mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
add streaming dit
This commit is contained in:
@@ -227,12 +227,11 @@ class TritonPythonModel:
|
||||
|
||||
def forward_token2wav(
|
||||
self,
|
||||
index: int,
|
||||
target_speech_tokens: torch.Tensor,
|
||||
request_id: str,
|
||||
prompt_speech_tokens: torch.Tensor = None,
|
||||
prompt_speech_feat: torch.Tensor = None,
|
||||
prompt_spk_embedding: torch.Tensor = None,
|
||||
token_offset: int = None,
|
||||
reference_wav: object,
|
||||
reference_wav_len: object,
|
||||
finalize: bool = None) -> torch.Tensor:
|
||||
"""Forward pass through the vocoder component.
|
||||
|
||||
@@ -246,29 +245,16 @@ class TritonPythonModel:
|
||||
Generated waveform tensor
|
||||
"""
|
||||
target_speech_tokens_tensor = pb_utils.Tensor.from_dlpack("target_speech_tokens", to_dlpack(target_speech_tokens))
|
||||
|
||||
inputs_tensor = [target_speech_tokens_tensor]
|
||||
|
||||
if token_offset is not None:
|
||||
assert finalize is not None
|
||||
token_offset_tensor = pb_utils.Tensor("token_offset", np.array([[token_offset]], dtype=np.int32))
|
||||
finalize_tensor = pb_utils.Tensor("finalize", np.array([[finalize]], dtype=np.bool_))
|
||||
inputs_tensor.append(token_offset_tensor)
|
||||
inputs_tensor.append(finalize_tensor)
|
||||
|
||||
if prompt_spk_embedding is not None:
|
||||
assert prompt_speech_feat is not None
|
||||
prompt_speech_tokens_tensor = pb_utils.Tensor.from_dlpack("prompt_speech_tokens", to_dlpack(prompt_speech_tokens))
|
||||
prompt_speech_feat_tensor = pb_utils.Tensor.from_dlpack("prompt_speech_feat", to_dlpack(prompt_speech_feat))
|
||||
prompt_spk_embedding_tensor = pb_utils.Tensor.from_dlpack("prompt_spk_embedding", to_dlpack(prompt_spk_embedding))
|
||||
inputs_tensor.extend([prompt_speech_tokens_tensor, prompt_speech_feat_tensor, prompt_spk_embedding_tensor])
|
||||
finalize_tensor = pb_utils.Tensor("finalize", np.array([[finalize]], dtype=np.bool_))
|
||||
inputs_tensor = [target_speech_tokens_tensor, reference_wav, reference_wav_len, finalize_tensor]
|
||||
|
||||
# Create and execute inference request
|
||||
inference_request = pb_utils.InferenceRequest(
|
||||
model_name='token2wav',
|
||||
model_name='token2wav_dit',
|
||||
requested_output_names=['waveform'],
|
||||
inputs=inputs_tensor,
|
||||
request_id=request_id,
|
||||
parameters={"priority": index+1},
|
||||
)
|
||||
|
||||
inference_response = inference_request.exec()
|
||||
@@ -346,8 +332,15 @@ class TritonPythonModel:
|
||||
|
||||
reference_text = pb_utils.get_input_tensor_by_name(request, "reference_text").as_numpy()
|
||||
reference_text = reference_text[0][0].decode('utf-8')
|
||||
prompt_spk_embedding = self.forward_speaker_embedding(wav_tensor)
|
||||
# prompt_spk_embedding = self.forward_speaker_embedding(wav_tensor)
|
||||
|
||||
# reference_text = self.default_spk_info["prompt_text"]
|
||||
# prompt_speech_tokens = self.default_spk_info["speech_token"] + ORIGINAL_VOCAB_SIZE
|
||||
# prompt_speech_feat = None
|
||||
# prompt_spk_embedding = None
|
||||
|
||||
else:
|
||||
assert False, "wav is None"
|
||||
# using pre-cached reference text
|
||||
reference_text = self.default_spk_info["prompt_text"]
|
||||
prompt_speech_tokens = self.default_spk_info["speech_token"] + ORIGINAL_VOCAB_SIZE
|
||||
@@ -391,12 +384,12 @@ class TritonPythonModel:
|
||||
break
|
||||
|
||||
if pending_num >= this_token_hop_len + self.flow_pre_lookahead_len:
|
||||
this_tts_speech_token = semantic_token_ids_arr[:token_offset + this_token_hop_len + self.flow_pre_lookahead_len]
|
||||
this_tts_speech_token = semantic_token_ids_arr[token_offset:token_offset + this_token_hop_len + self.flow_pre_lookahead_len]
|
||||
this_tts_speech_token = torch.tensor(this_tts_speech_token).unsqueeze(dim=0).to(torch.int32).to(self.device)
|
||||
|
||||
sub_tts_speech = self.forward_token2wav(
|
||||
this_tts_speech_token, request_id, prompt_speech_tokens,
|
||||
prompt_speech_feat, prompt_spk_embedding, token_offset, False
|
||||
chunk_index,
|
||||
this_tts_speech_token, request_id, wav, wav_len, False
|
||||
)
|
||||
|
||||
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
|
||||
@@ -429,8 +422,8 @@ class TritonPythonModel:
|
||||
else:
|
||||
time.sleep(0.02)
|
||||
|
||||
this_tts_speech_token = torch.tensor(semantic_token_ids_arr).unsqueeze(dim=0).to(torch.int32).to(self.device)
|
||||
sub_tts_speech = self.forward_token2wav(this_tts_speech_token, request_id, prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding, token_offset, True)
|
||||
this_tts_speech_token = torch.tensor(semantic_token_ids_arr[token_offset:]).unsqueeze(dim=0).to(torch.int32).to(self.device)
|
||||
sub_tts_speech = self.forward_token2wav(chunk_index, this_tts_speech_token, request_id, wav, wav_len, True)
|
||||
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(sub_tts_speech))
|
||||
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
|
||||
response_sender.send(inference_response)
|
||||
@@ -439,17 +432,7 @@ class TritonPythonModel:
|
||||
response_sender.send(flags=pb_utils.TRITONSERVER_RESPONSE_COMPLETE_FINAL)
|
||||
self.logger.log_info("send tritonserver_response_complete_final to end")
|
||||
else:
|
||||
generated_ids = next(generated_ids_iter)
|
||||
generated_ids = torch.tensor(generated_ids).unsqueeze(0).to(self.device)
|
||||
if generated_ids is None or len(generated_ids) == 0:
|
||||
raise pb_utils.TritonModelException("Generated IDs is None or empty")
|
||||
|
||||
audio = self.forward_token2wav(generated_ids, request_id, prompt_speech_tokens, prompt_speech_feat, prompt_spk_embedding)
|
||||
|
||||
# Prepare response
|
||||
audio_tensor = pb_utils.Tensor.from_dlpack("waveform", to_dlpack(audio))
|
||||
inference_response = pb_utils.InferenceResponse(output_tensors=[audio_tensor])
|
||||
responses.append(inference_response)
|
||||
raise NotImplementedError("Decoupled mode is not supported")
|
||||
|
||||
if not self.decoupled:
|
||||
return responses
|
||||
|
||||
Reference in New Issue
Block a user