat.mean(dim=0, keepdim=True)
|
||||
|
||||
if isinstance(self.spk_model, onnxruntime.InferenceSession):
|
||||
embedding = self.spk_model.run(
|
||||
None, {self.spk_model.get_inputs()[0].name: spk_feat.unsqueeze(dim=0).cpu().numpy()}
|
||||
)[0].flatten().tolist()
|
||||
embedding = torch.tensor([embedding]).to(self.device)
|
||||
else:
|
||||
[spk_model, stream], trt_engine = self.spk_model.acquire_estimator()
|
||||
# NOTE need to synchronize when switching stream
|
||||
with torch.cuda.device(self.device):
|
||||
torch.cuda.current_stream().synchronize()
|
||||
spk_feat = spk_feat.unsqueeze(dim=0).to(self.device)
|
||||
batch_size = spk_feat.size(0)
|
||||
|
||||
with stream:
|
||||
spk_model.set_input_shape('input', (batch_size, spk_feat.size(1), 80))
|
||||
embedding = torch.empty((batch_size, 192), device=spk_feat.device)
|
||||
|
||||
data_ptrs = [spk_feat.contiguous().data_ptr(),
|
||||
embedding.contiguous().data_ptr()]
|
||||
for i, j in enumerate(data_ptrs):
|
||||
|
||||
spk_model.set_tensor_address(trt_engine.get_tensor_name(i), j)
|
||||
# run trt engine
|
||||
assert spk_model.execute_async_v3(torch.cuda.current_stream().cuda_stream) is True
|
||||
torch.cuda.current_stream().synchronize()
|
||||
self.spk_model.release_estimator(spk_model, stream)
|
||||
|
||||
return embedding.half()
|
||||
|
||||
def execute(self, requests):
|
||||
"""Execute inference on the batched requests.
|
||||
|
||||
Args:
|
||||
requests: List of inference requests
|
||||
|
||||
Returns:
|
||||
List of inference responses containing tokenized outputs
|
||||
"""
|
||||
responses = []
|
||||
# Process each request in batch
|
||||
for request in requests:
|
||||
# Extract input tensors
|
||||
wav_array = pb_utils.get_input_tensor_by_name(
|
||||
request, "reference_wav").as_numpy()
|
||||
wav_array = torch.from_numpy(wav_array).to(self.device)
|
||||
|
||||
embedding = self._extract_spk_embedding(wav_array)
|
||||
|
||||
prompt_spk_embedding_tensor = pb_utils.Tensor.from_dlpack(
|
||||
"prompt_spk_embedding", to_dlpack(embedding))
|
||||
inference_response = pb_utils.InferenceResponse(
|
||||
output_tensors=[prompt_spk_embedding_tensor])
|
||||
|
||||
responses.append(inference_response)
|
||||
|
||||
return responses
|
||||
@@ -0,0 +1,48 @@
|
||||
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
name: "speaker_embedding"
|
||||
backend: "python"
|
||||
max_batch_size: ${triton_max_batch_size}
|
||||
dynamic_batching {
|
||||
max_queue_delay_microseconds: ${max_queue_delay_microseconds}
|
||||
}
|
||||
parameters [
|
||||
{
|
||||
key: "model_dir",
|
||||
value: {string_value:"${model_dir}"}
|
||||
}
|
||||
]
|
||||
|
||||
input [
|
||||
{
|
||||
name: "reference_wav"
|
||||
data_type: TYPE_FP32
|
||||
dims: [-1]
|
||||
}
|
||||
]
|
||||
output [
|
||||
{
|
||||
name: "prompt_spk_embedding"
|
||||
data_type: TYPE_FP16
|
||||
dims: [-1]
|
||||
}
|
||||
]
|
||||
|
||||
instance_group [
|
||||
{
|
||||
count: 1
|
||||
kind: KIND_CPU
|
||||
}
|
||||
]
|
||||
@@ -32,22 +32,27 @@ from typing import List, Dict
|
||||
|
||||
import torch
|
||||
from torch.utils.dlpack import to_dlpack
|
||||
from torch.nn import functional as F
|
||||
|
||||
import triton_python_backend_utils as pb_utils
|
||||
|
||||
from hyperpyyaml import load_hyperpyyaml
|
||||
from cosyvoice.utils.common import fade_in_out
|
||||
from cosyvoice.utils.file_utils import convert_onnx_to_trt, export_cosyvoice2_vllm
|
||||
from cosyvoice.utils.common import TrtContextWrapper
|
||||
from collections import defaultdict
|
||||
import numpy as np
|
||||
|
||||
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
ORIGINAL_VOCAB_SIZE = 151663
|
||||
torch.set_num_threads(1)
|
||||
|
||||
|
||||
class CosyVoice2:
|
||||
|
||||
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, trt_concurrent=1):
|
||||
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, trt_concurrent=1, device='cuda'):
|
||||
|
||||
self.model_dir = model_dir
|
||||
self.fp16 = fp16
|
||||
@@ -57,7 +62,7 @@ class CosyVoice2:
|
||||
raise ValueError('{} not found!'.format(hyper_yaml_path))
|
||||
with open(hyper_yaml_path, 'r') as f:
|
||||
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
|
||||
self.model = CosyVoice2Model(configs['flow'], configs['hift'], fp16)
|
||||
self.model = CosyVoice2Model(configs['flow'], configs['hift'], fp16, device)
|
||||
self.model.load('{}/flow.pt'.format(model_dir), '{}/hift.pt'.format(model_dir))
|
||||
if load_jit:
|
||||
self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
||||
@@ -73,14 +78,22 @@ class CosyVoice2Model:
|
||||
def __init__(self,
|
||||
flow: torch.nn.Module,
|
||||
hift: torch.nn.Module,
|
||||
fp16: bool = False):
|
||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
fp16: bool = False,
|
||||
device: str = 'cuda'):
|
||||
self.device = device
|
||||
self.flow = flow
|
||||
self.hift = hift
|
||||
self.fp16 = fp16
|
||||
if self.fp16 is True:
|
||||
self.flow.half()
|
||||
|
||||
# streaming tts config
|
||||
self.token_hop_len = 25
|
||||
self.mel_cache_len = 8
|
||||
self.source_cache_len = int(self.mel_cache_len * 480)
|
||||
self.speech_window = np.hamming(2 * self.source_cache_len)
|
||||
self.hift_cache_dict = defaultdict(lambda: None)
|
||||
|
||||
def load_jit(self, flow_encoder_model):
|
||||
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
||||
self.flow.encoder = flow_encoder
|
||||
@@ -111,6 +124,42 @@ class CosyVoice2Model:
|
||||
input_names = ["x", "mask", "mu", "cond"]
|
||||
return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
|
||||
|
||||
def token2wav(self, token, prompt_token, prompt_feat, embedding, token_offset, uuid, stream=False, finalize=False, speed=1.0):
|
||||
with torch.cuda.amp.autocast(self.fp16):
|
||||
tts_mel, _ = self.flow.inference(token=token.to(self.device),
|
||||
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_token=prompt_token.to(self.device),
|
||||
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||
prompt_feat=prompt_feat.to(self.device),
|
||||
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=embedding.to(self.device),
|
||||
streaming=stream,
|
||||
finalize=finalize)
|
||||
tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
|
||||
# append hift cache
|
||||
if self.hift_cache_dict[uuid] is not None:
|
||||
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
||||
tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
|
||||
else:
|
||||
hift_cache_source = torch.zeros(1, 1, 0)
|
||||
# keep overlap mel and hift cache
|
||||
if finalize is False:
|
||||
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
||||
if self.hift_cache_dict[uuid] is not None:
|
||||
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
||||
self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
|
||||
'source': tts_source[:, :, -self.source_cache_len:],
|
||||
'speech': tts_speech[:, -self.source_cache_len:]}
|
||||
tts_speech = tts_speech[:, :-self.source_cache_len]
|
||||
else:
|
||||
if speed != 1.0:
|
||||
assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
|
||||
tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
|
||||
tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
|
||||
if self.hift_cache_dict[uuid] is not None:
|
||||
tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
|
||||
return tts_speech
|
||||
|
||||
|
||||
class TritonPythonModel:
|
||||
"""Triton Python model for vocoder.
|
||||
@@ -131,13 +180,19 @@ class TritonPythonModel:
|
||||
model_dir = model_params["model_dir"]
|
||||
|
||||
# Initialize device and vocoder
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
logger.info(f"Initializing vocoder from {model_dir} on {self.device}")
|
||||
|
||||
self.token2wav_model = CosyVoice2(
|
||||
model_dir, load_jit=True, load_trt=True, fp16=True
|
||||
model_dir, load_jit=False, load_trt=True, fp16=True, device=self.device
|
||||
)
|
||||
|
||||
spk_info_path = os.path.join(model_dir, "spk2info.pt")
|
||||
if not os.path.exists(spk_info_path):
|
||||
raise ValueError(f"spk2info.pt not found in {model_dir}")
|
||||
spk_info = torch.load(spk_info_path, map_location="cpu", weights_only=False)
|
||||
self.default_spk_info = spk_info["001"]
|
||||
|
||||
logger.info("Token2Wav initialized successfully")
|
||||
|
||||
def execute(self, requests):
|
||||
@@ -153,38 +208,66 @@ class TritonPythonModel:
|
||||
# Process each request in batch
|
||||
for request in requests:
|
||||
target_speech_tokens_tensor = pb_utils.get_input_tensor_by_name(request, "target_speech_tokens").as_numpy()
|
||||
prompt_speech_tokens_tensor = pb_utils.get_input_tensor_by_name(request, "prompt_speech_tokens").as_numpy()
|
||||
prompt_speech_feat_tensor = pb_utils.get_input_tensor_by_name(request, "prompt_speech_feat").as_numpy()
|
||||
prompt_spk_embedding_tensor = pb_utils.get_input_tensor_by_name(request, "prompt_spk_embedding").as_numpy()
|
||||
|
||||
target_speech_tokens = torch.from_numpy(target_speech_tokens_tensor).to(self.device)
|
||||
prompt_speech_tokens = torch.from_numpy(prompt_speech_tokens_tensor).to(self.device)
|
||||
prompt_speech_feat = torch.from_numpy(prompt_speech_feat_tensor).to(self.device)
|
||||
prompt_spk_embedding = torch.from_numpy(prompt_spk_embedding_tensor).to(self.device)
|
||||
|
||||
prompt_speech_tokens_tensor = pb_utils.get_input_tensor_by_name(request, "prompt_speech_tokens")
|
||||
if prompt_speech_tokens_tensor is not None:
|
||||
prompt_speech_tokens_tensor = prompt_speech_tokens_tensor.as_numpy()
|
||||
prompt_speech_feat_tensor = pb_utils.get_input_tensor_by_name(request, "prompt_speech_feat").as_numpy()
|
||||
prompt_spk_embedding_tensor = pb_utils.get_input_tensor_by_name(request, "prompt_spk_embedding").as_numpy()
|
||||
prompt_speech_tokens = torch.from_numpy(prompt_speech_tokens_tensor).to(self.device)
|
||||
prompt_speech_feat = torch.from_numpy(prompt_speech_feat_tensor).to(self.device)
|
||||
prompt_spk_embedding = torch.from_numpy(prompt_spk_embedding_tensor).to(self.device)
|
||||
prompt_speech_tokens = prompt_speech_tokens - ORIGINAL_VOCAB_SIZE
|
||||
else:
|
||||
prompt_speech_tokens = self.default_spk_info["speech_token"].to(self.device)
|
||||
prompt_speech_feat = self.default_spk_info["speech_feat"].to(torch.float16).to(self.device)
|
||||
prompt_spk_embedding = self.default_spk_info["embedding"].to(torch.float16).to(self.device)
|
||||
|
||||
# shift the speech tokens according to the original vocab size
|
||||
prompt_speech_tokens = prompt_speech_tokens - ORIGINAL_VOCAB_SIZE
|
||||
target_speech_tokens = target_speech_tokens - ORIGINAL_VOCAB_SIZE
|
||||
|
||||
tts_mel, _ = self.token2wav_model.model.flow.inference(
|
||||
token=target_speech_tokens,
|
||||
token_len=torch.tensor([target_speech_tokens.shape[1]], dtype=torch.int32).to(
|
||||
self.device
|
||||
),
|
||||
prompt_token=prompt_speech_tokens,
|
||||
prompt_token_len=torch.tensor(
|
||||
[prompt_speech_tokens.shape[1]], dtype=torch.int32
|
||||
).to(self.device),
|
||||
prompt_feat=prompt_speech_feat,
|
||||
prompt_feat_len=torch.tensor([prompt_speech_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=prompt_spk_embedding,
|
||||
streaming=False,
|
||||
finalize=True,
|
||||
)
|
||||
# We set token_offset as an optional input to support streaming/offline tts. It has to be None when offline tts.
|
||||
token_offset = pb_utils.get_input_tensor_by_name(request, "token_offset")
|
||||
if token_offset is not None:
|
||||
token_offset = token_offset.as_numpy().item()
|
||||
finalize = pb_utils.get_input_tensor_by_name(request, "finalize").as_numpy().item()
|
||||
if not finalize:
|
||||
stream = True
|
||||
else:
|
||||
stream = False
|
||||
request_id = request.request_id()
|
||||
audio_hat = self.token2wav_model.model.token2wav(token=target_speech_tokens,
|
||||
prompt_token=prompt_speech_tokens,
|
||||
prompt_feat=prompt_speech_feat,
|
||||
embedding=prompt_spk_embedding,
|
||||
token_offset=token_offset,
|
||||
uuid=request_id,
|
||||
stream=stream,
|
||||
finalize=finalize)
|
||||
if finalize:
|
||||
self.token2wav_model.model.hift_cache_dict.pop(request_id)
|
||||
|
||||
audio_hat, _ = self.token2wav_model.model.hift.inference(
|
||||
speech_feat=tts_mel, cache_source=torch.zeros(1, 1, 0)
|
||||
)
|
||||
else:
|
||||
tts_mel, _ = self.token2wav_model.model.flow.inference(
|
||||
token=target_speech_tokens,
|
||||
token_len=torch.tensor([target_speech_tokens.shape[1]], dtype=torch.int32).to(
|
||||
self.device
|
||||
),
|
||||
prompt_token=prompt_speech_tokens,
|
||||
prompt_token_len=torch.tensor(
|
||||
[prompt_speech_tokens.shape[1]], dtype=torch.int32
|
||||
).to(self.device),
|
||||
prompt_feat=prompt_speech_feat,
|
||||
prompt_feat_len=torch.tensor([prompt_speech_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||
embedding=prompt_spk_embedding,
|
||||
streaming=False,
|
||||
finalize=True,
|
||||
)
|
||||
|
||||
audio_hat, _ = self.token2wav_model.model.hift.inference(
|
||||
speech_feat=tts_mel, cache_source=torch.zeros(1, 1, 0)
|
||||
)
|
||||
|
||||
generated_wave = audio_hat.squeeze(0).cpu().numpy()
|
||||
|
||||
|
||||
@@ -20,7 +20,7 @@ dynamic_batching {
|
||||
}
|
||||
parameters [
|
||||
{
|
||||
key: "model_dir",
|
||||
key: "model_dir",
|
||||
value: {string_value:"${model_dir}"}
|
||||
}
|
||||
]
|
||||
@@ -35,16 +35,33 @@ input [
|
||||
name: "prompt_speech_tokens"
|
||||
data_type: TYPE_INT32
|
||||
dims: [-1]
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
name: "prompt_speech_feat"
|
||||
data_type: TYPE_FP16
|
||||
dims: [-1, 80]
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
name: "prompt_spk_embedding"
|
||||
data_type: TYPE_FP16
|
||||
dims: [-1]
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
name: "token_offset"
|
||||
data_type: TYPE_INT32
|
||||
dims: [ 1 ]
|
||||
reshape: { shape: [ ] }
|
||||
optional: true
|
||||
},
|
||||
{
|
||||
name: "finalize"
|
||||
data_type: TYPE_BOOL
|
||||
dims: [ 1 ]
|
||||
reshape: { shape: [ ] }
|
||||
optional: true
|
||||
}
|
||||
]
|
||||
output [
|
||||
|
||||
563
runtime/triton_trtllm/offline_inference.py
Normal file
563
runtime/triton_trtllm/offline_inference.py
Normal file
@@ -0,0 +1,563 @@
|
||||
# SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Example Usage
|
||||
CUDA_VISIBLE_DEVICES=0 \
|
||||
python3 offline_inference.py \
|
||||
--output-dir $output_dir \
|
||||
--llm-model-name-or-path $huggingface_model_local_dir \
|
||||
--token2wav-path $model_scope_model_local_dir \
|
||||
--backend $backend \
|
||||
--batch-size $batch_size --token2wav-batch-size $token2wav_batch_size \
|
||||
--engine-dir $trt_engines_dir \
|
||||
--split-name ${dataset} || exit 1
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn.functional as F
|
||||
import torchaudio
|
||||
from cosyvoice.utils.file_utils import load_wav
|
||||
from datasets import load_dataset
|
||||
from transformers import AutoTokenizer
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
from tqdm import tqdm
|
||||
import soundfile as sf
|
||||
import s3tokenizer
|
||||
from functools import partial
|
||||
import time
|
||||
|
||||
from token2wav import CosyVoice2_Token2Wav
|
||||
|
||||
sys.path.append("/workspace/CosyVoice/third_party/Matcha-TTS")
|
||||
try:
|
||||
torch.multiprocessing.set_start_method("spawn")
|
||||
except RuntimeError:
|
||||
pass
|
||||
|
||||
|
||||
def extract_speech_ids(speech_tokens_str):
|
||||
"""Extract speech IDs from token strings like <|s_23456|>"""
|
||||
speech_ids = []
|
||||
for token_str in speech_tokens_str:
|
||||
if token_str.startswith('<|s_') and token_str.endswith('|>'):
|
||||
num_str = token_str[4:-2]
|
||||
num = int(num_str)
|
||||
speech_ids.append(num)
|
||||
else:
|
||||
print(f"Unexpected token: {token_str}")
|
||||
return speech_ids
|
||||
|
||||
|
||||
def convert_cosy2_tokens_to_speech_id_str(cosy2_tokens):
|
||||
"""Convert CosyVoice2 tokens to speech IDs string like <|s_23456|>"""
|
||||
speech_id_str = ""
|
||||
for token in cosy2_tokens:
|
||||
speech_id_str += f"<|s_{token}|>"
|
||||
return speech_id_str
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser(description="Speech generation using LLM + CosyVoice2")
|
||||
parser.add_argument(
|
||||
"--split-name",
|
||||
type=str,
|
||||
default="wenetspeech4tts",
|
||||
help="huggingface dataset split name, see yuekai/CV3-Eval, yuekai/seed_tts_cosy2",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output-dir", required=True, type=str, help="dir to save result"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--batch-size",
|
||||
default=1,
|
||||
type=int,
|
||||
help="batch size (per-device) for inference",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--token2wav-batch-size",
|
||||
default=1,
|
||||
type=int,
|
||||
help="batch size (per-device) for inference",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num-workers", type=int, default=0, help="workers for dataloader"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prefetch", type=int, default=None, help="prefetch for dataloader"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--llm-model-name-or-path",
|
||||
required=True,
|
||||
type=str,
|
||||
help="LLM model path (includes both model and tokenizer)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--token2wav-path",
|
||||
required=True,
|
||||
type=str,
|
||||
help="CosyVoice2 token2wav model path",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prompt-text",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The prompt text for CosyVoice2",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--prompt-speech-path",
|
||||
type=str,
|
||||
default=None,
|
||||
help="The path to the prompt speech for CosyVoice2",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--top-p",
|
||||
type=float,
|
||||
default=0.95,
|
||||
help="top p for sampling",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--temperature",
|
||||
type=float,
|
||||
default=0.8,
|
||||
help="temperature for sampling",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--top-k",
|
||||
type=int,
|
||||
default=50,
|
||||
help="top k for sampling",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--backend",
|
||||
type=str,
|
||||
default="hf",
|
||||
choices=["hf", "trtllm", "vllm"],
|
||||
help="Backend to use for LLM inference: 'hf' for HuggingFace, 'trtllm' for TensorRT-LLM, 'vllm' for VLLM",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--engine-dir",
|
||||
type=str,
|
||||
default=None,
|
||||
help="TensorRT-LLM engine directory (required when backend is 'trtllm')",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--kv-cache-free-gpu-memory-fraction",
|
||||
type=float,
|
||||
default=0.6,
|
||||
help="Fraction of GPU memory to free for KV cache (TensorRT-LLM only)",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def data_collator(batch, tokenizer, s3_tokenizer):
|
||||
"""Simplified data collator for batch_size=1 processing"""
|
||||
collator_start_time = time.time()
|
||||
total_audio_processing_time = 0
|
||||
total_speech_tokenization_time = 0
|
||||
total_text_tokenization_time = 0
|
||||
|
||||
target_sample_rate = 16000 # CosyVoice2 uses 16kHz for prompt audio
|
||||
device = s3_tokenizer.device if s3_tokenizer is not None else torch.device("cpu")
|
||||
input_ids_list, prompt_audio_list, prompt_text_list = [], [], []
|
||||
prompt_text_after_apply_template_list = []
|
||||
mels, prompt_audio_cosy2tokens_list, full_text_list = [], [], []
|
||||
for _, item in enumerate(batch):
|
||||
audio_processing_start_time = time.time()
|
||||
prompt_text, target_text = (
|
||||
item["prompt_text"],
|
||||
item["target_text"],
|
||||
)
|
||||
prompt_text_list.append(prompt_text)
|
||||
full_text = prompt_text + target_text
|
||||
full_text_list.append(full_text)
|
||||
# remove the unnecessary punctuation for cosyvoice3 zero_shot_zh dataset
|
||||
puncts = ['"', '(', ')', '“', '”', '‘', '(', ')', '\'']
|
||||
for p in puncts:
|
||||
if p in full_text:
|
||||
full_text = full_text.replace(p, '')
|
||||
print(f"removed {p} from {full_text}")
|
||||
|
||||
# get prompt audio for CosyVoice2 (convert to 16kHz)
|
||||
ref_audio_org, ref_sr = (
|
||||
item["prompt_audio"]["array"],
|
||||
item["prompt_audio"]["sampling_rate"],
|
||||
)
|
||||
ref_audio_org = torch.from_numpy(ref_audio_org).float().unsqueeze(0)
|
||||
print(ref_audio_org.shape)
|
||||
|
||||
if ref_sr != target_sample_rate:
|
||||
resampler = torchaudio.transforms.Resample(ref_sr, target_sample_rate)
|
||||
ref_audio = resampler(ref_audio_org)
|
||||
else:
|
||||
ref_audio = ref_audio_org
|
||||
|
||||
prompt_audio_list.append(ref_audio)
|
||||
audio_processing_end_time = time.time()
|
||||
total_audio_processing_time += audio_processing_end_time - audio_processing_start_time
|
||||
|
||||
speech_tokenization_start_time = time.time()
|
||||
if "prompt_audio_cosy2_tokens" in item:
|
||||
prompt_audio_cosy2tokens = item["prompt_audio_cosy2_tokens"]
|
||||
prompt_audio_cosy2tokens_list.append(prompt_audio_cosy2tokens)
|
||||
else:
|
||||
mels.append(s3tokenizer.log_mel_spectrogram(ref_audio.squeeze(0)))
|
||||
|
||||
if len(mels) > 0:
|
||||
mels, mels_lens = s3tokenizer.padding(mels)
|
||||
codes, codes_lens = s3_tokenizer.quantize(mels.to(device), mels_lens.to(device))
|
||||
for i in range(len(codes)):
|
||||
prompt_audio_cosy2tokens_list.append(codes[i, :codes_lens[i].item()])
|
||||
speech_tokenization_end_time = time.time()
|
||||
total_speech_tokenization_time += speech_tokenization_end_time - speech_tokenization_start_time
|
||||
|
||||
for i, prompt_audio_cosy2tokens in enumerate(prompt_audio_cosy2tokens_list):
|
||||
text_tokenization_start_time = time.time()
|
||||
prompt_audio_cosy2_id_str = convert_cosy2_tokens_to_speech_id_str(prompt_audio_cosy2tokens)
|
||||
# Create chat template for LLM generation
|
||||
chat = [
|
||||
{"role": "user", "content": full_text_list[i]},
|
||||
{"role": "assistant", "content": prompt_audio_cosy2_id_str}
|
||||
]
|
||||
|
||||
assert 'system' not in tokenizer.chat_template, "system is not allowed in the chat template"
|
||||
|
||||
input_ids = tokenizer.apply_chat_template(
|
||||
chat,
|
||||
tokenize=True,
|
||||
return_tensors='pt',
|
||||
continue_final_message=True
|
||||
)
|
||||
input_ids_list.append(input_ids.squeeze(0))
|
||||
|
||||
prompt_text_after_apply_template = f"<|sos|>{full_text_list[i]}<|task_id|>{prompt_audio_cosy2_id_str}"
|
||||
|
||||
prompt_text_after_apply_template_list.append(prompt_text_after_apply_template)
|
||||
text_tokenization_end_time = time.time()
|
||||
total_text_tokenization_time += text_tokenization_end_time - text_tokenization_start_time
|
||||
|
||||
ids = [item["id"] for item in batch]
|
||||
|
||||
return {
|
||||
"input_ids": input_ids_list,
|
||||
"ids": ids,
|
||||
"prompt_text": prompt_text_list,
|
||||
"prompt_audio_list": prompt_audio_list,
|
||||
"prompt_text_after_apply_template": prompt_text_after_apply_template_list,
|
||||
"audio_processing_time": total_audio_processing_time,
|
||||
"speech_tokenization_time": total_speech_tokenization_time,
|
||||
"text_tokenization_time": total_text_tokenization_time,
|
||||
}
|
||||
|
||||
|
||||
def init_distributed():
|
||||
world_size = int(os.environ.get("WORLD_SIZE", 1))
|
||||
local_rank = int(os.environ.get("LOCAL_RANK", 0))
|
||||
rank = int(os.environ.get("RANK", 0))
|
||||
print(
|
||||
"Inference on multiple gpus, this gpu {}".format(local_rank)
|
||||
+ ", rank {}, world_size {}".format(rank, world_size)
|
||||
)
|
||||
torch.cuda.set_device(local_rank)
|
||||
dist.init_process_group("nccl")
|
||||
return world_size, local_rank, rank
|
||||
|
||||
|
||||
def main(args):
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
|
||||
assert torch.cuda.is_available()
|
||||
local_rank, world_size, rank = 0, 1, 0
|
||||
device = torch.device(f"cuda:{local_rank}")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(args.llm_model_name_or_path)
|
||||
|
||||
if args.backend == "hf":
|
||||
model = AutoModelForCausalLM.from_pretrained(args.llm_model_name_or_path)
|
||||
model.eval()
|
||||
model.to(device)
|
||||
runner = None
|
||||
elif args.backend == "trtllm":
|
||||
if args.engine_dir is None:
|
||||
raise ValueError("--engine-dir is required when backend is 'trtllm'")
|
||||
|
||||
runtime_rank = tensorrt_llm.mpi_rank()
|
||||
model = None
|
||||
|
||||
runner_kwargs = dict(
|
||||
engine_dir=args.engine_dir,
|
||||
rank=runtime_rank,
|
||||
max_output_len=2048,
|
||||
enable_context_fmha_fp32_acc=False,
|
||||
max_batch_size=args.batch_size,
|
||||
max_input_len=512,
|
||||
kv_cache_free_gpu_memory_fraction=args.kv_cache_free_gpu_memory_fraction,
|
||||
cuda_graph_mode=False,
|
||||
gather_generation_logits=False,
|
||||
)
|
||||
|
||||
runner = ModelRunnerCpp.from_dir(**runner_kwargs)
|
||||
elif args.backend == "vllm":
|
||||
model = LLM(model=args.llm_model_name_or_path, gpu_memory_utilization=0.4)
|
||||
runner = None
|
||||
else:
|
||||
raise ValueError(f"Unsupported backend: {args.backend}")
|
||||
|
||||
token2wav_model = CosyVoice2_Token2Wav(
|
||||
model_dir=args.token2wav_path, enable_trt=True, device_id=local_rank
|
||||
)
|
||||
if args.prompt_speech_path:
|
||||
prompt_speech_16k = load_wav(args.prompt_speech_path, 16000)
|
||||
else:
|
||||
prompt_speech_16k = None
|
||||
s3_tokenizer = s3tokenizer.load_model(f"{args.token2wav_path}/speech_tokenizer_v2.onnx").to(device) if 'zero' in args.split_name else None
|
||||
dataset_name = "yuekai/CV3-Eval" if 'zero' in args.split_name else "yuekai/seed_tts_cosy2"
|
||||
dataset = load_dataset(
|
||||
dataset_name,
|
||||
split=args.split_name,
|
||||
trust_remote_code=True,
|
||||
)
|
||||
|
||||
sampler = None
|
||||
dataloader = DataLoader(
|
||||
dataset,
|
||||
batch_size=args.batch_size,
|
||||
sampler=sampler,
|
||||
shuffle=False,
|
||||
num_workers=args.num_workers,
|
||||
prefetch_factor=args.prefetch,
|
||||
collate_fn=partial(data_collator, tokenizer=tokenizer, s3_tokenizer=s3_tokenizer),
|
||||
)
|
||||
for _ in range(3):
|
||||
print(f"Running {_} times")
|
||||
total_llm_time = 0
|
||||
total_token2wav_time = 0
|
||||
total_data_load_time = 0
|
||||
total_llm_post_processing_time = 0
|
||||
total_audio_save_time = 0
|
||||
total_audio_processing_time_in_collator = 0
|
||||
total_speech_tokenization_time_in_collator = 0
|
||||
total_text_tokenization_time_in_collator = 0
|
||||
total_audio_samples = 0
|
||||
start_time = time.time()
|
||||
total_steps = len(dataset)
|
||||
|
||||
if rank == 0:
|
||||
progress_bar = tqdm(total=total_steps, desc="Processing", unit="wavs")
|
||||
|
||||
last_batch_end_time = time.time()
|
||||
for batch in dataloader:
|
||||
data_loaded_time = time.time()
|
||||
total_data_load_time += data_loaded_time - last_batch_end_time
|
||||
total_audio_processing_time_in_collator += batch["audio_processing_time"]
|
||||
total_speech_tokenization_time_in_collator += batch["speech_tokenization_time"]
|
||||
total_text_tokenization_time_in_collator += batch["text_tokenization_time"]
|
||||
with torch.no_grad():
|
||||
llm_start_time = time.time()
|
||||
if args.backend == "hf":
|
||||
input_ids_list = batch["input_ids"]
|
||||
if len(input_ids_list) == 1:
|
||||
input_ids = input_ids_list[0].unsqueeze(0)
|
||||
attention_mask = torch.ones_like(input_ids)
|
||||
else:
|
||||
max_len = max([len(input_ids) for input_ids in input_ids_list])
|
||||
input_ids_list_new = [
|
||||
torch.cat([input_ids, torch.full((max_len - len(input_ids),), tokenizer.pad_token_id)])
|
||||
for input_ids in input_ids_list
|
||||
]
|
||||
input_ids = torch.stack(input_ids_list_new)
|
||||
attention_mask = torch.zeros_like(input_ids)
|
||||
for i in range(len(input_ids_list)):
|
||||
attention_mask[i, :len(input_ids_list[i])] = 1
|
||||
|
||||
input_ids = input_ids.to(device)
|
||||
|
||||
outputs = model.generate(
|
||||
input_ids=input_ids.to(device),
|
||||
attention_mask=attention_mask.to(device),
|
||||
max_new_tokens=2048,
|
||||
do_sample=True,
|
||||
top_p=args.top_p,
|
||||
temperature=args.temperature,
|
||||
repetition_penalty=1.1,
|
||||
top_k=args.top_k,
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
elif args.backend == "trtllm":
|
||||
batch_input_ids = list(batch["input_ids"])
|
||||
input_lengths = [x.size(0) for x in batch_input_ids]
|
||||
|
||||
end_id = tokenizer.convert_tokens_to_ids("<|eos1|>") if "<|eos1|>" in tokenizer.get_vocab() else tokenizer.eos_token_id
|
||||
print(f"end_id: {end_id}, tokenizer.eos_token_id: {tokenizer.eos_token_id} ========================")
|
||||
outputs = runner.generate(
|
||||
batch_input_ids=batch_input_ids,
|
||||
max_new_tokens=2048,
|
||||
end_id=end_id,
|
||||
pad_id=end_id,
|
||||
temperature=args.temperature,
|
||||
top_k=args.top_k,
|
||||
top_p=args.top_p,
|
||||
repetition_penalty=1.1,
|
||||
num_return_sequences=1,
|
||||
streaming=False,
|
||||
output_sequence_lengths=True,
|
||||
output_generation_logits=False,
|
||||
return_dict=True,
|
||||
return_all_generated_tokens=False
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
output_ids, sequence_lengths = outputs["output_ids"], outputs["sequence_lengths"]
|
||||
num_output_sents, num_beams, _ = output_ids.size()
|
||||
assert num_beams == 1
|
||||
beam = 0
|
||||
batch_size = len(batch["input_ids"])
|
||||
num_return_sequences = num_output_sents // batch_size
|
||||
assert num_return_sequences == 1
|
||||
outputs = []
|
||||
for i in range(batch_size * num_return_sequences):
|
||||
batch_idx = i // num_return_sequences
|
||||
seq_idx = i % num_return_sequences
|
||||
output_begin = input_lengths[batch_idx]
|
||||
output_end = sequence_lengths[i][beam]
|
||||
outputs_i = output_ids[i][beam][:output_end].tolist()
|
||||
outputs.append(outputs_i)
|
||||
elif args.backend == "vllm":
|
||||
input_ids_list = [ids.tolist() for ids in batch["input_ids"]]
|
||||
sampling_params = SamplingParams(
|
||||
temperature=args.temperature,
|
||||
top_p=args.top_p,
|
||||
top_k=args.top_k,
|
||||
repetition_penalty=1.1,
|
||||
max_tokens=2048,
|
||||
)
|
||||
outputs = model.generate(prompt_token_ids=input_ids_list, sampling_params=sampling_params)
|
||||
print(outputs)
|
||||
for j, output in enumerate(outputs):
|
||||
outputs[j] = input_ids_list[j] + output.outputs[0].token_ids
|
||||
|
||||
llm_end_time = time.time()
|
||||
total_llm_time += (llm_end_time - llm_start_time)
|
||||
|
||||
items_for_token_2wav = []
|
||||
for i in range(len(batch["ids"])):
|
||||
llm_post_processing_start_time = time.time()
|
||||
input_length = len(batch["input_ids"][i])
|
||||
generated_ids = outputs[i][input_length:]
|
||||
speech_tokens_str = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
||||
speech_ids = extract_speech_ids(speech_tokens_str)
|
||||
print(i, speech_ids)
|
||||
if len(speech_ids) == 0:
|
||||
print(f"Warning: No speech tokens generated for sample {batch['ids'][i]}, skipping")
|
||||
continue
|
||||
|
||||
if args.prompt_text is not None:
|
||||
current_prompt_text = args.prompt_text
|
||||
current_prompt_audio = prompt_speech_16k
|
||||
else:
|
||||
current_prompt_text = batch["prompt_text"][i]
|
||||
current_prompt_audio = batch["prompt_audio_list"][i]
|
||||
|
||||
llm_post_processing_end_time = time.time()
|
||||
total_llm_post_processing_time += llm_post_processing_end_time - llm_post_processing_start_time
|
||||
if current_prompt_audio is not None:
|
||||
items_for_token_2wav.append({
|
||||
"speech_ids": speech_ids,
|
||||
"prompt_audio": current_prompt_audio.squeeze(0),
|
||||
"id": batch["ids"][i]
|
||||
})
|
||||
else:
|
||||
print(f"Warning: No prompt audio available for sample {batch['ids'][i]}, skipping")
|
||||
|
||||
for i in range(0, len(items_for_token_2wav), args.token2wav_batch_size):
|
||||
t2w_batch = items_for_token_2wav[i:i + args.token2wav_batch_size]
|
||||
if not t2w_batch:
|
||||
continue
|
||||
|
||||
t2w_generated_speech_tokens_list = [item["speech_ids"] for item in t2w_batch]
|
||||
t2w_prompt_audios_list = [item["prompt_audio"] for item in t2w_batch]
|
||||
t2w_prompt_audios_sample_rate = [16000] * len(t2w_batch)
|
||||
t2w_ids = [item["id"] for item in t2w_batch]
|
||||
|
||||
token2wav_start_time = time.time()
|
||||
generated_wavs = token2wav_model(
|
||||
t2w_generated_speech_tokens_list,
|
||||
t2w_prompt_audios_list,
|
||||
t2w_prompt_audios_sample_rate,
|
||||
)
|
||||
torch.cuda.synchronize()
|
||||
token2wav_end_time = time.time()
|
||||
total_token2wav_time += (token2wav_end_time - token2wav_start_time)
|
||||
|
||||
audio_save_start_time = time.time()
|
||||
for j, audio_hat in enumerate(generated_wavs):
|
||||
generated_wave = audio_hat.squeeze().cpu().numpy()
|
||||
total_audio_samples += len(generated_wave)
|
||||
target_sample_rate = 24000
|
||||
|
||||
utt = t2w_ids[j]
|
||||
sf.write(f"{args.output_dir}/{utt}.wav", generated_wave, target_sample_rate)
|
||||
print(f"Generated audio for sample {utt} with {len(t2w_generated_speech_tokens_list[j])} tokens")
|
||||
audio_save_end_time = time.time()
|
||||
total_audio_save_time += audio_save_end_time - audio_save_start_time
|
||||
|
||||
if rank == 0:
|
||||
progress_bar.update(world_size * len(batch["ids"]))
|
||||
|
||||
last_batch_end_time = time.time()
|
||||
if rank == 0:
|
||||
progress_bar.close()
|
||||
end_time = time.time()
|
||||
target_sample_rate = 24000
|
||||
total_audio_duration_seconds = total_audio_samples / target_sample_rate
|
||||
|
||||
log_file_path = os.path.join(args.output_dir, "log.txt")
|
||||
with open(log_file_path, 'w') as f:
|
||||
args_dict = vars(args)
|
||||
log_data = {
|
||||
"args": args_dict,
|
||||
"data_load_time_seconds": total_data_load_time,
|
||||
"audio_processing_time_in_collator_seconds": total_audio_processing_time_in_collator,
|
||||
"speech_tokenization_time_in_collator_seconds": total_speech_tokenization_time_in_collator,
|
||||
"text_tokenization_time_in_collator_seconds": total_text_tokenization_time_in_collator,
|
||||
"llm_time_seconds": total_llm_time,
|
||||
"llm_post_processing_time_seconds": total_llm_post_processing_time,
|
||||
"token2wav_time_seconds": total_token2wav_time,
|
||||
"audio_save_time_seconds": total_audio_save_time,
|
||||
"total_audio_duration_seconds": total_audio_duration_seconds,
|
||||
"pipeline_time_seconds": end_time - start_time,
|
||||
}
|
||||
print(log_data)
|
||||
f.write(json.dumps(log_data, indent=4))
|
||||
print(f"Metrics logged to {log_file_path}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
if args.backend == "vllm":
|
||||
from vllm import LLM, SamplingParams
|
||||
elif args.backend == "trtllm":
|
||||
import tensorrt_llm
|
||||
from tensorrt_llm.runtime import ModelRunnerCpp
|
||||
elif args.backend == "hf":
|
||||
from transformers import AutoModelForCausalLM
|
||||
else:
|
||||
raise ValueError(f"Unsupported backend: {args.backend}")
|
||||
main(args)
|
||||
@@ -15,6 +15,8 @@ trt_engines_dir=./trt_engines_${trt_dtype}
|
||||
|
||||
model_repo=./model_repo_cosyvoice2
|
||||
|
||||
use_spk2info_cache=False
|
||||
|
||||
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
|
||||
echo "Cloning CosyVoice"
|
||||
git clone --recursive https://github.com/FunAudioLLM/CosyVoice.git $cosyvoice_path
|
||||
@@ -25,8 +27,11 @@ fi
|
||||
|
||||
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
|
||||
echo "Downloading CosyVoice2-0.5B"
|
||||
# see https://github.com/nvidia-china-sae/mair-hub/blob/main/rl-tutorial/cosyvoice_llm/pretrained_to_huggingface.py
|
||||
huggingface-cli download --local-dir $huggingface_model_local_dir yuekai/cosyvoice2_llm
|
||||
modelscope download --model iic/CosyVoice2-0.5B --local_dir $model_scope_model_local_dir
|
||||
# download spk2info.pt to directly use cached speech tokens, speech feats, and embeddings
|
||||
wget https://raw.githubusercontent.com/qi-hua/async_cosyvoice/main/CosyVoice2-0.5B/spk2info.pt -O $model_scope_model_local_dir/spk2info.pt
|
||||
fi
|
||||
|
||||
|
||||
@@ -57,9 +62,12 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
cosyvoice2_dir="cosyvoice2"
|
||||
|
||||
cp -r ./model_repo/${cosyvoice2_dir} $model_repo
|
||||
cp -r ./model_repo/audio_tokenizer $model_repo
|
||||
cp -r ./model_repo/tensorrt_llm $model_repo
|
||||
cp -r ./model_repo/token2wav $model_repo
|
||||
if [ $use_spk2info_cache == "False" ]; then
|
||||
cp -r ./model_repo/audio_tokenizer $model_repo
|
||||
cp -r ./model_repo/speaker_embedding $model_repo
|
||||
fi
|
||||
|
||||
ENGINE_PATH=$trt_engines_dir
|
||||
MAX_QUEUE_DELAY_MICROSECONDS=0
|
||||
@@ -67,13 +75,15 @@ if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
|
||||
LLM_TOKENIZER_DIR=$huggingface_model_local_dir
|
||||
BLS_INSTANCE_NUM=4
|
||||
TRITON_MAX_BATCH_SIZE=16
|
||||
DECOUPLED_MODE=False
|
||||
DECOUPLED_MODE=True # True for streaming, False for offline
|
||||
|
||||
python3 scripts/fill_template.py -i ${model_repo}/token2wav/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
|
||||
python3 scripts/fill_template.py -i ${model_repo}/audio_tokenizer/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
|
||||
python3 scripts/fill_template.py -i ${model_repo}/${cosyvoice2_dir}/config.pbtxt model_dir:${MODEL_DIR},bls_instance_num:${BLS_INSTANCE_NUM},llm_tokenizer_dir:${LLM_TOKENIZER_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
|
||||
python3 scripts/fill_template.py -i ${model_repo}/tensorrt_llm/config.pbtxt triton_backend:tensorrtllm,triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},decoupled_mode:${DECOUPLED_MODE},max_beam_width:1,engine_dir:${ENGINE_PATH},max_tokens_in_paged_kv_cache:2560,max_attention_window_size:2560,kv_cache_free_gpu_mem_fraction:0.5,exclude_input_in_output:True,enable_kv_cache_reuse:False,batching_strategy:inflight_fused_batching,max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS},encoder_input_features_data_type:TYPE_FP16,logits_datatype:TYPE_FP32
|
||||
|
||||
if [ $use_spk2info_cache == "False" ]; then
|
||||
python3 scripts/fill_template.py -i ${model_repo}/audio_tokenizer/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
|
||||
python3 scripts/fill_template.py -i ${model_repo}/speaker_embedding/config.pbtxt model_dir:${MODEL_DIR},triton_max_batch_size:${TRITON_MAX_BATCH_SIZE},max_queue_delay_microseconds:${MAX_QUEUE_DELAY_MICROSECONDS}
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
@@ -82,7 +92,7 @@ if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
|
||||
fi
|
||||
|
||||
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
|
||||
echo "Single request test http"
|
||||
echo "Single request test http, only work for offline TTS mode"
|
||||
python3 client_http.py \
|
||||
--reference-audio ./assets/prompt_audio.wav \
|
||||
--reference-text "吃燕窝就选燕之屋,本节目由26年专注高品质燕窝的燕之屋冠名播出。豆奶牛奶换着喝,营养更均衡,本节目由豆本豆豆奶特约播出。" \
|
||||
@@ -93,14 +103,40 @@ fi
|
||||
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
|
||||
echo "Running benchmark client grpc"
|
||||
num_task=4
|
||||
# set mode=streaming, when decoupled=True
|
||||
# set mode=offline, when decoupled=False
|
||||
mode=offline
|
||||
|
||||
mode=streaming
|
||||
BLS_INSTANCE_NUM=4
|
||||
|
||||
python3 client_grpc.py \
|
||||
--server-addr localhost \
|
||||
--model-name cosyvoice2 \
|
||||
--num-tasks $num_task \
|
||||
--mode $mode \
|
||||
--use-spk2info-cache $use_spk2info_cache \
|
||||
--huggingface-dataset yuekai/seed_tts_cosy2 \
|
||||
--log-dir ./log_concurrent_tasks_${num_task}_${mode}_bls_4_${trt_dtype}
|
||||
fi
|
||||
--log-dir ./log_concurrent_tasks_${num_task}_${mode}_bls_${BLS_INSTANCE_NUM}_spk_cache_${use_spk2info_cache}
|
||||
fi
|
||||
|
||||
if [ $stage -le 6 ] && [ $stop_stage -ge 6 ]; then
|
||||
echo "stage 6: Offline inference benchmark"
|
||||
n_gpus=1
|
||||
datasets=(wenetspeech4tts) # wenetspeech4tts, test_zh, zero_shot_zh
|
||||
backend=trtllm # hf, trtllm, vllm
|
||||
|
||||
batch_sizes=(16 8 4 2 1)
|
||||
token2wav_batch_size=1
|
||||
for batch_size in ${batch_sizes[@]}; do
|
||||
for dataset in ${datasets[@]}; do
|
||||
output_dir=./${dataset}_${backend}_llm_batch_size_${batch_size}_token2wav_batch_size_${token2wav_batch_size}
|
||||
CUDA_VISIBLE_DEVICES=0 \
|
||||
python3 offline_inference.py \
|
||||
--output-dir $output_dir \
|
||||
--llm-model-name-or-path $huggingface_model_local_dir \
|
||||
--token2wav-path $model_scope_model_local_dir \
|
||||
--backend $backend \
|
||||
--batch-size $batch_size --token2wav-batch-size $token2wav_batch_size \
|
||||
--engine-dir $trt_engines_dir \
|
||||
--split-name ${dataset} || exit 1
|
||||
done
|
||||
done
|
||||
fi
|
||||
|
||||
335
runtime/triton_trtllm/token2wav.py
Normal file
335
runtime/triton_trtllm/token2wav.py
Normal file
@@ -0,0 +1,335 @@
|
||||
# SPDX-FileCopyrightText: Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Example Usage
|
||||
CUDA_VISIBLE_DEVICES=0 \
|
||||
python3 token2wav.py --enable-trt || exit 1
|
||||
"""
|
||||
import torch
|
||||
from flashcosyvoice.modules.flow import CausalMaskedDiffWithXvec
|
||||
from flashcosyvoice.modules.hifigan import HiFTGenerator
|
||||
from flashcosyvoice.utils.audio import mel_spectrogram
|
||||
import torchaudio.compliance.kaldi as kaldi
|
||||
import onnxruntime
|
||||
import s3tokenizer
|
||||
from torch.utils.data import DataLoader
|
||||
from datasets import load_dataset
|
||||
import torchaudio
|
||||
import os
|
||||
import logging
|
||||
import argparse
|
||||
import queue
|
||||
import time
|
||||
|
||||
|
||||
def convert_onnx_to_trt(trt_model, trt_kwargs, onnx_model, fp16):
|
||||
import tensorrt as trt
|
||||
logging.info("Converting onnx to trt...")
|
||||
network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
|
||||
logger = trt.Logger(trt.Logger.INFO)
|
||||
builder = trt.Builder(logger)
|
||||
network = builder.create_network(network_flags)
|
||||
parser = trt.OnnxParser(network, logger)
|
||||
config = builder.create_builder_config()
|
||||
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 32) # 4GB
|
||||
if fp16:
|
||||
config.set_flag(trt.BuilderFlag.FP16)
|
||||
profile = builder.create_optimization_profile()
|
||||
# load onnx model
|
||||
with open(onnx_model, "rb") as f:
|
||||
if not parser.parse(f.read()):
|
||||
for error in range(parser.num_errors):
|
||||
print(parser.get_error(error))
|
||||
raise ValueError('failed to parse {}'.format(onnx_model))
|
||||
# set input shapes
|
||||
for i in range(len(trt_kwargs['input_names'])):
|
||||
profile.set_shape(trt_kwargs['input_names'][i], trt_kwargs['min_shape'][i], trt_kwargs['opt_shape'][i], trt_kwargs['max_shape'][i])
|
||||
tensor_dtype = trt.DataType.HALF if fp16 else trt.DataType.FLOAT
|
||||
# set input and output data type
|
||||
for i in range(network.num_inputs):
|
||||
input_tensor = network.get_input(i)
|
||||
input_tensor.dtype = tensor_dtype
|
||||
for i in range(network.num_outputs):
|
||||
output_tensor = network.get_output(i)
|
||||
output_tensor.dtype = tensor_dtype
|
||||
config.add_optimization_profile(profile)
|
||||
engine_bytes = builder.build_serialized_network(network, config)
|
||||
# save trt engine
|
||||
with open(trt_model, "wb") as f:
|
||||
f.write(engine_bytes)
|
||||
logging.info("Succesfully convert onnx to trt...")
|
||||
|
||||
|
||||
class TrtContextWrapper:
|
||||
def __init__(self, trt_engine, trt_concurrent=1, device='cuda:0'):
|
||||
self.trt_context_pool = queue.Queue(maxsize=trt_concurrent)
|
||||
self.trt_engine = trt_engine
|
||||
self.device = device
|
||||
for _ in range(trt_concurrent):
|
||||
trt_context = trt_engine.create_execution_context()
|
||||
trt_stream = torch.cuda.stream(torch.cuda.Stream(torch.device(device)))
|
||||
assert trt_context is not None, 'failed to create trt context, maybe not enough CUDA memory, try reduce current trt concurrent {}'.format(trt_concurrent)
|
||||
self.trt_context_pool.put([trt_context, trt_stream])
|
||||
assert self.trt_context_pool.empty() is False, 'no avaialbe estimator context'
|
||||
|
||||
def acquire_estimator(self):
|
||||
return self.trt_context_pool.get(), self.trt_engine
|
||||
|
||||
def release_estimator(self, context, stream):
|
||||
self.trt_context_pool.put([context, stream])
|
||||
|
||||
|
||||
class CosyVoice2_Token2Wav(torch.nn.Module):
|
||||
def __init__(self, model_dir: str = "./CosyVoice2-0.5B", enable_trt: bool = False, device_id: int = 0):
|
||||
super().__init__()
|
||||
self.device_id = device_id
|
||||
self.device = f"cuda:{device_id}"
|
||||
|
||||
self.flow = CausalMaskedDiffWithXvec()
|
||||
self.flow.half()
|
||||
self.flow.load_state_dict(torch.load(f"{model_dir}/flow.pt", map_location="cpu", weights_only=True), strict=True)
|
||||
self.flow.to(self.device).eval()
|
||||
|
||||
self.hift = HiFTGenerator()
|
||||
hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(f"{model_dir}/hift.pt", map_location="cpu", weights_only=True).items()}
|
||||
self.hift.load_state_dict(hift_state_dict, strict=True)
|
||||
self.hift.to(self.device).eval()
|
||||
|
||||
option = onnxruntime.SessionOptions()
|
||||
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
option.intra_op_num_threads = 1
|
||||
self.spk_model = onnxruntime.InferenceSession(f"{model_dir}/campplus.onnx", sess_options=option, providers=["CPUExecutionProvider"])
|
||||
|
||||
self.audio_tokenizer = s3tokenizer.load_model(f"{model_dir}/speech_tokenizer_v2.onnx").to(self.device).eval()
|
||||
|
||||
gpu = "l20"
|
||||
if enable_trt:
|
||||
self.load_trt(f'{model_dir}/flow.decoder.estimator.fp16.dynamic_batch.{gpu}.plan',
|
||||
f'{model_dir}/flow.decoder.estimator.fp32.dynamic_batch.onnx',
|
||||
1,
|
||||
True)
|
||||
self.load_spk_trt(f'{model_dir}/campplus.{gpu}.fp32.trt',
|
||||
f'{model_dir}/campplus.onnx',
|
||||
1,
|
||||
False)
|
||||
|
||||
def forward_spk_embedding(self, spk_feat):
|
||||
if isinstance(self.spk_model, onnxruntime.InferenceSession):
|
||||
return self.spk_model.run(
|
||||
None, {self.spk_model.get_inputs()[0].name: spk_feat.unsqueeze(dim=0).cpu().numpy()}
|
||||
)[0].flatten().tolist()
|
||||
else:
|
||||
[spk_model, stream], trt_engine = self.spk_model.acquire_estimator()
|
||||
# NOTE need to synchronize when switching stream
|
||||
with torch.cuda.device(self.device_id):
|
||||
torch.cuda.current_stream().synchronize()
|
||||
spk_feat = spk_feat.unsqueeze(dim=0).to(self.device)
|
||||
batch_size = spk_feat.size(0)
|
||||
|
||||
with stream:
|
||||
spk_model.set_input_shape('input', (batch_size, spk_feat.size(1), 80))
|
||||
output_tensor = torch.empty((batch_size, 192), device=spk_feat.device)
|
||||
|
||||
data_ptrs = [spk_feat.contiguous().data_ptr(),
|
||||
output_tensor.contiguous().data_ptr()]
|
||||
for i, j in enumerate(data_ptrs):
|
||||
|
||||
spk_model.set_tensor_address(trt_engine.get_tensor_name(i), j)
|
||||
# run trt engine
|
||||
assert spk_model.execute_async_v3(torch.cuda.current_stream().cuda_stream) is True
|
||||
torch.cuda.current_stream().synchronize()
|
||||
self.spk_model.release_estimator(spk_model, stream)
|
||||
|
||||
return output_tensor.cpu().numpy().flatten().tolist()
|
||||
|
||||
def load_spk_trt(self, spk_model, spk_onnx_model, trt_concurrent=1, fp16=True):
|
||||
if not os.path.exists(spk_model) or os.path.getsize(spk_model) == 0:
|
||||
trt_kwargs = self.get_spk_trt_kwargs()
|
||||
convert_onnx_to_trt(spk_model, trt_kwargs, spk_onnx_model, fp16)
|
||||
import tensorrt as trt
|
||||
with open(spk_model, 'rb') as f:
|
||||
spk_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
||||
assert spk_engine is not None, 'failed to load trt {}'.format(spk_model)
|
||||
self.spk_model = TrtContextWrapper(spk_engine, trt_concurrent=trt_concurrent, device=self.device)
|
||||
|
||||
def get_spk_trt_kwargs(self):
|
||||
min_shape = [(1, 4, 80)]
|
||||
opt_shape = [(1, 500, 80)]
|
||||
max_shape = [(1, 3000, 80)]
|
||||
input_names = ["input"]
|
||||
return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
|
||||
|
||||
def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, trt_concurrent=1, fp16=True):
|
||||
assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
|
||||
if not os.path.exists(flow_decoder_estimator_model) or os.path.getsize(flow_decoder_estimator_model) == 0:
|
||||
trt_kwargs = self.get_trt_kwargs_dynamic_batch(opt_bs=2, max_batch_size=16)
|
||||
convert_onnx_to_trt(flow_decoder_estimator_model, trt_kwargs, flow_decoder_onnx_model, fp16)
|
||||
del self.flow.decoder.estimator
|
||||
import tensorrt as trt
|
||||
with open(flow_decoder_estimator_model, 'rb') as f:
|
||||
estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
||||
assert estimator_engine is not None, 'failed to load trt {}'.format(flow_decoder_estimator_model)
|
||||
self.flow.decoder.estimator = TrtContextWrapper(estimator_engine, trt_concurrent=trt_concurrent, device=self.device)
|
||||
|
||||
def get_trt_kwargs_dynamic_batch(self, opt_bs=2, max_batch_size=64):
|
||||
min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4), (2,), (2, 80)]
|
||||
opt_shape = [(opt_bs * 2, 80, 500), (opt_bs * 2, 1, 500), (opt_bs * 2, 80, 500), (opt_bs * 2, 80, 500), (opt_bs * 2,), (opt_bs * 2, 80)]
|
||||
max_shape = [(max_batch_size * 2, 80, 3000), (max_batch_size * 2, 1, 3000), (max_batch_size * 2, 80, 3000), (max_batch_size * 2, 80, 3000), (max_batch_size * 2,),
|
||||
(max_batch_size * 2, 80)]
|
||||
input_names = ["x", "mask", "mu", "cond", "t", "spks"]
|
||||
return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
|
||||
|
||||
def prompt_audio_tokenization(self, prompt_audios_list: list[torch.Tensor]) -> list[list[int]]:
|
||||
prompt_speech_tokens_list, prompt_speech_mels_list = [], []
|
||||
for audio in prompt_audios_list:
|
||||
assert len(audio.shape) == 1
|
||||
log_mel = s3tokenizer.log_mel_spectrogram(audio) # [num_mels, T]
|
||||
prompt_speech_mels_list.append(log_mel)
|
||||
prompt_mels_for_llm, prompt_mels_lens_for_llm = s3tokenizer.padding(prompt_speech_mels_list)
|
||||
prompt_speech_tokens, prompt_speech_tokens_lens = self.audio_tokenizer.quantize(
|
||||
prompt_mels_for_llm.to(self.device), prompt_mels_lens_for_llm.to(self.device)
|
||||
)
|
||||
for i in range(len(prompt_speech_tokens)):
|
||||
speech_tokens_i = prompt_speech_tokens[i, :prompt_speech_tokens_lens[i].item()].tolist()
|
||||
prompt_speech_tokens_list.append(speech_tokens_i)
|
||||
return prompt_speech_tokens_list
|
||||
|
||||
def get_spk_emb(self, prompt_audios_list: list[torch.Tensor]) -> torch.Tensor:
|
||||
spk_emb_for_flow = []
|
||||
for audio in prompt_audios_list:
|
||||
assert len(audio.shape) == 1
|
||||
spk_feat = kaldi.fbank(audio.unsqueeze(0), num_mel_bins=80, dither=0, sample_frequency=16000)
|
||||
spk_feat = spk_feat - spk_feat.mean(dim=0, keepdim=True)
|
||||
spk_emb = self.forward_spk_embedding(spk_feat)
|
||||
|
||||
spk_emb_for_flow.append(spk_emb)
|
||||
spk_emb_for_flow = torch.tensor(spk_emb_for_flow)
|
||||
return spk_emb_for_flow
|
||||
|
||||
def get_prompt_mels(self, prompt_audios_list: list[torch.Tensor], prompt_audios_sample_rate: list[int]):
|
||||
prompt_mels_for_flow = []
|
||||
prompt_mels_lens_for_flow = []
|
||||
for audio, sample_rate in zip(prompt_audios_list, prompt_audios_sample_rate):
|
||||
assert len(audio.shape) == 1
|
||||
audio = audio.unsqueeze(0)
|
||||
if sample_rate != 24000:
|
||||
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=24000)(audio)
|
||||
mel = mel_spectrogram(audio).transpose(1, 2).squeeze(0) # [T, num_mels]
|
||||
mel_len = mel.shape[0]
|
||||
prompt_mels_for_flow.append(mel)
|
||||
prompt_mels_lens_for_flow.append(mel_len)
|
||||
prompt_mels_for_flow = torch.nn.utils.rnn.pad_sequence(prompt_mels_for_flow, batch_first=True, padding_value=0) # [B, T', num_mels=80]
|
||||
prompt_mels_lens_for_flow = torch.tensor(prompt_mels_lens_for_flow)
|
||||
return prompt_mels_for_flow, prompt_mels_lens_for_flow
|
||||
|
||||
def forward_flow(self, prompt_speech_tokens_list: list[list[int]], generated_speech_tokens_list: list[list[int]], prompt_mels_for_flow: torch.Tensor,
|
||||
prompt_mels_lens_for_flow: torch.Tensor, spk_emb_for_flow: torch.Tensor):
|
||||
batch_size = prompt_mels_for_flow.shape[0]
|
||||
flow_inputs = []
|
||||
flow_inputs_lens = []
|
||||
for prompt_speech_tokens, generated_speech_tokens in zip(prompt_speech_tokens_list, generated_speech_tokens_list):
|
||||
flow_inputs.append(torch.tensor(prompt_speech_tokens + generated_speech_tokens))
|
||||
flow_inputs_lens.append(len(prompt_speech_tokens) + len(generated_speech_tokens))
|
||||
|
||||
flow_inputs = torch.nn.utils.rnn.pad_sequence(flow_inputs, batch_first=True, padding_value=0)
|
||||
flow_inputs_lens = torch.tensor(flow_inputs_lens)
|
||||
|
||||
with torch.amp.autocast(self.device, dtype=torch.float16):
|
||||
generated_mels, generated_mels_lens = self.flow(
|
||||
flow_inputs.to(self.device), flow_inputs_lens.to(self.device),
|
||||
prompt_mels_for_flow.to(self.device), prompt_mels_lens_for_flow.to(self.device), spk_emb_for_flow.to(self.device),
|
||||
streaming=False, finalize=True
|
||||
)
|
||||
|
||||
return generated_mels, generated_mels_lens
|
||||
|
||||
def forward_hift(self, generated_mels: torch.Tensor, generated_mels_lens: torch.Tensor, prompt_mels_lens_for_flow: torch.Tensor):
|
||||
batch_size = generated_mels.shape[0]
|
||||
generated_wavs = []
|
||||
for i in range(batch_size):
|
||||
mel = generated_mels[i, :, prompt_mels_lens_for_flow[i].item():generated_mels_lens[i].item()].unsqueeze(0)
|
||||
wav, _ = self.hift(speech_feat=mel)
|
||||
generated_wavs.append(wav)
|
||||
return generated_wavs
|
||||
|
||||
@torch.inference_mode()
|
||||
def forward(
|
||||
self, generated_speech_tokens_list: list[list[int]], prompt_audios_list: list[torch.Tensor], prompt_audios_sample_rate: list[int]
|
||||
):
|
||||
# assert all item in prompt_audios_sample_rate is 16000
|
||||
assert all(sample_rate == 16000 for sample_rate in prompt_audios_sample_rate)
|
||||
|
||||
prompt_speech_tokens_list = self.prompt_audio_tokenization(prompt_audios_list)
|
||||
|
||||
prompt_mels_for_flow, prompt_mels_lens_for_flow = self.get_prompt_mels(prompt_audios_list, prompt_audios_sample_rate)
|
||||
|
||||
spk_emb_for_flow = self.get_spk_emb(prompt_audios_list)
|
||||
|
||||
generated_mels, generated_mels_lens = self.forward_flow(
|
||||
prompt_speech_tokens_list, generated_speech_tokens_list, prompt_mels_for_flow, prompt_mels_lens_for_flow, spk_emb_for_flow)
|
||||
|
||||
generated_wavs = self.forward_hift(generated_mels, generated_mels_lens, prompt_mels_lens_for_flow)
|
||||
|
||||
return generated_wavs
|
||||
|
||||
|
||||
def collate_fn(batch):
|
||||
ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate = [], [], [], []
|
||||
for _, item in enumerate(batch):
|
||||
generated_speech_tokens_list.append(item['target_audio_cosy2_tokens'])
|
||||
audio = torch.from_numpy(item['prompt_audio']['array']).float()
|
||||
prompt_audios_list.append(audio)
|
||||
prompt_audios_sample_rate.append(item['prompt_audio']['sampling_rate'])
|
||||
ids.append(item['id'])
|
||||
|
||||
return ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--enable-trt", action="store_true")
|
||||
parser.add_argument("--model-dir", type=str, default="./CosyVoice2-0.5B")
|
||||
parser.add_argument("--batch-size", type=int, default=4)
|
||||
parser.add_argument("--output-dir", type=str, default="generated_wavs")
|
||||
parser.add_argument("--huggingface-dataset-split", type=str, default="wenetspeech4tts")
|
||||
parser.add_argument("--warmup", type=int, default=3, help="Number of warmup epochs, performance statistics will only be collected from the last epoch")
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
model = CosyVoice2_Token2Wav(model_dir=args.model_dir, enable_trt=args.enable_trt)
|
||||
# mkdir output_dir if not exists
|
||||
if not os.path.exists(args.output_dir):
|
||||
os.makedirs(args.output_dir)
|
||||
dataset_name = "yuekai/seed_tts_cosy2"
|
||||
|
||||
dataset = load_dataset(dataset_name, split=args.huggingface_dataset_split, trust_remote_code=True)
|
||||
|
||||
data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, collate_fn=collate_fn, num_workers=0)
|
||||
|
||||
for _ in range(args.warmup):
|
||||
start_time = time.time()
|
||||
|
||||
for batch in data_loader:
|
||||
ids, generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate = batch
|
||||
|
||||
generated_wavs = model(generated_speech_tokens_list, prompt_audios_list, prompt_audios_sample_rate)
|
||||
|
||||
for id, wav in zip(ids, generated_wavs):
|
||||
torchaudio.save(f"{args.output_dir}/{id}.wav", wav.cpu(), 24000)
|
||||
|
||||
end_time = time.time()
|
||||
epoch_time = end_time - start_time
|
||||
print(f"Measurement epoch time taken: {epoch_time:.4f} seconds")
|
||||
Reference in New Issue
Block a user