mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
Merge pull request #1315 from FunAudioLLM/dev/lyuxiang.lx
Dev/lyuxiang.lx
This commit is contained in:
@@ -126,7 +126,7 @@ import torchaudio
|
|||||||
|
|
||||||
**CosyVoice2 Usage**
|
**CosyVoice2 Usage**
|
||||||
```python
|
```python
|
||||||
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, fp16=False, use_flow_cache=False)
|
cosyvoice = CosyVoice2('pretrained_models/CosyVoice2-0.5B', load_jit=False, load_trt=False, fp16=False)
|
||||||
|
|
||||||
# NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
|
# NOTE if you want to reproduce the results on https://funaudiollm.github.io/cosyvoice2, please add text_frontend=False during inference
|
||||||
# zero_shot usage
|
# zero_shot usage
|
||||||
|
|||||||
@@ -61,8 +61,7 @@ def main():
|
|||||||
model = CosyVoice(args.model_dir)
|
model = CosyVoice(args.model_dir)
|
||||||
except Exception:
|
except Exception:
|
||||||
try:
|
try:
|
||||||
# NOTE set use_flow_cache=True when export jit for cache inference
|
model = CosyVoice2(args.model_dir)
|
||||||
model = CosyVoice2(args.model_dir, use_flow_cache=True)
|
|
||||||
except Exception:
|
except Exception:
|
||||||
raise TypeError('no valid model_type!')
|
raise TypeError('no valid model_type!')
|
||||||
|
|
||||||
@@ -93,9 +92,9 @@ def main():
|
|||||||
else:
|
else:
|
||||||
# 3. export flow encoder
|
# 3. export flow encoder
|
||||||
flow_encoder = model.model.flow.encoder
|
flow_encoder = model.model.flow.encoder
|
||||||
script = get_optimized_script(flow_encoder, ['forward_chunk'])
|
script = get_optimized_script(flow_encoder)
|
||||||
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
||||||
script = get_optimized_script(flow_encoder.half(), ['forward_chunk'])
|
script = get_optimized_script(flow_encoder.half())
|
||||||
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
script.save('{}/flow.encoder.fp16.zip'.format(args.model_dir))
|
||||||
logging.info('successfully export flow_encoder')
|
logging.info('successfully export flow_encoder')
|
||||||
|
|
||||||
|
|||||||
@@ -62,135 +62,58 @@ def main():
|
|||||||
model = CosyVoice(args.model_dir)
|
model = CosyVoice(args.model_dir)
|
||||||
except Exception:
|
except Exception:
|
||||||
try:
|
try:
|
||||||
# NOTE set use_flow_cache=True when export jit for cache inference
|
model = CosyVoice2(args.model_dir)
|
||||||
model = CosyVoice2(args.model_dir, use_flow_cache=True)
|
|
||||||
except Exception:
|
except Exception:
|
||||||
raise TypeError('no valid model_type!')
|
raise TypeError('no valid model_type!')
|
||||||
|
|
||||||
if not isinstance(model, CosyVoice2):
|
# 1. export flow decoder estimator
|
||||||
# 1. export flow decoder estimator
|
estimator = model.model.flow.decoder.estimator
|
||||||
estimator = model.model.flow.decoder.estimator
|
estimator.eval()
|
||||||
estimator.eval()
|
|
||||||
|
|
||||||
device = model.model.device
|
device = model.model.device
|
||||||
batch_size, seq_len = 2, 256
|
batch_size, seq_len = 2, 256
|
||||||
out_channels = model.model.flow.decoder.estimator.out_channels
|
out_channels = model.model.flow.decoder.estimator.out_channels
|
||||||
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
|
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
|
||||||
torch.onnx.export(
|
torch.onnx.export(
|
||||||
estimator,
|
estimator,
|
||||||
(x, mask, mu, t, spks, cond),
|
(x, mask, mu, t, spks, cond),
|
||||||
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||||
export_params=True,
|
export_params=True,
|
||||||
opset_version=18,
|
opset_version=18,
|
||||||
do_constant_folding=True,
|
do_constant_folding=True,
|
||||||
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
||||||
output_names=['estimator_out'],
|
output_names=['estimator_out'],
|
||||||
dynamic_axes={
|
dynamic_axes={
|
||||||
'x': {2: 'seq_len'},
|
'x': {2: 'seq_len'},
|
||||||
'mask': {2: 'seq_len'},
|
'mask': {2: 'seq_len'},
|
||||||
'mu': {2: 'seq_len'},
|
'mu': {2: 'seq_len'},
|
||||||
'cond': {2: 'seq_len'},
|
'cond': {2: 'seq_len'},
|
||||||
'estimator_out': {2: 'seq_len'},
|
'estimator_out': {2: 'seq_len'},
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
# 2. test computation consistency
|
# 2. test computation consistency
|
||||||
option = onnxruntime.SessionOptions()
|
option = onnxruntime.SessionOptions()
|
||||||
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||||
option.intra_op_num_threads = 1
|
option.intra_op_num_threads = 1
|
||||||
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
||||||
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
||||||
sess_options=option, providers=providers)
|
sess_options=option, providers=providers)
|
||||||
|
|
||||||
for _ in tqdm(range(10)):
|
for _ in tqdm(range(10)):
|
||||||
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device)
|
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device)
|
||||||
output_pytorch = estimator(x, mask, mu, t, spks, cond)
|
output_pytorch = estimator(x, mask, mu, t, spks, cond)
|
||||||
ort_inputs = {
|
ort_inputs = {
|
||||||
'x': x.cpu().numpy(),
|
'x': x.cpu().numpy(),
|
||||||
'mask': mask.cpu().numpy(),
|
'mask': mask.cpu().numpy(),
|
||||||
'mu': mu.cpu().numpy(),
|
'mu': mu.cpu().numpy(),
|
||||||
't': t.cpu().numpy(),
|
't': t.cpu().numpy(),
|
||||||
'spks': spks.cpu().numpy(),
|
'spks': spks.cpu().numpy(),
|
||||||
'cond': cond.cpu().numpy()
|
'cond': cond.cpu().numpy()
|
||||||
}
|
}
|
||||||
output_onnx = estimator_onnx.run(None, ort_inputs)[0]
|
output_onnx = estimator_onnx.run(None, ort_inputs)[0]
|
||||||
torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
|
torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
|
||||||
logging.info('successfully export estimator')
|
logging.info('successfully export estimator')
|
||||||
else:
|
|
||||||
# 1. export flow decoder estimator
|
|
||||||
estimator = model.model.flow.decoder.estimator
|
|
||||||
estimator.forward = estimator.forward_chunk
|
|
||||||
estimator.eval()
|
|
||||||
|
|
||||||
device = model.model.device
|
|
||||||
batch_size, seq_len = 2, 256
|
|
||||||
out_channels = model.model.flow.decoder.estimator.out_channels
|
|
||||||
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
|
|
||||||
cache = model.model.init_flow_cache()['decoder_cache']
|
|
||||||
cache.pop('offset')
|
|
||||||
cache = {k: v[0] for k, v in cache.items()}
|
|
||||||
torch.onnx.export(
|
|
||||||
estimator,
|
|
||||||
(x, mask, mu, t, spks, cond,
|
|
||||||
cache['down_blocks_conv_cache'],
|
|
||||||
cache['down_blocks_kv_cache'],
|
|
||||||
cache['mid_blocks_conv_cache'],
|
|
||||||
cache['mid_blocks_kv_cache'],
|
|
||||||
cache['up_blocks_conv_cache'],
|
|
||||||
cache['up_blocks_kv_cache'],
|
|
||||||
cache['final_blocks_conv_cache']),
|
|
||||||
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
|
||||||
export_params=True,
|
|
||||||
opset_version=18,
|
|
||||||
do_constant_folding=True,
|
|
||||||
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond', 'down_blocks_conv_cache', 'down_blocks_kv_cache', 'mid_blocks_conv_cache', 'mid_blocks_kv_cache',
|
|
||||||
'up_blocks_conv_cache', 'up_blocks_kv_cache', 'final_blocks_conv_cache'],
|
|
||||||
output_names=['estimator_out', 'down_blocks_conv_cache_out', 'down_blocks_kv_cache_out', 'mid_blocks_conv_cache_out', 'mid_blocks_kv_cache_out',
|
|
||||||
'up_blocks_conv_cache_out', 'up_blocks_kv_cache_out', 'final_blocks_conv_cache_out'],
|
|
||||||
dynamic_axes={
|
|
||||||
'x': {2: 'seq_len'},
|
|
||||||
'mask': {2: 'seq_len'},
|
|
||||||
'mu': {2: 'seq_len'},
|
|
||||||
'cond': {2: 'seq_len'},
|
|
||||||
'down_blocks_kv_cache': {3: 'cache_in_len'},
|
|
||||||
'mid_blocks_kv_cache': {3: 'cache_in_len'},
|
|
||||||
'up_blocks_kv_cache': {3: 'cache_in_len'},
|
|
||||||
'estimator_out': {2: 'seq_len'},
|
|
||||||
'down_blocks_kv_cache_out': {3: 'cache_out_len'},
|
|
||||||
'mid_blocks_kv_cache_out': {3: 'cache_out_len'},
|
|
||||||
'up_blocks_kv_cache_out': {3: 'cache_out_len'},
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
# 2. test computation consistency
|
|
||||||
option = onnxruntime.SessionOptions()
|
|
||||||
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
|
||||||
option.intra_op_num_threads = 1
|
|
||||||
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
|
||||||
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
|
||||||
sess_options=option, providers=providers)
|
|
||||||
|
|
||||||
for iter in tqdm(range(10)):
|
|
||||||
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, random.randint(16, 512), out_channels, device)
|
|
||||||
cache = model.model.init_flow_cache()['decoder_cache']
|
|
||||||
cache.pop('offset')
|
|
||||||
cache = {k: v[0] for k, v in cache.items()}
|
|
||||||
output_pytorch = estimator(x, mask, mu, t, spks, cond, **{k: v.clone() for k, v in cache.items()})
|
|
||||||
ort_inputs = {
|
|
||||||
'x': x.cpu().numpy(),
|
|
||||||
'mask': mask.cpu().numpy(),
|
|
||||||
'mu': mu.cpu().numpy(),
|
|
||||||
't': t.cpu().numpy(),
|
|
||||||
'spks': spks.cpu().numpy(),
|
|
||||||
'cond': cond.cpu().numpy(),
|
|
||||||
}
|
|
||||||
output_onnx = estimator_onnx.run(None, {**ort_inputs, **{k: v.clone().cpu().numpy() for k, v in cache.items()}})
|
|
||||||
if iter == 0:
|
|
||||||
# NOTE why can not pass first iteration check?
|
|
||||||
continue
|
|
||||||
for i, j in zip(output_pytorch, output_onnx):
|
|
||||||
torch.testing.assert_allclose(i, torch.from_numpy(j).to(device), rtol=1e-2, atol=1e-4)
|
|
||||||
logging.info('successfully export estimator')
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|||||||
187
cosyvoice/bin/train_dpo.py
Normal file
187
cosyvoice/bin/train_dpo.py
Normal file
@@ -0,0 +1,187 @@
|
|||||||
|
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
import argparse
|
||||||
|
import datetime
|
||||||
|
import logging
|
||||||
|
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
||||||
|
from copy import deepcopy
|
||||||
|
import os
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
import deepspeed
|
||||||
|
|
||||||
|
from hyperpyyaml import load_hyperpyyaml
|
||||||
|
|
||||||
|
from torch.distributed.elastic.multiprocessing.errors import record
|
||||||
|
|
||||||
|
from cosyvoice.utils.executor_dpo import Executor
|
||||||
|
from cosyvoice.utils.train_utils_dpo import (
|
||||||
|
init_distributed,
|
||||||
|
init_dataset_and_dataloader,
|
||||||
|
init_optimizer_and_scheduler,
|
||||||
|
init_summarywriter, save_model,
|
||||||
|
wrap_cuda_model, check_modify_and_save_config)
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser(description='training your network')
|
||||||
|
parser.add_argument('--train_engine',
|
||||||
|
default='torch_ddp',
|
||||||
|
choices=['torch_ddp', 'deepspeed'],
|
||||||
|
help='Engine for paralleled training')
|
||||||
|
parser.add_argument('--model', required=True, help='model which will be trained')
|
||||||
|
parser.add_argument('--config', required=True, help='config file')
|
||||||
|
parser.add_argument('--train_data', required=True, help='train data file')
|
||||||
|
parser.add_argument('--cv_data', required=True, help='cv data file')
|
||||||
|
parser.add_argument('--checkpoint', help='checkpoint model')
|
||||||
|
parser.add_argument('--model_dir', required=True, help='save model dir')
|
||||||
|
parser.add_argument('--tensorboard_dir',
|
||||||
|
default='tensorboard',
|
||||||
|
help='tensorboard log dir')
|
||||||
|
parser.add_argument('--ddp.dist_backend',
|
||||||
|
dest='dist_backend',
|
||||||
|
default='nccl',
|
||||||
|
choices=['nccl', 'gloo'],
|
||||||
|
help='distributed backend')
|
||||||
|
parser.add_argument('--num_workers',
|
||||||
|
default=0,
|
||||||
|
type=int,
|
||||||
|
help='num of subprocess workers for reading')
|
||||||
|
parser.add_argument('--prefetch',
|
||||||
|
default=100,
|
||||||
|
type=int,
|
||||||
|
help='prefetch number')
|
||||||
|
parser.add_argument('--pin_memory',
|
||||||
|
action='store_true',
|
||||||
|
default=False,
|
||||||
|
help='Use pinned memory buffers used for reading')
|
||||||
|
parser.add_argument('--use_amp',
|
||||||
|
action='store_true',
|
||||||
|
default=False,
|
||||||
|
help='Use automatic mixed precision training')
|
||||||
|
parser.add_argument('--deepspeed.save_states',
|
||||||
|
dest='save_states',
|
||||||
|
default='model_only',
|
||||||
|
choices=['model_only', 'model+optimizer'],
|
||||||
|
help='save model/optimizer states')
|
||||||
|
parser.add_argument('--timeout',
|
||||||
|
default=60,
|
||||||
|
type=int,
|
||||||
|
help='timeout (in seconds) of cosyvoice_join.')
|
||||||
|
parser.add_argument('--dpo',
|
||||||
|
action='store_true',
|
||||||
|
default=False,
|
||||||
|
help='Use Direct Preference Optimization')
|
||||||
|
parser.add_argument('--beta',
|
||||||
|
default=0.01,
|
||||||
|
type=float,
|
||||||
|
help='beta of dpo training')
|
||||||
|
parser = deepspeed.add_config_arguments(parser)
|
||||||
|
args = parser.parse_args()
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
@record
|
||||||
|
def main():
|
||||||
|
args = get_args()
|
||||||
|
logging.basicConfig(level=logging.DEBUG,
|
||||||
|
format='%(asctime)s %(levelname)s %(message)s')
|
||||||
|
# gan train has some special initialization logic
|
||||||
|
gan = True if args.model == 'hifigan' else False
|
||||||
|
|
||||||
|
override_dict = {k: None for k in ['llm', 'flow', 'hift', 'hifigan'] if k != args.model}
|
||||||
|
if gan is True:
|
||||||
|
override_dict.pop('hift')
|
||||||
|
with open(args.config, 'r') as f:
|
||||||
|
configs = load_hyperpyyaml(f, overrides=override_dict)
|
||||||
|
if gan is True:
|
||||||
|
configs['train_conf'] = configs['train_conf_gan']
|
||||||
|
configs['train_conf'].update(vars(args))
|
||||||
|
|
||||||
|
# Init env for ddp
|
||||||
|
init_distributed(args)
|
||||||
|
|
||||||
|
# Get dataset & dataloader
|
||||||
|
train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
|
||||||
|
init_dataset_and_dataloader(args, configs, gan)
|
||||||
|
|
||||||
|
# Do some sanity checks and save config to arsg.model_dir
|
||||||
|
configs = check_modify_and_save_config(args, configs)
|
||||||
|
|
||||||
|
# Tensorboard summary
|
||||||
|
writer = init_summarywriter(args)
|
||||||
|
|
||||||
|
# load checkpoint
|
||||||
|
model = configs[args.model]
|
||||||
|
ref_model = None
|
||||||
|
if args.dpo:
|
||||||
|
ref_model = deepcopy(model)
|
||||||
|
start_step, start_epoch = 0, -1
|
||||||
|
if args.checkpoint is not None:
|
||||||
|
if os.path.exists(args.checkpoint):
|
||||||
|
state_dict = torch.load(args.checkpoint, map_location='cpu')
|
||||||
|
model.load_state_dict(state_dict, strict=False)
|
||||||
|
if args.dpo:
|
||||||
|
ref_model.load_state_dict(state_dict, strict=False)
|
||||||
|
if 'step' in state_dict:
|
||||||
|
start_step = state_dict['step']
|
||||||
|
if 'epoch' in state_dict:
|
||||||
|
start_epoch = state_dict['epoch']
|
||||||
|
else:
|
||||||
|
logging.warning('checkpoint {} do not exsist!'.format(args.checkpoint))
|
||||||
|
|
||||||
|
# Dispatch model from cpu to gpu
|
||||||
|
model = wrap_cuda_model(args, model)
|
||||||
|
if args.dpo:
|
||||||
|
ref_model = wrap_cuda_model(args, ref_model)
|
||||||
|
|
||||||
|
# Get optimizer & scheduler
|
||||||
|
model, optimizer, scheduler, optimizer_d, scheduler_d = init_optimizer_and_scheduler(args, configs, model, gan)
|
||||||
|
if args.dpo:
|
||||||
|
ref_model, _, _, _, _ = init_optimizer_and_scheduler(args, configs, ref_model, gan)
|
||||||
|
scheduler.set_step(start_step)
|
||||||
|
if scheduler_d is not None:
|
||||||
|
scheduler_d.set_step(start_step)
|
||||||
|
|
||||||
|
# Save init checkpoints
|
||||||
|
info_dict = deepcopy(configs['train_conf'])
|
||||||
|
info_dict['step'] = start_step
|
||||||
|
info_dict['epoch'] = start_epoch
|
||||||
|
save_model(model, 'init', info_dict)
|
||||||
|
|
||||||
|
# Get executor
|
||||||
|
executor = Executor(gan=gan, dpo=args.dpo, beta=args.beta)
|
||||||
|
executor.step = start_step
|
||||||
|
|
||||||
|
# Init scaler, used for pytorch amp mixed precision training
|
||||||
|
scaler = torch.cuda.amp.GradScaler() if args.use_amp else None
|
||||||
|
print('start step {} start epoch {}'.format(start_step, start_epoch))
|
||||||
|
# Start training loop
|
||||||
|
for epoch in range(start_epoch + 1, info_dict['max_epoch']):
|
||||||
|
executor.epoch = epoch
|
||||||
|
train_dataset.set_epoch(epoch)
|
||||||
|
dist.barrier()
|
||||||
|
group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
|
||||||
|
if gan is True:
|
||||||
|
executor.train_one_epoc_gan(model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
|
||||||
|
writer, info_dict, scaler, group_join)
|
||||||
|
else:
|
||||||
|
executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join, ref_model)
|
||||||
|
dist.destroy_process_group(group_join)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
||||||
@@ -140,7 +140,7 @@ class CosyVoice:
|
|||||||
|
|
||||||
class CosyVoice2(CosyVoice):
|
class CosyVoice2(CosyVoice):
|
||||||
|
|
||||||
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, use_flow_cache=False):
|
def __init__(self, model_dir, load_jit=False, load_trt=False, fp16=False, trt_concurrent=1):
|
||||||
self.instruct = True if '-Instruct' in model_dir else False
|
self.instruct = True if '-Instruct' in model_dir else False
|
||||||
self.model_dir = model_dir
|
self.model_dir = model_dir
|
||||||
self.fp16 = fp16
|
self.fp16 = fp16
|
||||||
@@ -162,9 +162,9 @@ class CosyVoice2(CosyVoice):
|
|||||||
if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
|
if torch.cuda.is_available() is False and (load_jit is True or load_trt is True or fp16 is True):
|
||||||
load_jit, load_trt, fp16 = False, False, False
|
load_jit, load_trt, fp16 = False, False, False
|
||||||
logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
|
logging.warning('no cuda device, set load_jit/load_trt/fp16 to False')
|
||||||
self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16, use_flow_cache)
|
self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'], fp16, trt_concurrent)
|
||||||
self.model.load('{}/llm.pt'.format(model_dir),
|
self.model.load('{}/llm.pt'.format(model_dir),
|
||||||
'{}/flow.pt'.format(model_dir) if use_flow_cache is False else '{}/flow.cache.pt'.format(model_dir),
|
'{}/flow.pt'.format(model_dir),
|
||||||
'{}/hift.pt'.format(model_dir))
|
'{}/hift.pt'.format(model_dir))
|
||||||
if load_jit:
|
if load_jit:
|
||||||
self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
self.model.load_jit('{}/flow.encoder.{}.zip'.format(model_dir, 'fp16' if self.fp16 is True else 'fp32'))
|
||||||
|
|||||||
@@ -1,4 +1,5 @@
|
|||||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||||
|
# 2025 Alibaba Inc (authors: Xiang Lyu, Bofan Zhou)
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
@@ -13,6 +14,7 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
import os
|
import os
|
||||||
from typing import Generator
|
from typing import Generator
|
||||||
|
import queue
|
||||||
import torch
|
import torch
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import threading
|
import threading
|
||||||
@@ -22,6 +24,7 @@ from contextlib import nullcontext
|
|||||||
import uuid
|
import uuid
|
||||||
from cosyvoice.utils.common import fade_in_out
|
from cosyvoice.utils.common import fade_in_out
|
||||||
from cosyvoice.utils.file_utils import convert_onnx_to_trt
|
from cosyvoice.utils.file_utils import convert_onnx_to_trt
|
||||||
|
from cosyvoice.utils.common import TrtContextWrapper
|
||||||
|
|
||||||
|
|
||||||
class CosyVoiceModel:
|
class CosyVoiceModel:
|
||||||
@@ -30,12 +33,14 @@ class CosyVoiceModel:
|
|||||||
llm: torch.nn.Module,
|
llm: torch.nn.Module,
|
||||||
flow: torch.nn.Module,
|
flow: torch.nn.Module,
|
||||||
hift: torch.nn.Module,
|
hift: torch.nn.Module,
|
||||||
fp16: bool = False):
|
fp16: bool = False,
|
||||||
|
trt_concurrent: int = 1):
|
||||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
self.llm = llm
|
self.llm = llm
|
||||||
self.flow = flow
|
self.flow = flow
|
||||||
self.hift = hift
|
self.hift = hift
|
||||||
self.fp16 = fp16
|
self.fp16 = fp16
|
||||||
|
self.trt_concurrent = trt_concurrent
|
||||||
if self.fp16 is True:
|
if self.fp16 is True:
|
||||||
self.llm.half()
|
self.llm.half()
|
||||||
self.flow.half()
|
self.flow.half()
|
||||||
@@ -82,20 +87,18 @@ class CosyVoiceModel:
|
|||||||
|
|
||||||
def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, fp16):
|
def load_trt(self, flow_decoder_estimator_model, flow_decoder_onnx_model, fp16):
|
||||||
assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
|
assert torch.cuda.is_available(), 'tensorrt only supports gpu!'
|
||||||
if not os.path.exists(flow_decoder_estimator_model):
|
if not os.path.exists(flow_decoder_estimator_model) or os.path.getsize(flow_decoder_estimator_model) == 0:
|
||||||
convert_onnx_to_trt(flow_decoder_estimator_model, self.get_trt_kwargs(), flow_decoder_onnx_model, fp16)
|
convert_onnx_to_trt(flow_decoder_estimator_model, self.get_trt_kwargs(), flow_decoder_onnx_model, fp16)
|
||||||
if os.path.getsize(flow_decoder_estimator_model) == 0:
|
|
||||||
raise ValueError('{} is empty file, delete it and export again!'.format(flow_decoder_estimator_model))
|
|
||||||
del self.flow.decoder.estimator
|
del self.flow.decoder.estimator
|
||||||
import tensorrt as trt
|
import tensorrt as trt
|
||||||
with open(flow_decoder_estimator_model, 'rb') as f:
|
with open(flow_decoder_estimator_model, 'rb') as f:
|
||||||
self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
|
||||||
assert self.flow.decoder.estimator_engine is not None, 'failed to load trt {}'.format(flow_decoder_estimator_model)
|
assert estimator_engine is not None, 'failed to load trt {}'.format(flow_decoder_estimator_model)
|
||||||
self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context()
|
self.flow.decoder.estimator = TrtContextWrapper(estimator_engine, trt_concurrent=self.trt_concurrent)
|
||||||
|
|
||||||
def get_trt_kwargs(self):
|
def get_trt_kwargs(self):
|
||||||
min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4)]
|
min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4)]
|
||||||
opt_shape = [(2, 80, 200), (2, 1, 200), (2, 80, 200), (2, 80, 200)]
|
opt_shape = [(2, 80, 500), (2, 1, 500), (2, 80, 500), (2, 80, 500)]
|
||||||
max_shape = [(2, 80, 3000), (2, 1, 3000), (2, 80, 3000), (2, 80, 3000)]
|
max_shape = [(2, 80, 3000), (2, 1, 3000), (2, 80, 3000), (2, 80, 3000)]
|
||||||
input_names = ["x", "mask", "mu", "cond"]
|
input_names = ["x", "mask", "mu", "cond"]
|
||||||
return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
|
return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
|
||||||
@@ -231,7 +234,9 @@ class CosyVoiceModel:
|
|||||||
self.mel_overlap_dict.pop(this_uuid)
|
self.mel_overlap_dict.pop(this_uuid)
|
||||||
self.hift_cache_dict.pop(this_uuid)
|
self.hift_cache_dict.pop(this_uuid)
|
||||||
self.flow_cache_dict.pop(this_uuid)
|
self.flow_cache_dict.pop(this_uuid)
|
||||||
torch.cuda.empty_cache()
|
if torch.cuda.is_available():
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
torch.cuda.current_stream().synchronize()
|
||||||
|
|
||||||
|
|
||||||
class CosyVoice2Model(CosyVoiceModel):
|
class CosyVoice2Model(CosyVoiceModel):
|
||||||
@@ -241,19 +246,21 @@ class CosyVoice2Model(CosyVoiceModel):
|
|||||||
flow: torch.nn.Module,
|
flow: torch.nn.Module,
|
||||||
hift: torch.nn.Module,
|
hift: torch.nn.Module,
|
||||||
fp16: bool = False,
|
fp16: bool = False,
|
||||||
use_flow_cache: bool = False):
|
trt_concurrent: int = 1):
|
||||||
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
self.llm = llm
|
self.llm = llm
|
||||||
self.flow = flow
|
self.flow = flow
|
||||||
|
# NOTE default setting for jit/onnx export, you can set to False when using pytorch inference
|
||||||
|
self.flow.encoder.streaming = True
|
||||||
|
self.flow.decoder.estimator.streaming = True
|
||||||
self.hift = hift
|
self.hift = hift
|
||||||
self.fp16 = fp16
|
self.fp16 = fp16
|
||||||
self.use_flow_cache = use_flow_cache
|
self.trt_concurrent = trt_concurrent
|
||||||
if self.fp16 is True:
|
if self.fp16 is True:
|
||||||
self.llm.half()
|
self.llm.half()
|
||||||
self.flow.half()
|
self.flow.half()
|
||||||
# stream related params, check examples/libritts/cosyvoice2/conf/cosyvoice2.yaml
|
# NOTE must matching training static_chunk_size
|
||||||
self.token_hop_len = 25
|
self.token_hop_len = 25
|
||||||
self.flow_decoder_required_cache_size = 0 if use_flow_cache is False else 1 * self.token_hop_len * self.flow.token_mel_ratio
|
|
||||||
# hift cache
|
# hift cache
|
||||||
self.mel_cache_len = 8
|
self.mel_cache_len = 8
|
||||||
self.source_cache_len = int(self.mel_cache_len * 480)
|
self.source_cache_len = int(self.mel_cache_len * 480)
|
||||||
@@ -261,59 +268,31 @@ class CosyVoice2Model(CosyVoiceModel):
|
|||||||
self.speech_window = np.hamming(2 * self.source_cache_len)
|
self.speech_window = np.hamming(2 * self.source_cache_len)
|
||||||
# rtf and decoding related
|
# rtf and decoding related
|
||||||
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
|
||||||
|
self.trt_context_pool = queue.Queue(maxsize=trt_concurrent)
|
||||||
|
for _ in range(trt_concurrent):
|
||||||
|
self.trt_context_pool.put(torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext())
|
||||||
self.lock = threading.Lock()
|
self.lock = threading.Lock()
|
||||||
# dict used to store session related variable
|
# dict used to store session related variable
|
||||||
self.tts_speech_token_dict = {}
|
self.tts_speech_token_dict = {}
|
||||||
self.llm_end_dict = {}
|
self.llm_end_dict = {}
|
||||||
self.flow_cache_dict = {}
|
|
||||||
self.hift_cache_dict = {}
|
self.hift_cache_dict = {}
|
||||||
|
self.trt_context_dict = {}
|
||||||
def init_flow_cache(self):
|
|
||||||
encoder_cache = {'offset': 0,
|
|
||||||
'pre_lookahead_layer_conv2_cache': torch.zeros(1, 512, 2).to(self.device),
|
|
||||||
'encoders_kv_cache': torch.zeros(6, 1, 8, 0, 64 * 2).to(self.device),
|
|
||||||
'upsample_offset': 0,
|
|
||||||
'upsample_conv_cache': torch.zeros(1, 512, 4).to(self.device),
|
|
||||||
'upsample_kv_cache': torch.zeros(4, 1, 8, 0, 64 * 2).to(self.device)}
|
|
||||||
decoder_cache = {'offset': 0,
|
|
||||||
'down_blocks_conv_cache': torch.zeros(10, 1, 2, 832, 2).to(self.device),
|
|
||||||
'down_blocks_kv_cache': torch.zeros(10, 1, 4, 2, self.flow_decoder_required_cache_size, 512, 2).to(self.device),
|
|
||||||
'mid_blocks_conv_cache': torch.zeros(10, 12, 2, 512, 2).to(self.device),
|
|
||||||
'mid_blocks_kv_cache': torch.zeros(10, 12, 4, 2, self.flow_decoder_required_cache_size, 512, 2).to(self.device),
|
|
||||||
'up_blocks_conv_cache': torch.zeros(10, 1, 2, 1024, 2).to(self.device),
|
|
||||||
'up_blocks_kv_cache': torch.zeros(10, 1, 4, 2, self.flow_decoder_required_cache_size, 512, 2).to(self.device),
|
|
||||||
'final_blocks_conv_cache': torch.zeros(10, 2, 256, 2).to(self.device)}
|
|
||||||
if self.fp16 is True:
|
|
||||||
for cache in [encoder_cache, decoder_cache]:
|
|
||||||
for k, v in cache.items():
|
|
||||||
if isinstance(v, torch.Tensor):
|
|
||||||
cache[k] = v.half()
|
|
||||||
cache = {'encoder_cache': encoder_cache, 'decoder_cache': decoder_cache}
|
|
||||||
return cache
|
|
||||||
|
|
||||||
def load_jit(self, flow_encoder_model):
|
def load_jit(self, flow_encoder_model):
|
||||||
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
|
||||||
self.flow.encoder = flow_encoder
|
self.flow.encoder = flow_encoder
|
||||||
|
|
||||||
def get_trt_kwargs(self):
|
def token2wav(self, token, prompt_token, prompt_feat, embedding, token_offset, uuid, finalize=False, speed=1.0):
|
||||||
min_shape = [(2, 80, 4), (2, 1, 4), (2, 80, 4), (2, 80, 4), (1, 4, 2, 0, 512, 2), (12, 4, 2, 0, 512, 2), (1, 4, 2, 0, 512, 2)]
|
with torch.cuda.amp.autocast(self.fp16), self.trt_context_dict[uuid]:
|
||||||
opt_shape = [(2, 80, 200), (2, 1, 200), (2, 80, 200), (2, 80, 200), (1, 4, 2, 100, 512, 2), (12, 4, 2, 100, 512, 2), (1, 4, 2, 100, 512, 2)]
|
tts_mel, _ = self.flow.inference(token=token.to(self.device),
|
||||||
max_shape = [(2, 80, 1500), (2, 1, 1500), (2, 80, 1500), (2, 80, 1500), (1, 4, 2, 200, 512, 2), (12, 4, 2, 200, 512, 2), (1, 4, 2, 200, 512, 2)]
|
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
input_names = ["x", "mask", "mu", "cond", 'down_blocks_kv_cache', 'mid_blocks_kv_cache', 'up_blocks_kv_cache']
|
prompt_token=prompt_token.to(self.device),
|
||||||
assert self.use_flow_cache is True, "get_trt_kwargs is set for flow cache mode. If you want to use trt with use_flow_cache=False, please set higher max_shape"
|
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
return {'min_shape': min_shape, 'opt_shape': opt_shape, 'max_shape': max_shape, 'input_names': input_names}
|
prompt_feat=prompt_feat.to(self.device),
|
||||||
|
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
||||||
def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
|
embedding=embedding.to(self.device),
|
||||||
with torch.cuda.amp.autocast(self.fp16):
|
finalize=finalize)
|
||||||
tts_mel, self.flow_cache_dict[uuid] = self.flow.inference(token=token.to(self.device),
|
tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
|
||||||
token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
|
|
||||||
prompt_token=prompt_token.to(self.device),
|
|
||||||
prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
|
|
||||||
prompt_feat=prompt_feat.to(self.device),
|
|
||||||
prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
|
|
||||||
embedding=embedding.to(self.device),
|
|
||||||
cache=self.flow_cache_dict[uuid],
|
|
||||||
finalize=finalize)
|
|
||||||
# append hift cache
|
# append hift cache
|
||||||
if self.hift_cache_dict[uuid] is not None:
|
if self.hift_cache_dict[uuid] is not None:
|
||||||
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
|
||||||
@@ -348,34 +327,30 @@ class CosyVoice2Model(CosyVoiceModel):
|
|||||||
with self.lock:
|
with self.lock:
|
||||||
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
|
||||||
self.hift_cache_dict[this_uuid] = None
|
self.hift_cache_dict[this_uuid] = None
|
||||||
self.flow_cache_dict[this_uuid] = self.init_flow_cache()
|
self.trt_context_dict[this_uuid] = self.trt_context_pool.get()
|
||||||
if source_speech_token.shape[1] == 0:
|
if source_speech_token.shape[1] == 0:
|
||||||
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
|
||||||
else:
|
else:
|
||||||
p = threading.Thread(target=self.vc_job, args=(source_speech_token, this_uuid))
|
p = threading.Thread(target=self.vc_job, args=(source_speech_token, this_uuid))
|
||||||
p.start()
|
p.start()
|
||||||
if stream is True:
|
if stream is True:
|
||||||
assert self.use_flow_cache is True, "set use_flow_cache=True if you want to use stream inference to avoid OOM"
|
token_offset = 0
|
||||||
# NOTE in cache mode, trim flow_prompt to same size as flow_decoder_required_cache_size
|
prompt_token_pad = int(np.ceil(flow_prompt_speech_token.shape[1] / self.token_hop_len) * self.token_hop_len - flow_prompt_speech_token.shape[1])
|
||||||
flow_prompt_speech_token = flow_prompt_speech_token[:, -int(self.flow_decoder_required_cache_size / self.flow.token_mel_ratio):]
|
|
||||||
prompt_speech_feat = prompt_speech_feat[:, -self.flow_decoder_required_cache_size:]
|
|
||||||
while True:
|
while True:
|
||||||
time.sleep(0.1)
|
time.sleep(0.1)
|
||||||
if len(self.tts_speech_token_dict[this_uuid]) >= self.token_hop_len + self.flow.pre_lookahead_len:
|
this_token_hop_len = self.token_hop_len + prompt_token_pad if token_offset == 0 else self.token_hop_len
|
||||||
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:self.token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0)
|
if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= this_token_hop_len + self.flow.pre_lookahead_len:
|
||||||
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + this_token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0)
|
||||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||||
prompt_token=flow_prompt_speech_token,
|
prompt_token=flow_prompt_speech_token,
|
||||||
prompt_feat=prompt_speech_feat,
|
prompt_feat=prompt_speech_feat,
|
||||||
embedding=flow_embedding,
|
embedding=flow_embedding,
|
||||||
|
token_offset=token_offset,
|
||||||
uuid=this_uuid,
|
uuid=this_uuid,
|
||||||
finalize=False)
|
finalize=False)
|
||||||
# NOTE in cache inference mode, we only use flow_prompt_speech_token/prompt_speech_feat in first chunk
|
token_offset += this_token_hop_len
|
||||||
flow_prompt_speech_token = torch.zeros(1, 0, dtype=torch.int32).to(self.device)
|
|
||||||
prompt_speech_feat = torch.zeros(1, 0, 80).to(self.device)
|
|
||||||
yield {'tts_speech': this_tts_speech.cpu()}
|
yield {'tts_speech': this_tts_speech.cpu()}
|
||||||
with self.lock:
|
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < this_token_hop_len + self.flow.pre_lookahead_len:
|
||||||
self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][self.token_hop_len:]
|
|
||||||
if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < self.token_hop_len + self.flow.pre_lookahead_len:
|
|
||||||
break
|
break
|
||||||
p.join()
|
p.join()
|
||||||
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
# deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
|
||||||
@@ -384,18 +359,19 @@ class CosyVoice2Model(CosyVoiceModel):
|
|||||||
prompt_token=flow_prompt_speech_token,
|
prompt_token=flow_prompt_speech_token,
|
||||||
prompt_feat=prompt_speech_feat,
|
prompt_feat=prompt_speech_feat,
|
||||||
embedding=flow_embedding,
|
embedding=flow_embedding,
|
||||||
|
token_offset=token_offset,
|
||||||
uuid=this_uuid,
|
uuid=this_uuid,
|
||||||
finalize=True)
|
finalize=True)
|
||||||
yield {'tts_speech': this_tts_speech.cpu()}
|
yield {'tts_speech': this_tts_speech.cpu()}
|
||||||
else:
|
else:
|
||||||
# deal with all tokens
|
# deal with all tokens
|
||||||
assert self.use_flow_cache is False, "set use_flow_cache=False for nonstream inference"
|
|
||||||
p.join()
|
p.join()
|
||||||
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
|
||||||
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
this_tts_speech = self.token2wav(token=this_tts_speech_token,
|
||||||
prompt_token=flow_prompt_speech_token,
|
prompt_token=flow_prompt_speech_token,
|
||||||
prompt_feat=prompt_speech_feat,
|
prompt_feat=prompt_speech_feat,
|
||||||
embedding=flow_embedding,
|
embedding=flow_embedding,
|
||||||
|
token_offset=0,
|
||||||
uuid=this_uuid,
|
uuid=this_uuid,
|
||||||
finalize=True,
|
finalize=True,
|
||||||
speed=speed)
|
speed=speed)
|
||||||
@@ -404,5 +380,8 @@ class CosyVoice2Model(CosyVoiceModel):
|
|||||||
self.tts_speech_token_dict.pop(this_uuid)
|
self.tts_speech_token_dict.pop(this_uuid)
|
||||||
self.llm_end_dict.pop(this_uuid)
|
self.llm_end_dict.pop(this_uuid)
|
||||||
self.hift_cache_dict.pop(this_uuid)
|
self.hift_cache_dict.pop(this_uuid)
|
||||||
self.flow_cache_dict.pop(this_uuid)
|
self.trt_context_pool.put(self.trt_context_dict[this_uuid])
|
||||||
torch.cuda.empty_cache()
|
self.trt_context_dict.pop(this_uuid)
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
torch.cuda.current_stream().synchronize()
|
||||||
|
|||||||
443
cosyvoice/dataset/processor_dpo.py
Normal file
443
cosyvoice/dataset/processor_dpo.py
Normal file
@@ -0,0 +1,443 @@
|
|||||||
|
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
import logging
|
||||||
|
import random
|
||||||
|
|
||||||
|
import pyarrow.parquet as pq
|
||||||
|
from io import BytesIO
|
||||||
|
import torch
|
||||||
|
import torchaudio
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import pyworld as pw
|
||||||
|
|
||||||
|
|
||||||
|
AUDIO_FORMAT_SETS = {'flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'}
|
||||||
|
|
||||||
|
|
||||||
|
def parquet_opener(data, mode='train', tts_data={}):
|
||||||
|
""" Give url or local file, return file descriptor
|
||||||
|
Inplace operation.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data(Iterable[str]): url or local file list
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[{src, stream}]
|
||||||
|
"""
|
||||||
|
for sample in data:
|
||||||
|
assert 'src' in sample
|
||||||
|
url = sample['src']
|
||||||
|
try:
|
||||||
|
for df in pq.ParquetFile(url).iter_batches(batch_size=64):
|
||||||
|
df = df.to_pandas()
|
||||||
|
for i in range(len(df)):
|
||||||
|
if mode == 'inference' and df.loc[i, 'utt'] not in tts_data:
|
||||||
|
continue
|
||||||
|
sample.update(dict(df.loc[i]))
|
||||||
|
if mode == 'train':
|
||||||
|
# NOTE do not return sample directly, must initialize a new dict
|
||||||
|
yield {**sample}
|
||||||
|
else:
|
||||||
|
for index, text in enumerate(tts_data[df.loc[i, 'utt']]):
|
||||||
|
yield {**sample, 'tts_index': index, 'tts_text': text}
|
||||||
|
except Exception as ex:
|
||||||
|
logging.warning('Failed to open {}, ex info {}'.format(url, ex))
|
||||||
|
|
||||||
|
|
||||||
|
def filter(data,
|
||||||
|
max_length=10240,
|
||||||
|
min_length=10,
|
||||||
|
token_max_length=200,
|
||||||
|
token_min_length=1,
|
||||||
|
min_output_input_ratio=0.0005,
|
||||||
|
max_output_input_ratio=1,
|
||||||
|
mode='train'):
|
||||||
|
""" Filter sample according to feature and label length
|
||||||
|
Inplace operation.
|
||||||
|
|
||||||
|
Args::
|
||||||
|
data: Iterable[{key, wav, label, sample_rate}]
|
||||||
|
max_length: drop utterance which is greater than max_length(10ms)
|
||||||
|
min_length: drop utterance which is less than min_length(10ms)
|
||||||
|
token_max_length: drop utterance which is greater than
|
||||||
|
token_max_length, especially when use char unit for
|
||||||
|
english modeling
|
||||||
|
token_min_length: drop utterance which is
|
||||||
|
less than token_max_length
|
||||||
|
min_output_input_ratio: minimal ration of
|
||||||
|
token_length / feats_length(10ms)
|
||||||
|
max_output_input_ratio: maximum ration of
|
||||||
|
token_length / feats_length(10ms)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[{key, wav, label, sample_rate}]
|
||||||
|
"""
|
||||||
|
for sample in data:
|
||||||
|
sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
|
||||||
|
sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
|
||||||
|
del sample['audio_data']
|
||||||
|
# sample['wav'] is torch.Tensor, we have 100 frames every second
|
||||||
|
num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
|
||||||
|
if num_frames < min_length:
|
||||||
|
continue
|
||||||
|
if num_frames > max_length:
|
||||||
|
continue
|
||||||
|
if len(sample['text_token']) < token_min_length:
|
||||||
|
continue
|
||||||
|
if len(sample['text_token']) > token_max_length:
|
||||||
|
continue
|
||||||
|
if len(sample['speech_token']) == 0:
|
||||||
|
continue
|
||||||
|
if num_frames != 0:
|
||||||
|
if len(sample['text_token']) / num_frames < min_output_input_ratio:
|
||||||
|
continue
|
||||||
|
if len(sample['text_token']) / num_frames > max_output_input_ratio:
|
||||||
|
continue
|
||||||
|
yield sample
|
||||||
|
|
||||||
|
|
||||||
|
def resample(data, resample_rate=22050, min_sample_rate=16000, mode='train'):
|
||||||
|
""" Resample data.
|
||||||
|
Inplace operation.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[{key, wav, label, sample_rate}]
|
||||||
|
resample_rate: target resample rate
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[{key, wav, label, sample_rate}]
|
||||||
|
"""
|
||||||
|
for sample in data:
|
||||||
|
assert 'sample_rate' in sample
|
||||||
|
assert 'speech' in sample
|
||||||
|
sample_rate = sample['sample_rate']
|
||||||
|
waveform = sample['speech']
|
||||||
|
if sample_rate != resample_rate:
|
||||||
|
if sample_rate < min_sample_rate:
|
||||||
|
continue
|
||||||
|
sample['sample_rate'] = resample_rate
|
||||||
|
sample['speech'] = torchaudio.transforms.Resample(
|
||||||
|
orig_freq=sample_rate, new_freq=resample_rate)(waveform)
|
||||||
|
max_val = sample['speech'].abs().max()
|
||||||
|
if max_val > 1:
|
||||||
|
sample['speech'] /= max_val
|
||||||
|
yield sample
|
||||||
|
|
||||||
|
|
||||||
|
def truncate(data, truncate_length=24576, mode='train'):
|
||||||
|
""" Truncate data.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[{key, wav, label, sample_rate}]
|
||||||
|
truncate_length: truncate length
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[{key, wav, label, sample_rate}]
|
||||||
|
"""
|
||||||
|
for sample in data:
|
||||||
|
waveform = sample['speech']
|
||||||
|
if waveform.shape[1] > truncate_length:
|
||||||
|
start = random.randint(0, waveform.shape[1] - truncate_length)
|
||||||
|
waveform = waveform[:, start: start + truncate_length]
|
||||||
|
else:
|
||||||
|
waveform = torch.concat([waveform, torch.zeros(1, truncate_length - waveform.shape[1])], dim=1)
|
||||||
|
sample['speech'] = waveform
|
||||||
|
yield sample
|
||||||
|
|
||||||
|
|
||||||
|
def compute_fbank(data,
|
||||||
|
feat_extractor,
|
||||||
|
mode='train'):
|
||||||
|
""" Extract fbank
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[{key, wav, label, sample_rate}]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[{key, feat, label}]
|
||||||
|
"""
|
||||||
|
for sample in data:
|
||||||
|
assert 'sample_rate' in sample
|
||||||
|
assert 'speech' in sample
|
||||||
|
assert 'utt' in sample
|
||||||
|
assert 'text_token' in sample
|
||||||
|
waveform = sample['speech']
|
||||||
|
mat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
|
||||||
|
sample['speech_feat'] = mat
|
||||||
|
yield sample
|
||||||
|
|
||||||
|
|
||||||
|
def compute_f0(data, sample_rate, hop_size, mode='train'):
|
||||||
|
""" Extract f0
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[{key, wav, label, sample_rate}]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[{key, feat, label}]
|
||||||
|
"""
|
||||||
|
frame_period = hop_size * 1000 / sample_rate
|
||||||
|
for sample in data:
|
||||||
|
assert 'sample_rate' in sample
|
||||||
|
assert 'speech' in sample
|
||||||
|
assert 'utt' in sample
|
||||||
|
assert 'text_token' in sample
|
||||||
|
waveform = sample['speech']
|
||||||
|
_f0, t = pw.harvest(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period)
|
||||||
|
if sum(_f0 != 0) < 5: # this happens when the algorithm fails
|
||||||
|
_f0, t = pw.dio(waveform.squeeze(dim=0).numpy().astype('double'), sample_rate, frame_period=frame_period) # if harvest fails, try dio
|
||||||
|
f0 = pw.stonemask(waveform.squeeze(dim=0).numpy().astype('double'), _f0, t, sample_rate)
|
||||||
|
f0 = F.interpolate(torch.from_numpy(f0).view(1, 1, -1), size=sample['speech_feat'].shape[0], mode='linear').view(-1)
|
||||||
|
sample['pitch_feat'] = f0
|
||||||
|
yield sample
|
||||||
|
|
||||||
|
|
||||||
|
def parse_embedding(data, normalize, mode='train'):
|
||||||
|
""" Parse utt_embedding/spk_embedding
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[{key, wav, label, sample_rate}]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[{key, feat, label}]
|
||||||
|
"""
|
||||||
|
for sample in data:
|
||||||
|
sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
|
||||||
|
sample['spk_embedding'] = torch.tensor(sample['spk_embedding'], dtype=torch.float32)
|
||||||
|
if normalize:
|
||||||
|
sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0)
|
||||||
|
sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0)
|
||||||
|
yield sample
|
||||||
|
|
||||||
|
|
||||||
|
def tokenize(data, get_tokenizer, allowed_special, mode='train'):
|
||||||
|
""" Decode text to chars or BPE
|
||||||
|
Inplace operation
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[{key, wav, txt, sample_rate}]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[{key, wav, txt, tokens, label, sample_rate}]
|
||||||
|
"""
|
||||||
|
tokenizer = get_tokenizer()
|
||||||
|
for sample in data:
|
||||||
|
assert 'text' in sample
|
||||||
|
sample['text_token'] = tokenizer.encode(sample['text'], allowed_special=allowed_special)
|
||||||
|
if mode == 'inference':
|
||||||
|
sample['tts_text_token'] = tokenizer.encode(sample['tts_text'], allowed_special=allowed_special)
|
||||||
|
yield sample
|
||||||
|
|
||||||
|
|
||||||
|
def shuffle(data, shuffle_size=10000, mode='train'):
|
||||||
|
""" Local shuffle the data
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[{key, feat, label}]
|
||||||
|
shuffle_size: buffer size for shuffle
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[{key, feat, label}]
|
||||||
|
"""
|
||||||
|
buf = []
|
||||||
|
for sample in data:
|
||||||
|
buf.append(sample)
|
||||||
|
if len(buf) >= shuffle_size:
|
||||||
|
random.shuffle(buf)
|
||||||
|
for x in buf:
|
||||||
|
yield x
|
||||||
|
buf = []
|
||||||
|
# The sample left over
|
||||||
|
random.shuffle(buf)
|
||||||
|
for x in buf:
|
||||||
|
yield x
|
||||||
|
|
||||||
|
|
||||||
|
def sort(data, sort_size=500, mode='train'):
|
||||||
|
""" Sort the data by feature length.
|
||||||
|
Sort is used after shuffle and before batch, so we can group
|
||||||
|
utts with similar lengths into a batch, and `sort_size` should
|
||||||
|
be less than `shuffle_size`
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[{key, feat, label}]
|
||||||
|
sort_size: buffer size for sort
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[{key, feat, label}]
|
||||||
|
"""
|
||||||
|
|
||||||
|
buf = []
|
||||||
|
for sample in data:
|
||||||
|
buf.append(sample)
|
||||||
|
if len(buf) >= sort_size:
|
||||||
|
buf.sort(key=lambda x: x['speech_feat'].size(0))
|
||||||
|
for x in buf:
|
||||||
|
yield x
|
||||||
|
buf = []
|
||||||
|
# The sample left over
|
||||||
|
buf.sort(key=lambda x: x['speech_feat'].size(0))
|
||||||
|
for x in buf:
|
||||||
|
yield x
|
||||||
|
|
||||||
|
|
||||||
|
def static_batch(data, batch_size=16):
|
||||||
|
""" Static batch the data by `batch_size`
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[{key, feat, label}]
|
||||||
|
batch_size: batch size
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[List[{key, feat, label}]]
|
||||||
|
"""
|
||||||
|
buf = []
|
||||||
|
for sample in data:
|
||||||
|
buf.append(sample)
|
||||||
|
if len(buf) >= batch_size:
|
||||||
|
yield buf
|
||||||
|
buf = []
|
||||||
|
if len(buf) > 0:
|
||||||
|
yield buf
|
||||||
|
|
||||||
|
|
||||||
|
def dynamic_batch(data, max_frames_in_batch=12000, mode='train'):
|
||||||
|
""" Dynamic batch the data until the total frames in batch
|
||||||
|
reach `max_frames_in_batch`
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[{key, feat, label}]
|
||||||
|
max_frames_in_batch: max_frames in one batch
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[List[{key, feat, label}]]
|
||||||
|
"""
|
||||||
|
buf = []
|
||||||
|
longest_frames = 0
|
||||||
|
for sample in data:
|
||||||
|
assert 'speech_feat' in sample
|
||||||
|
assert isinstance(sample['speech_feat'], torch.Tensor)
|
||||||
|
new_sample_frames = sample['speech_feat'].size(0)
|
||||||
|
longest_frames = max(longest_frames, new_sample_frames)
|
||||||
|
frames_after_padding = longest_frames * (len(buf) + 1)
|
||||||
|
if frames_after_padding > max_frames_in_batch:
|
||||||
|
yield buf
|
||||||
|
buf = [sample]
|
||||||
|
longest_frames = new_sample_frames
|
||||||
|
else:
|
||||||
|
buf.append(sample)
|
||||||
|
if len(buf) > 0:
|
||||||
|
yield buf
|
||||||
|
|
||||||
|
|
||||||
|
def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, mode='train'):
|
||||||
|
""" Wrapper for static/dynamic batch
|
||||||
|
"""
|
||||||
|
if mode == 'inference':
|
||||||
|
return static_batch(data, 1)
|
||||||
|
else:
|
||||||
|
if batch_type == 'static':
|
||||||
|
return static_batch(data, batch_size)
|
||||||
|
elif batch_type == 'dynamic':
|
||||||
|
return dynamic_batch(data, max_frames_in_batch)
|
||||||
|
else:
|
||||||
|
logging.fatal('Unsupported batch type {}'.format(batch_type))
|
||||||
|
|
||||||
|
|
||||||
|
def padding(data, use_spk_embedding, mode='train', gan=False, dpo=False):
|
||||||
|
""" Padding the data into training data
|
||||||
|
|
||||||
|
Args:
|
||||||
|
data: Iterable[List[{key, feat, label}]]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
|
||||||
|
"""
|
||||||
|
for sample in data:
|
||||||
|
assert isinstance(sample, list)
|
||||||
|
speech_feat_len = torch.tensor([x['speech_feat'].size(1) for x in sample],
|
||||||
|
dtype=torch.int32)
|
||||||
|
order = torch.argsort(speech_feat_len, descending=True)
|
||||||
|
|
||||||
|
utts = [sample[i]['utt'] for i in order]
|
||||||
|
speech = [sample[i]['speech'].squeeze(dim=0) for i in order]
|
||||||
|
speech_len = torch.tensor([i.size(0) for i in speech], dtype=torch.int32)
|
||||||
|
speech = pad_sequence(speech, batch_first=True, padding_value=0)
|
||||||
|
speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
|
||||||
|
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
|
||||||
|
speech_token = pad_sequence(speech_token,
|
||||||
|
batch_first=True,
|
||||||
|
padding_value=0)
|
||||||
|
speech_feat = [sample[i]['speech_feat'] for i in order]
|
||||||
|
speech_feat_len = torch.tensor([i.size(0) for i in speech_feat], dtype=torch.int32)
|
||||||
|
speech_feat = pad_sequence(speech_feat,
|
||||||
|
batch_first=True,
|
||||||
|
padding_value=0)
|
||||||
|
text = [sample[i]['text'] for i in order]
|
||||||
|
text_token = [torch.tensor(sample[i]['text_token']) for i in order]
|
||||||
|
text_token_len = torch.tensor([i.size(0) for i in text_token], dtype=torch.int32)
|
||||||
|
text_token = pad_sequence(text_token, batch_first=True, padding_value=0)
|
||||||
|
utt_embedding = torch.stack([sample[i]['utt_embedding'] for i in order], dim=0)
|
||||||
|
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
|
||||||
|
batch = {
|
||||||
|
"utts": utts,
|
||||||
|
"speech": speech,
|
||||||
|
"speech_len": speech_len,
|
||||||
|
"speech_token": speech_token,
|
||||||
|
"speech_token_len": speech_token_len,
|
||||||
|
"speech_feat": speech_feat,
|
||||||
|
"speech_feat_len": speech_feat_len,
|
||||||
|
"text": text,
|
||||||
|
"text_token": text_token,
|
||||||
|
"text_token_len": text_token_len,
|
||||||
|
"utt_embedding": utt_embedding,
|
||||||
|
"spk_embedding": spk_embedding,
|
||||||
|
}
|
||||||
|
if dpo:
|
||||||
|
reject_speech_token = [torch.tensor(sample[i]['reject_speech_token']) for i in order]
|
||||||
|
reject_speech_token_len = torch.tensor([i.size(0) for i in reject_speech_token], dtype=torch.int32)
|
||||||
|
reject_speech_token = pad_sequence(reject_speech_token,
|
||||||
|
batch_first=True,
|
||||||
|
padding_value=0)
|
||||||
|
batch['reject_speech_token'] = reject_speech_token
|
||||||
|
batch['reject_speech_token_len'] = reject_speech_token_len
|
||||||
|
if gan is True:
|
||||||
|
# in gan train, we need pitch_feat
|
||||||
|
pitch_feat = [sample[i]['pitch_feat'] for i in order]
|
||||||
|
pitch_feat_len = torch.tensor([i.size(0) for i in pitch_feat], dtype=torch.int32)
|
||||||
|
pitch_feat = pad_sequence(pitch_feat,
|
||||||
|
batch_first=True,
|
||||||
|
padding_value=0)
|
||||||
|
batch["pitch_feat"] = pitch_feat
|
||||||
|
batch["pitch_feat_len"] = pitch_feat_len
|
||||||
|
else:
|
||||||
|
# only gan train needs speech, delete it to save memory
|
||||||
|
del batch["speech"]
|
||||||
|
del batch["speech_len"]
|
||||||
|
if mode == 'inference':
|
||||||
|
tts_text = [sample[i]['tts_text'] for i in order]
|
||||||
|
tts_index = [sample[i]['tts_index'] for i in order]
|
||||||
|
tts_text_token = [torch.tensor(sample[i]['tts_text_token']) for i in order]
|
||||||
|
tts_text_token_len = torch.tensor([i.size(0) for i in tts_text_token], dtype=torch.int32)
|
||||||
|
tts_text_token = pad_sequence(tts_text_token, batch_first=True, padding_value=-1)
|
||||||
|
batch.update({'tts_text': tts_text,
|
||||||
|
'tts_index': tts_index,
|
||||||
|
'tts_text_token': tts_text_token,
|
||||||
|
'tts_text_token_len': tts_text_token_len})
|
||||||
|
if use_spk_embedding is True:
|
||||||
|
batch["embedding"] = batch["spk_embedding"]
|
||||||
|
else:
|
||||||
|
batch["embedding"] = batch["utt_embedding"]
|
||||||
|
yield batch
|
||||||
@@ -11,16 +11,15 @@
|
|||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
from typing import Tuple, Optional, Dict, Any
|
from typing import Tuple
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from einops import pack, rearrange, repeat
|
from einops import pack, rearrange, repeat
|
||||||
from diffusers.models.attention_processor import Attention, AttnProcessor2_0, inspect, logger, deprecate
|
|
||||||
from cosyvoice.utils.common import mask_to_bias
|
from cosyvoice.utils.common import mask_to_bias
|
||||||
from cosyvoice.utils.mask import add_optional_chunk_mask
|
from cosyvoice.utils.mask import add_optional_chunk_mask
|
||||||
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
|
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
|
||||||
from matcha.models.components.transformer import BasicTransformerBlock, maybe_allow_in_graph
|
from matcha.models.components.transformer import BasicTransformerBlock
|
||||||
|
|
||||||
|
|
||||||
class Transpose(torch.nn.Module):
|
class Transpose(torch.nn.Module):
|
||||||
@@ -29,7 +28,7 @@ class Transpose(torch.nn.Module):
|
|||||||
self.dim0 = dim0
|
self.dim0 = dim0
|
||||||
self.dim1 = dim1
|
self.dim1 = dim1
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor]:
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
x = torch.transpose(x, self.dim0, self.dim1)
|
x = torch.transpose(x, self.dim0, self.dim1)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
@@ -57,15 +56,10 @@ class CausalConv1d(torch.nn.Conv1d):
|
|||||||
assert stride == 1
|
assert stride == 1
|
||||||
self.causal_padding = kernel_size - 1
|
self.causal_padding = kernel_size - 1
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor, cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]:
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||||
if cache.size(2) == 0:
|
x = F.pad(x, (self.causal_padding, 0), value=0.0)
|
||||||
x = F.pad(x, (self.causal_padding, 0), value=0.0)
|
|
||||||
else:
|
|
||||||
assert cache.size(2) == self.causal_padding
|
|
||||||
x = torch.concat([cache, x], dim=2)
|
|
||||||
cache = x[:, :, -self.causal_padding:]
|
|
||||||
x = super(CausalConv1d, self).forward(x)
|
x = super(CausalConv1d, self).forward(x)
|
||||||
return x, cache
|
return x
|
||||||
|
|
||||||
|
|
||||||
class CausalBlock1D(Block1D):
|
class CausalBlock1D(Block1D):
|
||||||
@@ -79,11 +73,9 @@ class CausalBlock1D(Block1D):
|
|||||||
nn.Mish(),
|
nn.Mish(),
|
||||||
)
|
)
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor, mask: torch.Tensor, cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]:
|
def forward(self, x: torch.Tensor, mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
output, cache = self.block[0](x * mask, cache)
|
output = self.block(x * mask)
|
||||||
for i in range(1, len(self.block)):
|
return output * mask
|
||||||
output = self.block[i](output)
|
|
||||||
return output * mask, cache
|
|
||||||
|
|
||||||
|
|
||||||
class CausalResnetBlock1D(ResnetBlock1D):
|
class CausalResnetBlock1D(ResnetBlock1D):
|
||||||
@@ -92,303 +84,6 @@ class CausalResnetBlock1D(ResnetBlock1D):
|
|||||||
self.block1 = CausalBlock1D(dim, dim_out)
|
self.block1 = CausalBlock1D(dim, dim_out)
|
||||||
self.block2 = CausalBlock1D(dim_out, dim_out)
|
self.block2 = CausalBlock1D(dim_out, dim_out)
|
||||||
|
|
||||||
def forward(self, x: torch.Tensor, mask: torch.Tensor, time_emb: torch.Tensor,
|
|
||||||
block1_cache: torch.Tensor = torch.zeros(0, 0, 0), block2_cache: torch.Tensor = torch.zeros(0, 0, 0)
|
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
||||||
h, block1_cache = self.block1(x, mask, block1_cache)
|
|
||||||
h += self.mlp(time_emb).unsqueeze(-1)
|
|
||||||
h, block2_cache = self.block2(h, mask, block2_cache)
|
|
||||||
output = h + self.res_conv(x * mask)
|
|
||||||
return output, block1_cache, block2_cache
|
|
||||||
|
|
||||||
|
|
||||||
class CausalAttnProcessor2_0(AttnProcessor2_0):
|
|
||||||
r"""
|
|
||||||
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self):
|
|
||||||
super(CausalAttnProcessor2_0, self).__init__()
|
|
||||||
|
|
||||||
def __call__(
|
|
||||||
self,
|
|
||||||
attn: Attention,
|
|
||||||
hidden_states: torch.FloatTensor,
|
|
||||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
||||||
attention_mask: Optional[torch.FloatTensor] = None,
|
|
||||||
temb: Optional[torch.FloatTensor] = None,
|
|
||||||
cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
|
||||||
*args,
|
|
||||||
**kwargs,
|
|
||||||
) -> Tuple[torch.FloatTensor, torch.Tensor]:
|
|
||||||
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
|
||||||
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. \
|
|
||||||
`scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
|
||||||
deprecate("scale", "1.0.0", deprecation_message)
|
|
||||||
|
|
||||||
residual = hidden_states
|
|
||||||
if attn.spatial_norm is not None:
|
|
||||||
hidden_states = attn.spatial_norm(hidden_states, temb)
|
|
||||||
|
|
||||||
input_ndim = hidden_states.ndim
|
|
||||||
|
|
||||||
if input_ndim == 4:
|
|
||||||
batch_size, channel, height, width = hidden_states.shape
|
|
||||||
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
|
||||||
|
|
||||||
batch_size, sequence_length, _ = (
|
|
||||||
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
|
||||||
)
|
|
||||||
|
|
||||||
if attention_mask is not None:
|
|
||||||
# NOTE do not use attn.prepare_attention_mask as we have already provided the correct attention_mask
|
|
||||||
# scaled_dot_product_attention expects attention_mask shape to be
|
|
||||||
# (batch, heads, source_length, target_length)
|
|
||||||
attention_mask = attention_mask.unsqueeze(dim=1).repeat(1, attn.heads, 1, 1)
|
|
||||||
|
|
||||||
if attn.group_norm is not None:
|
|
||||||
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
|
||||||
|
|
||||||
query = attn.to_q(hidden_states)
|
|
||||||
|
|
||||||
if encoder_hidden_states is None:
|
|
||||||
encoder_hidden_states = hidden_states
|
|
||||||
elif attn.norm_cross:
|
|
||||||
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
|
||||||
|
|
||||||
key_cache = attn.to_k(encoder_hidden_states)
|
|
||||||
value_cache = attn.to_v(encoder_hidden_states)
|
|
||||||
# NOTE here we judge cache.size(0) instead of cache.size(1), because init_cache has size (2, 0, 512, 2)
|
|
||||||
if cache.size(0) != 0:
|
|
||||||
key = torch.concat([cache[:, :, :, 0], key_cache], dim=1)
|
|
||||||
value = torch.concat([cache[:, :, :, 1], value_cache], dim=1)
|
|
||||||
else:
|
|
||||||
key, value = key_cache, value_cache
|
|
||||||
cache = torch.stack([key_cache, value_cache], dim=3)
|
|
||||||
|
|
||||||
inner_dim = key.shape[-1]
|
|
||||||
head_dim = inner_dim // attn.heads
|
|
||||||
|
|
||||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
||||||
|
|
||||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
||||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
|
||||||
|
|
||||||
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
|
||||||
# TODO: add support for attn.scale when we move to Torch 2.1
|
|
||||||
hidden_states = F.scaled_dot_product_attention(
|
|
||||||
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
|
||||||
)
|
|
||||||
|
|
||||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
|
||||||
hidden_states = hidden_states.to(query.dtype)
|
|
||||||
|
|
||||||
# linear proj
|
|
||||||
hidden_states = attn.to_out[0](hidden_states)
|
|
||||||
# dropout
|
|
||||||
hidden_states = attn.to_out[1](hidden_states)
|
|
||||||
|
|
||||||
if input_ndim == 4:
|
|
||||||
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
|
||||||
|
|
||||||
if attn.residual_connection:
|
|
||||||
hidden_states = hidden_states + residual
|
|
||||||
|
|
||||||
hidden_states = hidden_states / attn.rescale_output_factor
|
|
||||||
|
|
||||||
return hidden_states, cache
|
|
||||||
|
|
||||||
|
|
||||||
@maybe_allow_in_graph
|
|
||||||
class CausalAttention(Attention):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
query_dim: int,
|
|
||||||
cross_attention_dim: Optional[int] = None,
|
|
||||||
heads: int = 8,
|
|
||||||
dim_head: int = 64,
|
|
||||||
dropout: float = 0.0,
|
|
||||||
bias: bool = False,
|
|
||||||
upcast_attention: bool = False,
|
|
||||||
upcast_softmax: bool = False,
|
|
||||||
cross_attention_norm: Optional[str] = None,
|
|
||||||
cross_attention_norm_num_groups: int = 32,
|
|
||||||
qk_norm: Optional[str] = None,
|
|
||||||
added_kv_proj_dim: Optional[int] = None,
|
|
||||||
norm_num_groups: Optional[int] = None,
|
|
||||||
spatial_norm_dim: Optional[int] = None,
|
|
||||||
out_bias: bool = True,
|
|
||||||
scale_qk: bool = True,
|
|
||||||
only_cross_attention: bool = False,
|
|
||||||
eps: float = 1e-5,
|
|
||||||
rescale_output_factor: float = 1.0,
|
|
||||||
residual_connection: bool = False,
|
|
||||||
_from_deprecated_attn_block: bool = False,
|
|
||||||
processor: Optional["AttnProcessor2_0"] = None,
|
|
||||||
out_dim: int = None,
|
|
||||||
):
|
|
||||||
super(CausalAttention, self).__init__(query_dim, cross_attention_dim, heads, dim_head, dropout, bias, upcast_attention, upcast_softmax,
|
|
||||||
cross_attention_norm, cross_attention_norm_num_groups, qk_norm, added_kv_proj_dim, norm_num_groups,
|
|
||||||
spatial_norm_dim, out_bias, scale_qk, only_cross_attention, eps, rescale_output_factor, residual_connection,
|
|
||||||
_from_deprecated_attn_block, processor, out_dim)
|
|
||||||
processor = CausalAttnProcessor2_0()
|
|
||||||
self.set_processor(processor)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
hidden_states: torch.FloatTensor,
|
|
||||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
||||||
attention_mask: Optional[torch.FloatTensor] = None,
|
|
||||||
cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
|
||||||
**cross_attention_kwargs,
|
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
||||||
r"""
|
|
||||||
The forward method of the `Attention` class.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
hidden_states (`torch.Tensor`):
|
|
||||||
The hidden states of the query.
|
|
||||||
encoder_hidden_states (`torch.Tensor`, *optional*):
|
|
||||||
The hidden states of the encoder.
|
|
||||||
attention_mask (`torch.Tensor`, *optional*):
|
|
||||||
The attention mask to use. If `None`, no mask is applied.
|
|
||||||
**cross_attention_kwargs:
|
|
||||||
Additional keyword arguments to pass along to the cross attention.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
`torch.Tensor`: The output of the attention layer.
|
|
||||||
"""
|
|
||||||
# The `Attention` class can call different attention processors / attention functions
|
|
||||||
# here we simply pass along all tensors to the selected processor class
|
|
||||||
# For standard processors that are defined here, `**cross_attention_kwargs` is empty
|
|
||||||
|
|
||||||
attn_parameters = set(inspect.signature(self.processor.__call__).parameters.keys())
|
|
||||||
unused_kwargs = [k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters]
|
|
||||||
if len(unused_kwargs) > 0:
|
|
||||||
logger.warning(
|
|
||||||
f"cross_attention_kwargs {unused_kwargs} are not expected by {self.processor.__class__.__name__} and will be ignored."
|
|
||||||
)
|
|
||||||
cross_attention_kwargs = {k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters}
|
|
||||||
|
|
||||||
return self.processor(
|
|
||||||
self,
|
|
||||||
hidden_states,
|
|
||||||
encoder_hidden_states=encoder_hidden_states,
|
|
||||||
attention_mask=attention_mask,
|
|
||||||
cache=cache,
|
|
||||||
**cross_attention_kwargs,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@maybe_allow_in_graph
|
|
||||||
class CausalBasicTransformerBlock(BasicTransformerBlock):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
dim: int,
|
|
||||||
num_attention_heads: int,
|
|
||||||
attention_head_dim: int,
|
|
||||||
dropout=0.0,
|
|
||||||
cross_attention_dim: Optional[int] = None,
|
|
||||||
activation_fn: str = "geglu",
|
|
||||||
num_embeds_ada_norm: Optional[int] = None,
|
|
||||||
attention_bias: bool = False,
|
|
||||||
only_cross_attention: bool = False,
|
|
||||||
double_self_attention: bool = False,
|
|
||||||
upcast_attention: bool = False,
|
|
||||||
norm_elementwise_affine: bool = True,
|
|
||||||
norm_type: str = "layer_norm",
|
|
||||||
final_dropout: bool = False,
|
|
||||||
):
|
|
||||||
super(CausalBasicTransformerBlock, self).__init__(dim, num_attention_heads, attention_head_dim, dropout,
|
|
||||||
cross_attention_dim, activation_fn, num_embeds_ada_norm,
|
|
||||||
attention_bias, only_cross_attention, double_self_attention,
|
|
||||||
upcast_attention, norm_elementwise_affine, norm_type, final_dropout)
|
|
||||||
self.attn1 = CausalAttention(
|
|
||||||
query_dim=dim,
|
|
||||||
heads=num_attention_heads,
|
|
||||||
dim_head=attention_head_dim,
|
|
||||||
dropout=dropout,
|
|
||||||
bias=attention_bias,
|
|
||||||
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
|
||||||
upcast_attention=upcast_attention,
|
|
||||||
)
|
|
||||||
|
|
||||||
def forward(
|
|
||||||
self,
|
|
||||||
hidden_states: torch.FloatTensor,
|
|
||||||
attention_mask: Optional[torch.FloatTensor] = None,
|
|
||||||
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
|
||||||
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
|
||||||
timestep: Optional[torch.LongTensor] = None,
|
|
||||||
cross_attention_kwargs: Dict[str, Any] = None,
|
|
||||||
class_labels: Optional[torch.LongTensor] = None,
|
|
||||||
cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
||||||
# Notice that normalization is always applied before the real computation in the following blocks.
|
|
||||||
# 1. Self-Attention
|
|
||||||
if self.use_ada_layer_norm:
|
|
||||||
norm_hidden_states = self.norm1(hidden_states, timestep)
|
|
||||||
elif self.use_ada_layer_norm_zero:
|
|
||||||
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
|
||||||
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
norm_hidden_states = self.norm1(hidden_states)
|
|
||||||
|
|
||||||
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
|
||||||
|
|
||||||
attn_output, cache = self.attn1(
|
|
||||||
norm_hidden_states,
|
|
||||||
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
|
||||||
attention_mask=encoder_attention_mask if self.only_cross_attention else attention_mask,
|
|
||||||
cache=cache,
|
|
||||||
**cross_attention_kwargs,
|
|
||||||
)
|
|
||||||
if self.use_ada_layer_norm_zero:
|
|
||||||
attn_output = gate_msa.unsqueeze(1) * attn_output
|
|
||||||
hidden_states = attn_output + hidden_states
|
|
||||||
|
|
||||||
# 2. Cross-Attention
|
|
||||||
if self.attn2 is not None:
|
|
||||||
norm_hidden_states = (
|
|
||||||
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
|
||||||
)
|
|
||||||
|
|
||||||
attn_output = self.attn2(
|
|
||||||
norm_hidden_states,
|
|
||||||
encoder_hidden_states=encoder_hidden_states,
|
|
||||||
attention_mask=encoder_attention_mask,
|
|
||||||
**cross_attention_kwargs,
|
|
||||||
)
|
|
||||||
hidden_states = attn_output + hidden_states
|
|
||||||
|
|
||||||
# 3. Feed-forward
|
|
||||||
norm_hidden_states = self.norm3(hidden_states)
|
|
||||||
|
|
||||||
if self.use_ada_layer_norm_zero:
|
|
||||||
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
|
||||||
|
|
||||||
if self._chunk_size is not None:
|
|
||||||
# "feed_forward_chunk_size" can be used to save memory
|
|
||||||
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
|
|
||||||
raise ValueError(f"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: \
|
|
||||||
{self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.")
|
|
||||||
|
|
||||||
num_chunks = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
|
|
||||||
ff_output = torch.cat(
|
|
||||||
[self.ff(hid_slice) for hid_slice in norm_hidden_states.chunk(num_chunks, dim=self._chunk_dim)],
|
|
||||||
dim=self._chunk_dim,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
ff_output = self.ff(norm_hidden_states)
|
|
||||||
|
|
||||||
if self.use_ada_layer_norm_zero:
|
|
||||||
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
|
||||||
|
|
||||||
hidden_states = ff_output + hidden_states
|
|
||||||
|
|
||||||
return hidden_states, cache
|
|
||||||
|
|
||||||
|
|
||||||
class ConditionalDecoder(nn.Module):
|
class ConditionalDecoder(nn.Module):
|
||||||
def __init__(
|
def __init__(
|
||||||
@@ -640,7 +335,7 @@ class CausalConditionalDecoder(ConditionalDecoder):
|
|||||||
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
||||||
transformer_blocks = nn.ModuleList(
|
transformer_blocks = nn.ModuleList(
|
||||||
[
|
[
|
||||||
CausalBasicTransformerBlock(
|
BasicTransformerBlock(
|
||||||
dim=output_channel,
|
dim=output_channel,
|
||||||
num_attention_heads=num_heads,
|
num_attention_heads=num_heads,
|
||||||
attention_head_dim=attention_head_dim,
|
attention_head_dim=attention_head_dim,
|
||||||
@@ -662,7 +357,7 @@ class CausalConditionalDecoder(ConditionalDecoder):
|
|||||||
|
|
||||||
transformer_blocks = nn.ModuleList(
|
transformer_blocks = nn.ModuleList(
|
||||||
[
|
[
|
||||||
CausalBasicTransformerBlock(
|
BasicTransformerBlock(
|
||||||
dim=output_channel,
|
dim=output_channel,
|
||||||
num_attention_heads=num_heads,
|
num_attention_heads=num_heads,
|
||||||
attention_head_dim=attention_head_dim,
|
attention_head_dim=attention_head_dim,
|
||||||
@@ -687,7 +382,7 @@ class CausalConditionalDecoder(ConditionalDecoder):
|
|||||||
)
|
)
|
||||||
transformer_blocks = nn.ModuleList(
|
transformer_blocks = nn.ModuleList(
|
||||||
[
|
[
|
||||||
CausalBasicTransformerBlock(
|
BasicTransformerBlock(
|
||||||
dim=output_channel,
|
dim=output_channel,
|
||||||
num_attention_heads=num_heads,
|
num_attention_heads=num_heads,
|
||||||
attention_head_dim=attention_head_dim,
|
attention_head_dim=attention_head_dim,
|
||||||
@@ -724,6 +419,9 @@ class CausalConditionalDecoder(ConditionalDecoder):
|
|||||||
Returns:
|
Returns:
|
||||||
_type_: _description_
|
_type_: _description_
|
||||||
"""
|
"""
|
||||||
|
if hasattr(self, 'streaming'):
|
||||||
|
assert self.training is False, 'you have self.streaming attr, make sure that you are running inference mode'
|
||||||
|
streaming = self.streaming
|
||||||
|
|
||||||
t = self.time_embeddings(t).to(t.dtype)
|
t = self.time_embeddings(t).to(t.dtype)
|
||||||
t = self.time_mlp(t)
|
t = self.time_mlp(t)
|
||||||
@@ -740,36 +438,36 @@ class CausalConditionalDecoder(ConditionalDecoder):
|
|||||||
masks = [mask]
|
masks = [mask]
|
||||||
for resnet, transformer_blocks, downsample in self.down_blocks:
|
for resnet, transformer_blocks, downsample in self.down_blocks:
|
||||||
mask_down = masks[-1]
|
mask_down = masks[-1]
|
||||||
x, _, _ = resnet(x, mask_down, t)
|
x = resnet(x, mask_down, t)
|
||||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||||
if streaming is True:
|
if streaming is True:
|
||||||
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, self.num_decoding_left_chunks)
|
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1)
|
||||||
else:
|
else:
|
||||||
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
||||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||||
for transformer_block in transformer_blocks:
|
for transformer_block in transformer_blocks:
|
||||||
x, _ = transformer_block(
|
x = transformer_block(
|
||||||
hidden_states=x,
|
hidden_states=x,
|
||||||
attention_mask=attn_mask,
|
attention_mask=attn_mask,
|
||||||
timestep=t,
|
timestep=t,
|
||||||
)
|
)
|
||||||
x = rearrange(x, "b t c -> b c t").contiguous()
|
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||||
hiddens.append(x) # Save hidden states for skip connections
|
hiddens.append(x) # Save hidden states for skip connections
|
||||||
x, _ = downsample(x * mask_down)
|
x = downsample(x * mask_down)
|
||||||
masks.append(mask_down[:, :, ::2])
|
masks.append(mask_down[:, :, ::2])
|
||||||
masks = masks[:-1]
|
masks = masks[:-1]
|
||||||
mask_mid = masks[-1]
|
mask_mid = masks[-1]
|
||||||
|
|
||||||
for resnet, transformer_blocks in self.mid_blocks:
|
for resnet, transformer_blocks in self.mid_blocks:
|
||||||
x, _, _ = resnet(x, mask_mid, t)
|
x = resnet(x, mask_mid, t)
|
||||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||||
if streaming is True:
|
if streaming is True:
|
||||||
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, self.num_decoding_left_chunks)
|
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1)
|
||||||
else:
|
else:
|
||||||
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
||||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||||
for transformer_block in transformer_blocks:
|
for transformer_block in transformer_blocks:
|
||||||
x, _ = transformer_block(
|
x = transformer_block(
|
||||||
hidden_states=x,
|
hidden_states=x,
|
||||||
attention_mask=attn_mask,
|
attention_mask=attn_mask,
|
||||||
timestep=t,
|
timestep=t,
|
||||||
@@ -780,124 +478,21 @@ class CausalConditionalDecoder(ConditionalDecoder):
|
|||||||
mask_up = masks.pop()
|
mask_up = masks.pop()
|
||||||
skip = hiddens.pop()
|
skip = hiddens.pop()
|
||||||
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
||||||
x, _, _ = resnet(x, mask_up, t)
|
x = resnet(x, mask_up, t)
|
||||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
x = rearrange(x, "b c t -> b t c").contiguous()
|
||||||
if streaming is True:
|
if streaming is True:
|
||||||
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, self.num_decoding_left_chunks)
|
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1)
|
||||||
else:
|
else:
|
||||||
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, 0, -1).repeat(1, x.size(1), 1)
|
||||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
||||||
for transformer_block in transformer_blocks:
|
for transformer_block in transformer_blocks:
|
||||||
x, _ = transformer_block(
|
x = transformer_block(
|
||||||
hidden_states=x,
|
hidden_states=x,
|
||||||
attention_mask=attn_mask,
|
attention_mask=attn_mask,
|
||||||
timestep=t,
|
timestep=t,
|
||||||
)
|
)
|
||||||
x = rearrange(x, "b t c -> b c t").contiguous()
|
x = rearrange(x, "b t c -> b c t").contiguous()
|
||||||
x, _ = upsample(x * mask_up)
|
x = upsample(x * mask_up)
|
||||||
x, _ = self.final_block(x, mask_up)
|
x = self.final_block(x, mask_up)
|
||||||
output = self.final_proj(x * mask_up)
|
output = self.final_proj(x * mask_up)
|
||||||
return output * mask
|
return output * mask
|
||||||
|
|
||||||
@torch.inference_mode()
|
|
||||||
def forward_chunk(self, x, mask, mu, t, spks=None, cond=None,
|
|
||||||
down_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
|
||||||
down_blocks_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0, 0),
|
|
||||||
mid_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
|
||||||
mid_blocks_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0, 0),
|
|
||||||
up_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
|
|
||||||
up_blocks_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0, 0),
|
|
||||||
final_blocks_conv_cache: torch.Tensor = torch.zeros(0, 0, 0)
|
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
|
||||||
"""Forward pass of the UNet1DConditional model.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
x (torch.Tensor): shape (batch_size, in_channels, time)
|
|
||||||
mask (_type_): shape (batch_size, 1, time)
|
|
||||||
t (_type_): shape (batch_size)
|
|
||||||
spks (_type_, optional): shape: (batch_size, condition_channels). Defaults to None.
|
|
||||||
cond (_type_, optional): placeholder for future use. Defaults to None.
|
|
||||||
|
|
||||||
Raises:
|
|
||||||
ValueError: _description_
|
|
||||||
ValueError: _description_
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
_type_: _description_
|
|
||||||
"""
|
|
||||||
|
|
||||||
t = self.time_embeddings(t).to(t.dtype)
|
|
||||||
t = self.time_mlp(t)
|
|
||||||
|
|
||||||
x = pack([x, mu], "b * t")[0]
|
|
||||||
|
|
||||||
if spks is not None:
|
|
||||||
spks = repeat(spks, "b c -> b c t", t=x.shape[-1])
|
|
||||||
x = pack([x, spks], "b * t")[0]
|
|
||||||
if cond is not None:
|
|
||||||
x = pack([x, cond], "b * t")[0]
|
|
||||||
|
|
||||||
hiddens = []
|
|
||||||
masks = [mask]
|
|
||||||
|
|
||||||
down_blocks_kv_cache_new = torch.zeros(1, 4, 2, x.size(2), 512, 2).to(x.device)
|
|
||||||
mid_blocks_kv_cache_new = torch.zeros(12, 4, 2, x.size(2), 512, 2).to(x.device)
|
|
||||||
up_blocks_kv_cache_new = torch.zeros(1, 4, 2, x.size(2), 512, 2).to(x.device)
|
|
||||||
for index, (resnet, transformer_blocks, downsample) in enumerate(self.down_blocks):
|
|
||||||
mask_down = masks[-1]
|
|
||||||
x, down_blocks_conv_cache[index][:, :320], down_blocks_conv_cache[index][:, 320: 576] = \
|
|
||||||
resnet(x, mask_down, t, down_blocks_conv_cache[index][:, :320], down_blocks_conv_cache[index][:, 320: 576])
|
|
||||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
|
||||||
attn_mask = torch.ones(x.size(0), x.size(1), x.size(1) + down_blocks_kv_cache.size(3), device=x.device).bool()
|
|
||||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
|
||||||
for i, transformer_block in enumerate(transformer_blocks):
|
|
||||||
x, down_blocks_kv_cache_new[index, i] = transformer_block(
|
|
||||||
hidden_states=x,
|
|
||||||
attention_mask=attn_mask,
|
|
||||||
timestep=t,
|
|
||||||
cache=down_blocks_kv_cache[index, i],
|
|
||||||
)
|
|
||||||
x = rearrange(x, "b t c -> b c t").contiguous()
|
|
||||||
hiddens.append(x) # Save hidden states for skip connections
|
|
||||||
x, down_blocks_conv_cache[index][:, 576:] = downsample(x * mask_down, down_blocks_conv_cache[index][:, 576:])
|
|
||||||
masks.append(mask_down[:, :, ::2])
|
|
||||||
masks = masks[:-1]
|
|
||||||
mask_mid = masks[-1]
|
|
||||||
|
|
||||||
for index, (resnet, transformer_blocks) in enumerate(self.mid_blocks):
|
|
||||||
x, mid_blocks_conv_cache[index][:, :256], mid_blocks_conv_cache[index][:, 256:] = \
|
|
||||||
resnet(x, mask_mid, t, mid_blocks_conv_cache[index][:, :256], mid_blocks_conv_cache[index][:, 256:])
|
|
||||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
|
||||||
attn_mask = torch.ones(x.size(0), x.size(1), x.size(1) + mid_blocks_kv_cache.size(3), device=x.device).bool()
|
|
||||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
|
||||||
for i, transformer_block in enumerate(transformer_blocks):
|
|
||||||
x, mid_blocks_kv_cache_new[index, i] = transformer_block(
|
|
||||||
hidden_states=x,
|
|
||||||
attention_mask=attn_mask,
|
|
||||||
timestep=t,
|
|
||||||
cache=mid_blocks_kv_cache[index, i]
|
|
||||||
)
|
|
||||||
x = rearrange(x, "b t c -> b c t").contiguous()
|
|
||||||
|
|
||||||
for index, (resnet, transformer_blocks, upsample) in enumerate(self.up_blocks):
|
|
||||||
mask_up = masks.pop()
|
|
||||||
skip = hiddens.pop()
|
|
||||||
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
|
||||||
x, up_blocks_conv_cache[index][:, :512], up_blocks_conv_cache[index][:, 512: 768] = \
|
|
||||||
resnet(x, mask_up, t, up_blocks_conv_cache[index][:, :512], up_blocks_conv_cache[index][:, 512: 768])
|
|
||||||
x = rearrange(x, "b c t -> b t c").contiguous()
|
|
||||||
attn_mask = torch.ones(x.size(0), x.size(1), x.size(1) + up_blocks_kv_cache.size(3), device=x.device).bool()
|
|
||||||
attn_mask = mask_to_bias(attn_mask, x.dtype)
|
|
||||||
for i, transformer_block in enumerate(transformer_blocks):
|
|
||||||
x, up_blocks_kv_cache_new[index, i] = transformer_block(
|
|
||||||
hidden_states=x,
|
|
||||||
attention_mask=attn_mask,
|
|
||||||
timestep=t,
|
|
||||||
cache=up_blocks_kv_cache[index, i]
|
|
||||||
)
|
|
||||||
x = rearrange(x, "b t c -> b c t").contiguous()
|
|
||||||
x, up_blocks_conv_cache[index][:, 768:] = upsample(x * mask_up, up_blocks_conv_cache[index][:, 768:])
|
|
||||||
x, final_blocks_conv_cache = self.final_block(x, mask_up, final_blocks_conv_cache)
|
|
||||||
output = self.final_proj(x * mask_up)
|
|
||||||
return output * mask, down_blocks_conv_cache, down_blocks_kv_cache_new, mid_blocks_conv_cache, mid_blocks_kv_cache_new, \
|
|
||||||
up_blocks_conv_cache, up_blocks_kv_cache_new, final_blocks_conv_cache
|
|
||||||
|
|||||||
@@ -92,7 +92,6 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
|||||||
|
|
||||||
mask = (~make_pad_mask(feat_len)).to(h)
|
mask = (~make_pad_mask(feat_len)).to(h)
|
||||||
# NOTE this is unnecessary, feat/h already same shape
|
# NOTE this is unnecessary, feat/h already same shape
|
||||||
feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
|
|
||||||
loss, _ = self.decoder.compute_loss(
|
loss, _ = self.decoder.compute_loss(
|
||||||
feat.transpose(1, 2).contiguous(),
|
feat.transpose(1, 2).contiguous(),
|
||||||
mask.unsqueeze(1),
|
mask.unsqueeze(1),
|
||||||
@@ -214,7 +213,6 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
|||||||
h = self.encoder_proj(h)
|
h = self.encoder_proj(h)
|
||||||
|
|
||||||
# get conditions
|
# get conditions
|
||||||
feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1)
|
|
||||||
conds = torch.zeros(feat.shape, device=token.device)
|
conds = torch.zeros(feat.shape, device=token.device)
|
||||||
for i, j in enumerate(feat_len):
|
for i, j in enumerate(feat_len):
|
||||||
if random.random() < 0.5:
|
if random.random() < 0.5:
|
||||||
@@ -243,7 +241,6 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
|||||||
prompt_feat,
|
prompt_feat,
|
||||||
prompt_feat_len,
|
prompt_feat_len,
|
||||||
embedding,
|
embedding,
|
||||||
cache,
|
|
||||||
finalize):
|
finalize):
|
||||||
assert token.shape[0] == 1
|
assert token.shape[0] == 1
|
||||||
# xvec projection
|
# xvec projection
|
||||||
@@ -257,16 +254,10 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
|||||||
|
|
||||||
# text encode
|
# text encode
|
||||||
if finalize is True:
|
if finalize is True:
|
||||||
h, h_lengths, encoder_cache = self.encoder.forward_chunk(token, token_len, **cache['encoder_cache'])
|
h, h_lengths = self.encoder(token, token_len)
|
||||||
else:
|
else:
|
||||||
token, context = token[:, :-self.pre_lookahead_len], token[:, -self.pre_lookahead_len:]
|
token, context = token[:, :-self.pre_lookahead_len], token[:, -self.pre_lookahead_len:]
|
||||||
h, h_lengths, encoder_cache = self.encoder.forward_chunk(token, token_len, context=context, **cache['encoder_cache'])
|
h, h_lengths = self.encoder(token, token_len, context=context)
|
||||||
cache['encoder_cache']['offset'] = encoder_cache[0]
|
|
||||||
cache['encoder_cache']['pre_lookahead_layer_conv2_cache'] = encoder_cache[1]
|
|
||||||
cache['encoder_cache']['encoders_kv_cache'] = encoder_cache[2]
|
|
||||||
cache['encoder_cache']['upsample_offset'] = encoder_cache[3]
|
|
||||||
cache['encoder_cache']['upsample_conv_cache'] = encoder_cache[4]
|
|
||||||
cache['encoder_cache']['upsample_kv_cache'] = encoder_cache[5]
|
|
||||||
mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
|
mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
|
||||||
h = self.encoder_proj(h)
|
h = self.encoder_proj(h)
|
||||||
|
|
||||||
@@ -276,14 +267,13 @@ class CausalMaskedDiffWithXvec(torch.nn.Module):
|
|||||||
conds = conds.transpose(1, 2)
|
conds = conds.transpose(1, 2)
|
||||||
|
|
||||||
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
||||||
feat, cache['decoder_cache'] = self.decoder(
|
feat, _ = self.decoder(
|
||||||
mu=h.transpose(1, 2).contiguous(),
|
mu=h.transpose(1, 2).contiguous(),
|
||||||
mask=mask.unsqueeze(1),
|
mask=mask.unsqueeze(1),
|
||||||
spks=embedding,
|
spks=embedding,
|
||||||
cond=conds,
|
cond=conds,
|
||||||
n_timesteps=10,
|
n_timesteps=10,
|
||||||
cache=cache['decoder_cache']
|
|
||||||
)
|
)
|
||||||
feat = feat[:, :, mel_len1:]
|
feat = feat[:, :, mel_len1:]
|
||||||
assert feat.shape[2] == mel_len2
|
assert feat.shape[2] == mel_len2
|
||||||
return feat.float(), cache
|
return feat.float(), None
|
||||||
|
|||||||
@@ -1,4 +1,5 @@
|
|||||||
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
||||||
|
# 2025 Alibaba Inc (authors: Xiang Lyu, Bofan Zhou)
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
@@ -125,21 +126,26 @@ class ConditionalCFM(BASECFM):
|
|||||||
if isinstance(self.estimator, torch.nn.Module):
|
if isinstance(self.estimator, torch.nn.Module):
|
||||||
return self.estimator(x, mask, mu, t, spks, cond)
|
return self.estimator(x, mask, mu, t, spks, cond)
|
||||||
else:
|
else:
|
||||||
with self.lock:
|
estimator, trt_engine = self.estimator.acquire_estimator()
|
||||||
self.estimator.set_input_shape('x', (2, 80, x.size(2)))
|
estimator.set_input_shape('x', (2, 80, x.size(2)))
|
||||||
self.estimator.set_input_shape('mask', (2, 1, x.size(2)))
|
estimator.set_input_shape('mask', (2, 1, x.size(2)))
|
||||||
self.estimator.set_input_shape('mu', (2, 80, x.size(2)))
|
estimator.set_input_shape('mu', (2, 80, x.size(2)))
|
||||||
self.estimator.set_input_shape('t', (2,))
|
estimator.set_input_shape('t', (2,))
|
||||||
self.estimator.set_input_shape('spks', (2, 80))
|
estimator.set_input_shape('spks', (2, 80))
|
||||||
self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
|
estimator.set_input_shape('cond', (2, 80, x.size(2)))
|
||||||
# run trt engine
|
data_ptrs = [x.contiguous().data_ptr(),
|
||||||
assert self.estimator.execute_v2([x.contiguous().data_ptr(),
|
mask.contiguous().data_ptr(),
|
||||||
mask.contiguous().data_ptr(),
|
mu.contiguous().data_ptr(),
|
||||||
mu.contiguous().data_ptr(),
|
t.contiguous().data_ptr(),
|
||||||
t.contiguous().data_ptr(),
|
spks.contiguous().data_ptr(),
|
||||||
spks.contiguous().data_ptr(),
|
cond.contiguous().data_ptr(),
|
||||||
cond.contiguous().data_ptr(),
|
x.data_ptr()]
|
||||||
x.data_ptr()]) is True
|
for i, j in enumerate(data_ptrs):
|
||||||
|
estimator.set_tensor_address(trt_engine.get_tensor_name(i), j)
|
||||||
|
# run trt engine
|
||||||
|
assert estimator.execute_async_v3(torch.cuda.current_stream().cuda_stream) is True
|
||||||
|
torch.cuda.current_stream().synchronize()
|
||||||
|
self.estimator.release_estimator(estimator)
|
||||||
return x
|
return x
|
||||||
|
|
||||||
def compute_loss(self, x1, mask, mu, spks=None, cond=None, streaming=False):
|
def compute_loss(self, x1, mask, mu, spks=None, cond=None, streaming=False):
|
||||||
@@ -190,7 +196,7 @@ class CausalConditionalCFM(ConditionalCFM):
|
|||||||
self.rand_noise = torch.randn([1, 80, 50 * 300])
|
self.rand_noise = torch.randn([1, 80, 50 * 300])
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, cache={}):
|
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
||||||
"""Forward diffusion
|
"""Forward diffusion
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -209,131 +215,9 @@ class CausalConditionalCFM(ConditionalCFM):
|
|||||||
shape: (batch_size, n_feats, mel_timesteps)
|
shape: (batch_size, n_feats, mel_timesteps)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
offset = cache.pop('offset')
|
z = self.rand_noise[:, :, :mu.size(2)].to(mu.device).to(mu.dtype) * temperature
|
||||||
z = self.rand_noise[:, :, :mu.size(2) + offset].to(mu.device).to(mu.dtype) * temperature
|
|
||||||
z = z[:, :, offset:]
|
|
||||||
offset += mu.size(2)
|
|
||||||
# fix prompt and overlap part mu and z
|
# fix prompt and overlap part mu and z
|
||||||
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
||||||
if self.t_scheduler == 'cosine':
|
if self.t_scheduler == 'cosine':
|
||||||
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
||||||
mel, cache = self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond, cache=cache)
|
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), None
|
||||||
cache['offset'] = offset
|
|
||||||
return mel, cache
|
|
||||||
|
|
||||||
def solve_euler(self, x, t_span, mu, mask, spks, cond, cache):
|
|
||||||
"""
|
|
||||||
Fixed euler solver for ODEs.
|
|
||||||
Args:
|
|
||||||
x (torch.Tensor): random noise
|
|
||||||
t_span (torch.Tensor): n_timesteps interpolated
|
|
||||||
shape: (n_timesteps + 1,)
|
|
||||||
mu (torch.Tensor): output of encoder
|
|
||||||
shape: (batch_size, n_feats, mel_timesteps)
|
|
||||||
mask (torch.Tensor): output_mask
|
|
||||||
shape: (batch_size, 1, mel_timesteps)
|
|
||||||
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
|
||||||
shape: (batch_size, spk_emb_dim)
|
|
||||||
cond: Not used but kept for future purposes
|
|
||||||
"""
|
|
||||||
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
|
||||||
t = t.unsqueeze(dim=0)
|
|
||||||
|
|
||||||
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
|
||||||
# Or in future might add like a return_all_steps flag
|
|
||||||
sol = []
|
|
||||||
|
|
||||||
# Do not use concat, it may cause memory format changed and trt infer with wrong results!
|
|
||||||
x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
|
||||||
mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=x.dtype)
|
|
||||||
mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
|
||||||
t_in = torch.zeros([2], device=x.device, dtype=x.dtype)
|
|
||||||
spks_in = torch.zeros([2, 80], device=x.device, dtype=x.dtype)
|
|
||||||
cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
|
||||||
flow_cache_size = cache['down_blocks_kv_cache'].shape[4]
|
|
||||||
for step in range(1, len(t_span)):
|
|
||||||
# Classifier-Free Guidance inference introduced in VoiceBox
|
|
||||||
x_in[:] = x
|
|
||||||
mask_in[:] = mask
|
|
||||||
mu_in[0] = mu
|
|
||||||
t_in[:] = t.unsqueeze(0)
|
|
||||||
spks_in[0] = spks
|
|
||||||
cond_in[0] = cond
|
|
||||||
cache_step = {k: v[step - 1] for k, v in cache.items()}
|
|
||||||
dphi_dt, cache_step = self.forward_estimator(
|
|
||||||
x_in, mask_in,
|
|
||||||
mu_in, t_in,
|
|
||||||
spks_in,
|
|
||||||
cond_in,
|
|
||||||
cache_step
|
|
||||||
)
|
|
||||||
# NOTE if smaller than flow_cache_size, means last chunk, no need to cache
|
|
||||||
if flow_cache_size != 0 and x_in.shape[2] >= flow_cache_size:
|
|
||||||
cache['down_blocks_conv_cache'][step - 1] = cache_step[0]
|
|
||||||
cache['down_blocks_kv_cache'][step - 1] = cache_step[1][:, :, :, -flow_cache_size:]
|
|
||||||
cache['mid_blocks_conv_cache'][step - 1] = cache_step[2]
|
|
||||||
cache['mid_blocks_kv_cache'][step - 1] = cache_step[3][:, :, :, -flow_cache_size:]
|
|
||||||
cache['up_blocks_conv_cache'][step - 1] = cache_step[4]
|
|
||||||
cache['up_blocks_kv_cache'][step - 1] = cache_step[5][:, :, :, -flow_cache_size:]
|
|
||||||
cache['final_blocks_conv_cache'][step - 1] = cache_step[6]
|
|
||||||
dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0)
|
|
||||||
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
|
|
||||||
x = x + dt * dphi_dt
|
|
||||||
t = t + dt
|
|
||||||
sol.append(x)
|
|
||||||
if step < len(t_span) - 1:
|
|
||||||
dt = t_span[step + 1] - t
|
|
||||||
return sol[-1].float(), cache
|
|
||||||
|
|
||||||
def forward_estimator(self, x, mask, mu, t, spks, cond, cache):
|
|
||||||
if isinstance(self.estimator, torch.nn.Module):
|
|
||||||
x, cache1, cache2, cache3, cache4, cache5, cache6, cache7 = self.estimator.forward_chunk(x, mask, mu, t, spks, cond, **cache)
|
|
||||||
cache = (cache1, cache2, cache3, cache4, cache5, cache6, cache7)
|
|
||||||
else:
|
|
||||||
with self.lock:
|
|
||||||
self.estimator.set_input_shape('x', (2, 80, x.size(2)))
|
|
||||||
self.estimator.set_input_shape('mask', (2, 1, x.size(2)))
|
|
||||||
self.estimator.set_input_shape('mu', (2, 80, x.size(2)))
|
|
||||||
self.estimator.set_input_shape('t', (2,))
|
|
||||||
self.estimator.set_input_shape('spks', (2, 80))
|
|
||||||
self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
|
|
||||||
self.estimator.set_input_shape('down_blocks_conv_cache', cache['down_blocks_conv_cache'].shape)
|
|
||||||
self.estimator.set_input_shape('down_blocks_kv_cache', cache['down_blocks_kv_cache'].shape)
|
|
||||||
self.estimator.set_input_shape('mid_blocks_conv_cache', cache['mid_blocks_conv_cache'].shape)
|
|
||||||
self.estimator.set_input_shape('mid_blocks_kv_cache', cache['mid_blocks_kv_cache'].shape)
|
|
||||||
self.estimator.set_input_shape('up_blocks_conv_cache', cache['up_blocks_conv_cache'].shape)
|
|
||||||
self.estimator.set_input_shape('up_blocks_kv_cache', cache['up_blocks_kv_cache'].shape)
|
|
||||||
self.estimator.set_input_shape('final_blocks_conv_cache', cache['final_blocks_conv_cache'].shape)
|
|
||||||
# run trt engine
|
|
||||||
down_blocks_kv_cache_out = torch.zeros(1, 4, 2, x.size(2), 512, 2).to(x)
|
|
||||||
mid_blocks_kv_cache_out = torch.zeros(12, 4, 2, x.size(2), 512, 2).to(x)
|
|
||||||
up_blocks_kv_cache_out = torch.zeros(1, 4, 2, x.size(2), 512, 2).to(x)
|
|
||||||
assert self.estimator.execute_v2([x.contiguous().data_ptr(),
|
|
||||||
mask.contiguous().data_ptr(),
|
|
||||||
mu.contiguous().data_ptr(),
|
|
||||||
t.contiguous().data_ptr(),
|
|
||||||
spks.contiguous().data_ptr(),
|
|
||||||
cond.contiguous().data_ptr(),
|
|
||||||
cache['down_blocks_conv_cache'].contiguous().data_ptr(),
|
|
||||||
cache['down_blocks_kv_cache'].contiguous().data_ptr(),
|
|
||||||
cache['mid_blocks_conv_cache'].contiguous().data_ptr(),
|
|
||||||
cache['mid_blocks_kv_cache'].contiguous().data_ptr(),
|
|
||||||
cache['up_blocks_conv_cache'].contiguous().data_ptr(),
|
|
||||||
cache['up_blocks_kv_cache'].contiguous().data_ptr(),
|
|
||||||
cache['final_blocks_conv_cache'].contiguous().data_ptr(),
|
|
||||||
x.data_ptr(),
|
|
||||||
cache['down_blocks_conv_cache'].data_ptr(),
|
|
||||||
down_blocks_kv_cache_out.data_ptr(),
|
|
||||||
cache['mid_blocks_conv_cache'].data_ptr(),
|
|
||||||
mid_blocks_kv_cache_out.data_ptr(),
|
|
||||||
cache['up_blocks_conv_cache'].data_ptr(),
|
|
||||||
up_blocks_kv_cache_out.data_ptr(),
|
|
||||||
cache['final_blocks_conv_cache'].data_ptr()]) is True
|
|
||||||
cache = (cache['down_blocks_conv_cache'],
|
|
||||||
down_blocks_kv_cache_out,
|
|
||||||
cache['mid_blocks_conv_cache'],
|
|
||||||
mid_blocks_kv_cache_out,
|
|
||||||
cache['up_blocks_conv_cache'],
|
|
||||||
up_blocks_kv_cache_out,
|
|
||||||
cache['final_blocks_conv_cache'])
|
|
||||||
return x, cache
|
|
||||||
|
|||||||
@@ -223,6 +223,172 @@ class SourceModuleHnNSF(torch.nn.Module):
|
|||||||
return sine_merge, noise, uv
|
return sine_merge, noise, uv
|
||||||
|
|
||||||
|
|
||||||
|
class SineGen2(torch.nn.Module):
|
||||||
|
""" Definition of sine generator
|
||||||
|
SineGen(samp_rate, harmonic_num = 0,
|
||||||
|
sine_amp = 0.1, noise_std = 0.003,
|
||||||
|
voiced_threshold = 0,
|
||||||
|
flag_for_pulse=False)
|
||||||
|
samp_rate: sampling rate in Hz
|
||||||
|
harmonic_num: number of harmonic overtones (default 0)
|
||||||
|
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
||||||
|
noise_std: std of Gaussian noise (default 0.003)
|
||||||
|
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
||||||
|
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
||||||
|
Note: when flag_for_pulse is True, the first time step of a voiced
|
||||||
|
segment is always sin(np.pi) or cos(0)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
|
||||||
|
sine_amp=0.1, noise_std=0.003,
|
||||||
|
voiced_threshold=0,
|
||||||
|
flag_for_pulse=False):
|
||||||
|
super(SineGen2, self).__init__()
|
||||||
|
self.sine_amp = sine_amp
|
||||||
|
self.noise_std = noise_std
|
||||||
|
self.harmonic_num = harmonic_num
|
||||||
|
self.dim = self.harmonic_num + 1
|
||||||
|
self.sampling_rate = samp_rate
|
||||||
|
self.voiced_threshold = voiced_threshold
|
||||||
|
self.flag_for_pulse = flag_for_pulse
|
||||||
|
self.upsample_scale = upsample_scale
|
||||||
|
|
||||||
|
def _f02uv(self, f0):
|
||||||
|
# generate uv signal
|
||||||
|
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
||||||
|
return uv
|
||||||
|
|
||||||
|
def _f02sine(self, f0_values):
|
||||||
|
""" f0_values: (batchsize, length, dim)
|
||||||
|
where dim indicates fundamental tone and overtones
|
||||||
|
"""
|
||||||
|
# convert to F0 in rad. The interger part n can be ignored
|
||||||
|
# because 2 * np.pi * n doesn't affect phase
|
||||||
|
rad_values = (f0_values / self.sampling_rate) % 1
|
||||||
|
|
||||||
|
# initial phase noise (no noise for fundamental component)
|
||||||
|
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], device=f0_values.device)
|
||||||
|
rand_ini[:, 0] = 0
|
||||||
|
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
||||||
|
|
||||||
|
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
|
||||||
|
if not self.flag_for_pulse:
|
||||||
|
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
|
||||||
|
scale_factor=1 / self.upsample_scale,
|
||||||
|
mode="linear").transpose(1, 2)
|
||||||
|
|
||||||
|
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
||||||
|
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
||||||
|
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
||||||
|
sines = torch.sin(phase)
|
||||||
|
else:
|
||||||
|
# If necessary, make sure that the first time step of every
|
||||||
|
# voiced segments is sin(pi) or cos(0)
|
||||||
|
# This is used for pulse-train generation
|
||||||
|
|
||||||
|
# identify the last time step in unvoiced segments
|
||||||
|
uv = self._f02uv(f0_values)
|
||||||
|
uv_1 = torch.roll(uv, shifts=-1, dims=1)
|
||||||
|
uv_1[:, -1, :] = 1
|
||||||
|
u_loc = (uv < 1) * (uv_1 > 0)
|
||||||
|
|
||||||
|
# get the instantanouse phase
|
||||||
|
tmp_cumsum = torch.cumsum(rad_values, dim=1)
|
||||||
|
# different batch needs to be processed differently
|
||||||
|
for idx in range(f0_values.shape[0]):
|
||||||
|
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
|
||||||
|
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
|
||||||
|
# stores the accumulation of i.phase within
|
||||||
|
# each voiced segments
|
||||||
|
tmp_cumsum[idx, :, :] = 0
|
||||||
|
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
|
||||||
|
|
||||||
|
# rad_values - tmp_cumsum: remove the accumulation of i.phase
|
||||||
|
# within the previous voiced segment.
|
||||||
|
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
|
||||||
|
|
||||||
|
# get the sines
|
||||||
|
sines = torch.cos(i_phase * 2 * np.pi)
|
||||||
|
return sines
|
||||||
|
|
||||||
|
def forward(self, f0):
|
||||||
|
""" sine_tensor, uv = forward(f0)
|
||||||
|
input F0: tensor(batchsize=1, length, dim=1)
|
||||||
|
f0 for unvoiced steps should be 0
|
||||||
|
output sine_tensor: tensor(batchsize=1, length, dim)
|
||||||
|
output uv: tensor(batchsize=1, length, 1)
|
||||||
|
"""
|
||||||
|
# fundamental component
|
||||||
|
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
|
||||||
|
|
||||||
|
# generate sine waveforms
|
||||||
|
sine_waves = self._f02sine(fn) * self.sine_amp
|
||||||
|
|
||||||
|
# generate uv signal
|
||||||
|
uv = self._f02uv(f0)
|
||||||
|
|
||||||
|
# noise: for unvoiced should be similar to sine_amp
|
||||||
|
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
||||||
|
# . for voiced regions is self.noise_std
|
||||||
|
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
||||||
|
noise = noise_amp * torch.randn_like(sine_waves)
|
||||||
|
|
||||||
|
# first: set the unvoiced part to 0 by uv
|
||||||
|
# then: additive noise
|
||||||
|
sine_waves = sine_waves * uv + noise
|
||||||
|
return sine_waves, uv, noise
|
||||||
|
|
||||||
|
|
||||||
|
class SourceModuleHnNSF2(torch.nn.Module):
|
||||||
|
""" SourceModule for hn-nsf
|
||||||
|
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
||||||
|
add_noise_std=0.003, voiced_threshod=0)
|
||||||
|
sampling_rate: sampling_rate in Hz
|
||||||
|
harmonic_num: number of harmonic above F0 (default: 0)
|
||||||
|
sine_amp: amplitude of sine source signal (default: 0.1)
|
||||||
|
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
||||||
|
note that amplitude of noise in unvoiced is decided
|
||||||
|
by sine_amp
|
||||||
|
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
||||||
|
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
||||||
|
F0_sampled (batchsize, length, 1)
|
||||||
|
Sine_source (batchsize, length, 1)
|
||||||
|
noise_source (batchsize, length 1)
|
||||||
|
uv (batchsize, length, 1)
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
||||||
|
add_noise_std=0.003, voiced_threshod=0):
|
||||||
|
super(SourceModuleHnNSF2, self).__init__()
|
||||||
|
|
||||||
|
self.sine_amp = sine_amp
|
||||||
|
self.noise_std = add_noise_std
|
||||||
|
|
||||||
|
# to produce sine waveforms
|
||||||
|
self.l_sin_gen = SineGen2(sampling_rate, upsample_scale, harmonic_num,
|
||||||
|
sine_amp, add_noise_std, voiced_threshod)
|
||||||
|
|
||||||
|
# to merge source harmonics into a single excitation
|
||||||
|
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
||||||
|
self.l_tanh = torch.nn.Tanh()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
"""
|
||||||
|
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
||||||
|
F0_sampled (batchsize, length, 1)
|
||||||
|
Sine_source (batchsize, length, 1)
|
||||||
|
noise_source (batchsize, length 1)
|
||||||
|
"""
|
||||||
|
# source for harmonic branch
|
||||||
|
with torch.no_grad():
|
||||||
|
sine_wavs, uv, _ = self.l_sin_gen(x)
|
||||||
|
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
||||||
|
|
||||||
|
# source for noise branch, in the same shape as uv
|
||||||
|
noise = torch.randn_like(uv) * self.sine_amp / 3
|
||||||
|
return sine_merge, noise, uv
|
||||||
|
|
||||||
|
|
||||||
class HiFTGenerator(nn.Module):
|
class HiFTGenerator(nn.Module):
|
||||||
"""
|
"""
|
||||||
HiFTNet Generator: Neural Source Filter + ISTFTNet
|
HiFTNet Generator: Neural Source Filter + ISTFTNet
|
||||||
@@ -259,7 +425,9 @@ class HiFTGenerator(nn.Module):
|
|||||||
|
|
||||||
self.num_kernels = len(resblock_kernel_sizes)
|
self.num_kernels = len(resblock_kernel_sizes)
|
||||||
self.num_upsamples = len(upsample_rates)
|
self.num_upsamples = len(upsample_rates)
|
||||||
self.m_source = SourceModuleHnNSF(
|
# NOTE in CosyVoice2, we use the original SourceModuleHnNSF implementation
|
||||||
|
this_SourceModuleHnNSF = SourceModuleHnNSF if self.sampling_rate == 22050 else SourceModuleHnNSF2
|
||||||
|
self.m_source = this_SourceModuleHnNSF(
|
||||||
sampling_rate=sampling_rate,
|
sampling_rate=sampling_rate,
|
||||||
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
|
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
|
||||||
harmonic_num=nb_harmonics,
|
harmonic_num=nb_harmonics,
|
||||||
|
|||||||
556
cosyvoice/llm/llm_dpo.py
Normal file
556
cosyvoice/llm/llm_dpo.py
Normal file
@@ -0,0 +1,556 @@
|
|||||||
|
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
from typing import Dict, Optional, Callable, List, Generator
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from transformers import Qwen2ForCausalLM
|
||||||
|
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
|
||||||
|
from cosyvoice.utils.common import IGNORE_ID
|
||||||
|
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
|
||||||
|
from cosyvoice.utils.common import th_accuracy
|
||||||
|
from cosyvoice.utils.file_utils import logging
|
||||||
|
from cosyvoice.utils.mask import make_pad_mask
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerLM(torch.nn.Module):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
text_encoder_input_size: int,
|
||||||
|
llm_input_size: int,
|
||||||
|
llm_output_size: int,
|
||||||
|
text_token_size: int,
|
||||||
|
speech_token_size: int,
|
||||||
|
text_encoder: torch.nn.Module,
|
||||||
|
llm: torch.nn.Module,
|
||||||
|
sampling: Callable,
|
||||||
|
length_normalized_loss: bool = True,
|
||||||
|
lsm_weight: float = 0.0,
|
||||||
|
spk_embed_dim: int = 192,
|
||||||
|
):
|
||||||
|
super().__init__()
|
||||||
|
self.llm_input_size = llm_input_size
|
||||||
|
self.speech_token_size = speech_token_size
|
||||||
|
# 1. build text token inputs related modules
|
||||||
|
self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
|
||||||
|
self.text_encoder = text_encoder
|
||||||
|
self.text_encoder_affine_layer = nn.Linear(
|
||||||
|
self.text_encoder.output_size(),
|
||||||
|
llm_input_size
|
||||||
|
)
|
||||||
|
|
||||||
|
# 2. build speech token language model related modules
|
||||||
|
self.sos_eos = 0
|
||||||
|
self.task_id = 1
|
||||||
|
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
||||||
|
self.llm = llm
|
||||||
|
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
|
||||||
|
self.criterion_ce = LabelSmoothingLoss(
|
||||||
|
size=speech_token_size + 1,
|
||||||
|
padding_idx=IGNORE_ID,
|
||||||
|
smoothing=lsm_weight,
|
||||||
|
normalize_length=length_normalized_loss,
|
||||||
|
)
|
||||||
|
|
||||||
|
# 3. [Optional] build speech token related modules
|
||||||
|
self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
|
||||||
|
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size)
|
||||||
|
|
||||||
|
# 4. sampling method
|
||||||
|
self.sampling = sampling
|
||||||
|
|
||||||
|
def encode(
|
||||||
|
self,
|
||||||
|
text: torch.Tensor,
|
||||||
|
text_lengths: torch.Tensor,
|
||||||
|
):
|
||||||
|
encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1)
|
||||||
|
encoder_out_lens = encoder_mask.squeeze(1).sum(1)
|
||||||
|
encoder_out = self.text_encoder_affine_layer(encoder_out)
|
||||||
|
return encoder_out, encoder_out_lens
|
||||||
|
|
||||||
|
def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
|
||||||
|
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
|
||||||
|
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
|
||||||
|
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0)
|
||||||
|
for i in range(len(text_token))]
|
||||||
|
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
|
||||||
|
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
|
||||||
|
return lm_input, lm_input_len
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
batch: dict,
|
||||||
|
device: torch.device,
|
||||||
|
) -> Dict[str, Optional[torch.Tensor]]:
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
text: (B, L, D)
|
||||||
|
text_lengths: (B,)
|
||||||
|
audio: (B, T, N) or (B, T)
|
||||||
|
audio_lengths: (B,)
|
||||||
|
"""
|
||||||
|
text_token = batch['text_token'].to(device)
|
||||||
|
text_token_len = batch['text_token_len'].to(device)
|
||||||
|
speech_token = batch['speech_token'].to(device)
|
||||||
|
speech_token_len = batch['speech_token_len'].to(device)
|
||||||
|
embedding = batch['embedding'].to(device)
|
||||||
|
|
||||||
|
# 1. prepare llm_target
|
||||||
|
lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() +
|
||||||
|
[self.speech_token_size]) for i in range(text_token.size(0))]
|
||||||
|
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
|
||||||
|
|
||||||
|
# 1. encode text_token
|
||||||
|
text_token = self.text_embedding(text_token)
|
||||||
|
text_token, text_token_len = self.encode(text_token, text_token_len)
|
||||||
|
|
||||||
|
# 2. embedding projection
|
||||||
|
embedding = F.normalize(embedding, dim=1)
|
||||||
|
embedding = self.spk_embed_affine_layer(embedding)
|
||||||
|
embedding = embedding.unsqueeze(1)
|
||||||
|
|
||||||
|
# 3. eos and task_id
|
||||||
|
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||||
|
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||||
|
|
||||||
|
# 4. encode speech_token
|
||||||
|
speech_token = self.speech_embedding(speech_token)
|
||||||
|
|
||||||
|
# 5. unpad and pad
|
||||||
|
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len,
|
||||||
|
task_id_emb, speech_token, speech_token_len)
|
||||||
|
|
||||||
|
# 6. run lm forward
|
||||||
|
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
|
||||||
|
logits = self.llm_decoder(lm_output)
|
||||||
|
loss = self.criterion_ce(logits, lm_target)
|
||||||
|
acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID)
|
||||||
|
return {'loss': loss, 'acc': acc}
|
||||||
|
|
||||||
|
def sampling_ids(
|
||||||
|
self,
|
||||||
|
weighted_scores: torch.Tensor,
|
||||||
|
decoded_tokens: List,
|
||||||
|
sampling: int,
|
||||||
|
ignore_eos: bool = True,
|
||||||
|
):
|
||||||
|
num_trials, max_trials = 0, 100
|
||||||
|
while True:
|
||||||
|
top_ids = self.sampling(weighted_scores, decoded_tokens, sampling)
|
||||||
|
if (not ignore_eos) or (self.speech_token_size not in top_ids):
|
||||||
|
break
|
||||||
|
num_trials += 1
|
||||||
|
if num_trials > max_trials:
|
||||||
|
raise RuntimeError('sampling reaches max_trials {} and still get eos when ignore_eos is True, check your input!'.format(max_trials))
|
||||||
|
return top_ids
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def inference(
|
||||||
|
self,
|
||||||
|
text: torch.Tensor,
|
||||||
|
text_len: torch.Tensor,
|
||||||
|
prompt_text: torch.Tensor,
|
||||||
|
prompt_text_len: torch.Tensor,
|
||||||
|
prompt_speech_token: torch.Tensor,
|
||||||
|
prompt_speech_token_len: torch.Tensor,
|
||||||
|
embedding: torch.Tensor,
|
||||||
|
sampling: int = 25,
|
||||||
|
max_token_text_ratio: float = 20,
|
||||||
|
min_token_text_ratio: float = 2,
|
||||||
|
) -> Generator[torch.Tensor, None, None]:
|
||||||
|
if self.fp16 is True:
|
||||||
|
embedding = embedding.half()
|
||||||
|
|
||||||
|
device = text.device
|
||||||
|
text = torch.concat([prompt_text, text], dim=1)
|
||||||
|
text_len += prompt_text_len
|
||||||
|
text = self.text_embedding(text)
|
||||||
|
|
||||||
|
# 1. encode text
|
||||||
|
text, text_len = self.encode(text, text_len)
|
||||||
|
|
||||||
|
# 2. encode embedding
|
||||||
|
if embedding.shape[0] != 0:
|
||||||
|
embedding = F.normalize(embedding, dim=1)
|
||||||
|
embedding = self.spk_embed_affine_layer(embedding)
|
||||||
|
embedding = embedding.unsqueeze(dim=1)
|
||||||
|
else:
|
||||||
|
embedding = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device).to(text.dtype)
|
||||||
|
|
||||||
|
# 3. concat llm_input
|
||||||
|
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||||
|
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||||
|
if prompt_speech_token_len != 0:
|
||||||
|
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||||
|
else:
|
||||||
|
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
||||||
|
lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
||||||
|
|
||||||
|
# 4. cal min/max_length
|
||||||
|
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
||||||
|
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
||||||
|
|
||||||
|
# 5. step by step decode
|
||||||
|
out_tokens = []
|
||||||
|
offset = 0
|
||||||
|
att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
|
||||||
|
for i in range(max_len):
|
||||||
|
y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=offset, required_cache_size=-1,
|
||||||
|
att_cache=att_cache, cnn_cache=cnn_cache,
|
||||||
|
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]),
|
||||||
|
device=lm_input.device)).to(torch.bool))
|
||||||
|
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||||
|
# force continue decode first token
|
||||||
|
if i == 0:
|
||||||
|
logp[:, self.speech_token_size] = -float('inf')
|
||||||
|
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
||||||
|
if top_ids == self.speech_token_size:
|
||||||
|
break
|
||||||
|
# in stream mode, yield token one by one
|
||||||
|
yield top_ids
|
||||||
|
out_tokens.append(top_ids)
|
||||||
|
offset += lm_input.size(1)
|
||||||
|
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||||
|
|
||||||
|
|
||||||
|
class Qwen2Encoder(torch.nn.Module):
|
||||||
|
def __init__(self, pretrain_path):
|
||||||
|
super().__init__()
|
||||||
|
self.model = Qwen2ForCausalLM.from_pretrained(pretrain_path)
|
||||||
|
|
||||||
|
def forward_one_step(self, xs, masks, cache=None):
|
||||||
|
input_masks = masks[:, -1, :]
|
||||||
|
outs = self.model(
|
||||||
|
inputs_embeds=xs,
|
||||||
|
attention_mask=input_masks,
|
||||||
|
output_hidden_states=True,
|
||||||
|
return_dict=True,
|
||||||
|
use_cache=True,
|
||||||
|
past_key_values=cache,
|
||||||
|
)
|
||||||
|
xs = outs.hidden_states[-1]
|
||||||
|
new_cache = outs.past_key_values
|
||||||
|
return xs, new_cache
|
||||||
|
|
||||||
|
|
||||||
|
class Qwen2LM(TransformerLM):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
llm_input_size: int,
|
||||||
|
llm_output_size: int,
|
||||||
|
speech_token_size: int,
|
||||||
|
llm: torch.nn.Module,
|
||||||
|
sampling: Callable,
|
||||||
|
length_normalized_loss: bool = True,
|
||||||
|
lsm_weight: float = 0.0,
|
||||||
|
mix_ratio: List[int] = [5, 15],
|
||||||
|
dpo: bool = False,
|
||||||
|
):
|
||||||
|
torch.nn.Module.__init__(self)
|
||||||
|
self.llm_input_size = llm_input_size
|
||||||
|
self.llm_output_size = llm_output_size
|
||||||
|
self.speech_token_size = speech_token_size
|
||||||
|
|
||||||
|
# 2. build speech token language model related modules
|
||||||
|
self.sos_eos = 0
|
||||||
|
self.task_id = 1
|
||||||
|
self.fill_token = 2
|
||||||
|
|
||||||
|
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
|
||||||
|
self.llm = llm
|
||||||
|
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 3)
|
||||||
|
self.criterion_ce = LabelSmoothingLoss(
|
||||||
|
size=speech_token_size + 3,
|
||||||
|
padding_idx=IGNORE_ID,
|
||||||
|
smoothing=lsm_weight,
|
||||||
|
normalize_length=length_normalized_loss,
|
||||||
|
)
|
||||||
|
|
||||||
|
# 3. [Optional] build speech token related modules
|
||||||
|
self.speech_embedding = torch.nn.Embedding(speech_token_size + 3, llm_input_size)
|
||||||
|
|
||||||
|
# 4. sampling method
|
||||||
|
self.sampling = sampling
|
||||||
|
self.mix_ratio = mix_ratio
|
||||||
|
|
||||||
|
# 5. [Optional] set dpo
|
||||||
|
self.dpo = dpo
|
||||||
|
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
batch: dict,
|
||||||
|
device: torch.device,
|
||||||
|
) -> Dict[str, Optional[torch.Tensor]]:
|
||||||
|
text_token = batch['text_token'].to(device)
|
||||||
|
text_token_len = batch['text_token_len'].to(device)
|
||||||
|
speech_token = batch['speech_token'].to(device)
|
||||||
|
speech_token_len = batch['speech_token_len'].to(device)
|
||||||
|
if self.dpo:
|
||||||
|
reject_speech_token = batch['reject_speech_token'].to(device)
|
||||||
|
reject_speech_token_len = batch['reject_speech_token_len'].to(device)
|
||||||
|
# 1. prepare llm_target
|
||||||
|
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||||
|
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||||
|
target_ids = [torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() +
|
||||||
|
[self.speech_token_size]) for i in range(text_token.size(0))]
|
||||||
|
if self.dpo:
|
||||||
|
reject_target_ids = [torch.tensor([IGNORE_ID] * (1 + text_token_len[i]) + reject_speech_token[i, :reject_speech_token_len[i]].tolist() +
|
||||||
|
[self.speech_token_size]) for i in range(text_token.size(0))]
|
||||||
|
target_ids.extend(reject_target_ids)
|
||||||
|
target_ids = pad_sequence(target_ids, batch_first=True, padding_value=IGNORE_ID).to(device)
|
||||||
|
|
||||||
|
# 2. speech token projection
|
||||||
|
speech_emb = self.speech_embedding(speech_token)
|
||||||
|
if self.dpo:
|
||||||
|
reject_speech_emb = self.speech_embedding(reject_speech_token)
|
||||||
|
|
||||||
|
# 3. text token projection
|
||||||
|
text_token_lst = unpad_sequence(text_token, text_token_len, batch_first=True)
|
||||||
|
text_emb = [self.llm.model.model.embed_tokens(y) for y in text_token_lst]
|
||||||
|
|
||||||
|
# 4. prepare llm_input
|
||||||
|
speech_emb = unpad_sequence(speech_emb, speech_token_len.cpu(), batch_first=True)
|
||||||
|
input_emb = [torch.concat([sos_eos_emb.squeeze(dim=0), text_emb[i], task_id_emb.squeeze(dim=0), speech_emb[i]], dim=0)
|
||||||
|
for i in range(len(text_emb))]
|
||||||
|
if self.dpo:
|
||||||
|
reject_speech_emb = unpad_sequence(reject_speech_emb, reject_speech_token_len.cpu(), batch_first=True)
|
||||||
|
reject_input_emb = [torch.concat([sos_eos_emb.squeeze(dim=0), text_emb[i], task_id_emb.squeeze(dim=0), reject_speech_emb[i]], dim=0)
|
||||||
|
for i in range(len(text_emb))]
|
||||||
|
input_emb.extend(reject_input_emb)
|
||||||
|
input_emb_lengths = torch.tensor([i.size(0) for i in input_emb], dtype=torch.int32).to(device)
|
||||||
|
input_emb = pad_sequence(input_emb, batch_first=True, padding_value=IGNORE_ID).to(device)
|
||||||
|
|
||||||
|
attention_mask = ~make_pad_mask(input_emb_lengths)
|
||||||
|
|
||||||
|
result = self.llm.model(
|
||||||
|
inputs_embeds=input_emb,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
return_dict=True
|
||||||
|
)
|
||||||
|
hidden_states = result.hidden_states
|
||||||
|
logits = self.llm_decoder(hidden_states[-1])
|
||||||
|
loss = self.criterion_ce(logits[: speech_token.shape[0]], target_ids[: speech_token.shape[0]])
|
||||||
|
acc = th_accuracy(
|
||||||
|
logits[: speech_token.shape[0]].view(-1, self.speech_token_size + 3),
|
||||||
|
target_ids[: speech_token.shape[0]],
|
||||||
|
ignore_label=IGNORE_ID,
|
||||||
|
)
|
||||||
|
if not self.dpo:
|
||||||
|
return {
|
||||||
|
"loss": loss,
|
||||||
|
"acc": acc,
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
all_logps_sum, all_logps_mean = self.get_batch_logps(
|
||||||
|
logits, target_ids, attention_mask, text_token_len, average_log_prob=False, ignore_id=IGNORE_ID
|
||||||
|
)
|
||||||
|
chosen_logps = all_logps_sum[: speech_token.shape[0]]
|
||||||
|
rejected_logps = all_logps_sum[speech_token.shape[0]:]
|
||||||
|
return {
|
||||||
|
"loss": loss,
|
||||||
|
"acc": acc,
|
||||||
|
"chosen_logps": chosen_logps,
|
||||||
|
"rejected_logps": rejected_logps
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def get_batch_logps(
|
||||||
|
self,
|
||||||
|
logits: torch.FloatTensor,
|
||||||
|
labels: torch.LongTensor,
|
||||||
|
attention_mask,
|
||||||
|
prompt_token_lens,
|
||||||
|
average_log_prob: bool = False,
|
||||||
|
ignore_id: int = -1,
|
||||||
|
) -> torch.FloatTensor:
|
||||||
|
"""Compute the log probabilities of the given labels under the given logits.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
logits: Logits of the model (unnormalized). Shape: (batch_size, sequence_length, vocab_size)
|
||||||
|
labels: Labels for which to compute the log probabilities. Label tokens with a value of -100 are ignored. Shape: (batch_size, sequence_length)
|
||||||
|
average_log_prob: If True, return the average log probability per (non-masked) token. Otherwise, return the sum of the log probabilities of the (non-masked) tokens.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
A tensor of shape (batch_size,) containing the average/sum log probabilities of the given labels under the given logits.
|
||||||
|
"""
|
||||||
|
assert average_log_prob == False
|
||||||
|
assert logits.shape[:-1] == labels.shape
|
||||||
|
labels = labels[:, 1:].clone()
|
||||||
|
logits = logits[:, :-1, :]
|
||||||
|
loss_masks = attention_mask.clone().bool()
|
||||||
|
# mask prompts
|
||||||
|
for mask, text_token_len in zip(loss_masks, prompt_token_lens):
|
||||||
|
mask[:text_token_len + 1] = False
|
||||||
|
loss_masks = loss_masks[:, 1:]
|
||||||
|
labels[loss_masks == False] = 0
|
||||||
|
# dummy token; we'll ignore the losses on these tokens later
|
||||||
|
ignore = labels == ignore_id
|
||||||
|
labels = labels.masked_fill(ignore, 0) # avoid -1 index
|
||||||
|
per_token_logps = torch.gather(logits.log_softmax(-1), dim=2, index=labels.unsqueeze(2)).squeeze(2) # (bs, time,)
|
||||||
|
logprobs_sums = (per_token_logps * loss_masks).sum(-1)
|
||||||
|
logprobs_means = (per_token_logps * loss_masks).sum(-1) / loss_masks.sum(-1)
|
||||||
|
return logprobs_sums, logprobs_means
|
||||||
|
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def inference(
|
||||||
|
self,
|
||||||
|
text: torch.Tensor,
|
||||||
|
text_len: torch.Tensor,
|
||||||
|
prompt_text: torch.Tensor,
|
||||||
|
prompt_text_len: torch.Tensor,
|
||||||
|
prompt_speech_token: torch.Tensor,
|
||||||
|
prompt_speech_token_len: torch.Tensor,
|
||||||
|
embedding: torch.Tensor,
|
||||||
|
sampling: int = 25,
|
||||||
|
max_token_text_ratio: float = 20,
|
||||||
|
min_token_text_ratio: float = 2,
|
||||||
|
) -> Generator[torch.Tensor, None, None]:
|
||||||
|
device = text.device
|
||||||
|
text = torch.concat([prompt_text, text], dim=1)
|
||||||
|
text_len += prompt_text_len
|
||||||
|
text = self.llm.model.model.embed_tokens(text)
|
||||||
|
|
||||||
|
# 3. concat llm_input
|
||||||
|
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||||
|
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||||
|
if prompt_speech_token_len != 0:
|
||||||
|
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||||
|
else:
|
||||||
|
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=text.dtype).to(device)
|
||||||
|
lm_input = torch.concat([sos_eos_emb, text, task_id_emb, prompt_speech_token_emb], dim=1)
|
||||||
|
|
||||||
|
# 4. cal min/max_length
|
||||||
|
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
|
||||||
|
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
|
||||||
|
|
||||||
|
# 5. step by step decode
|
||||||
|
out_tokens = []
|
||||||
|
cache = None
|
||||||
|
for i in range(max_len):
|
||||||
|
y_pred, cache = self.llm.forward_one_step(lm_input,
|
||||||
|
masks=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool),
|
||||||
|
cache=cache)
|
||||||
|
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||||
|
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True if i < min_len else False).item()
|
||||||
|
if top_ids == self.speech_token_size:
|
||||||
|
break
|
||||||
|
if top_ids > self.speech_token_size:
|
||||||
|
continue
|
||||||
|
# in stream mode, yield token one by one
|
||||||
|
yield top_ids
|
||||||
|
out_tokens.append(top_ids)
|
||||||
|
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def inference_bistream(
|
||||||
|
self,
|
||||||
|
text: Generator,
|
||||||
|
prompt_text: torch.Tensor,
|
||||||
|
prompt_text_len: torch.Tensor,
|
||||||
|
prompt_speech_token: torch.Tensor,
|
||||||
|
prompt_speech_token_len: torch.Tensor,
|
||||||
|
embedding: torch.Tensor,
|
||||||
|
sampling: int = 25,
|
||||||
|
max_token_text_ratio: float = 20,
|
||||||
|
min_token_text_ratio: float = 2,
|
||||||
|
) -> Generator[torch.Tensor, None, None]:
|
||||||
|
|
||||||
|
device = prompt_text.device
|
||||||
|
# 1. prepare input
|
||||||
|
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||||
|
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||||
|
if prompt_speech_token_len != 0:
|
||||||
|
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
|
||||||
|
else:
|
||||||
|
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size, dtype=prompt_text.dtype).to(device)
|
||||||
|
lm_input = torch.concat([sos_eos_emb], dim=1)
|
||||||
|
|
||||||
|
# 2. iterate text
|
||||||
|
out_tokens = []
|
||||||
|
cache = None
|
||||||
|
# NOTE init prompt_text as text_cache as it is basically impossible prompt_speech_token/prompt_text < 15/5
|
||||||
|
text_cache = self.llm.model.model.embed_tokens(prompt_text)
|
||||||
|
next_fill_index = -1
|
||||||
|
for this_text in text:
|
||||||
|
text_cache = torch.concat([text_cache, self.llm.model.model.embed_tokens(this_text)], dim=1)
|
||||||
|
# prompt_speech_token_emb not empty, try append to lm_input
|
||||||
|
while prompt_speech_token_emb.size(1) != 0:
|
||||||
|
if text_cache.size(1) >= self.mix_ratio[0]:
|
||||||
|
lm_input_text, lm_input_speech = text_cache[:, :self.mix_ratio[0]], prompt_speech_token_emb[:, :self.mix_ratio[1]]
|
||||||
|
logging.info('append {} text token {} speech token'.format(lm_input_text.size(1), lm_input_speech.size(1)))
|
||||||
|
lm_input = torch.concat([lm_input, lm_input_text, lm_input_speech], dim=1)
|
||||||
|
text_cache, prompt_speech_token_emb = text_cache[:, self.mix_ratio[0]:], prompt_speech_token_emb[:, self.mix_ratio[1]:]
|
||||||
|
else:
|
||||||
|
logging.info('not enough text token to decode, wait for more')
|
||||||
|
break
|
||||||
|
# no prompt_speech_token_emb remain, can decode some speech token
|
||||||
|
if prompt_speech_token_emb.size(1) == 0:
|
||||||
|
if (len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2) or (len(out_tokens) == 0 and lm_input.size(1) == 1):
|
||||||
|
logging.info('get fill token, need to append more text token')
|
||||||
|
if text_cache.size(1) >= self.mix_ratio[0]:
|
||||||
|
lm_input_text = text_cache[:, :self.mix_ratio[0]]
|
||||||
|
logging.info('append {} text token'.format(lm_input_text.size(1)))
|
||||||
|
if len(out_tokens) != 0 and out_tokens[-1] == self.speech_token_size + 2:
|
||||||
|
lm_input = lm_input_text
|
||||||
|
else:
|
||||||
|
lm_input = torch.concat([lm_input, lm_input_text], dim=1)
|
||||||
|
text_cache = text_cache[:, self.mix_ratio[0]:]
|
||||||
|
else:
|
||||||
|
logging.info('not enough text token to decode, wait for more')
|
||||||
|
continue
|
||||||
|
while True:
|
||||||
|
seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
|
||||||
|
y_pred, cache = self.llm.forward_one_step(lm_input,
|
||||||
|
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
|
||||||
|
cache=cache)
|
||||||
|
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||||
|
if next_fill_index != -1 and len(out_tokens) == next_fill_index:
|
||||||
|
top_ids = self.speech_token_size + 2
|
||||||
|
next_fill_index += (self.mix_ratio[1] + 1)
|
||||||
|
else:
|
||||||
|
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=True).item()
|
||||||
|
if top_ids == self.speech_token_size + 2:
|
||||||
|
next_fill_index = len(out_tokens) + self.mix_ratio[1] + 1
|
||||||
|
logging.info('fill_token index {} next fill_token index {}'.format(len(out_tokens), next_fill_index))
|
||||||
|
out_tokens.append(top_ids)
|
||||||
|
if top_ids >= self.speech_token_size:
|
||||||
|
if top_ids == self.speech_token_size + 2:
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
raise ValueError('should not get token {}'.format(top_ids))
|
||||||
|
yield top_ids
|
||||||
|
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||||
|
|
||||||
|
# 3. final decode
|
||||||
|
lm_input = torch.concat([lm_input, text_cache, task_id_emb], dim=1)
|
||||||
|
logging.info('no more text token, decode until met eos')
|
||||||
|
while True:
|
||||||
|
seq_len = lm_input.shape[1] if cache is None else lm_input.shape[1] + cache[0][0].size(2)
|
||||||
|
y_pred, cache = self.llm.forward_one_step(lm_input,
|
||||||
|
masks=torch.tril(torch.ones((1, seq_len, seq_len), device=lm_input.device)).to(torch.bool),
|
||||||
|
cache=cache)
|
||||||
|
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
|
||||||
|
top_ids = self.sampling_ids(logp.squeeze(dim=0), out_tokens, sampling, ignore_eos=False).item()
|
||||||
|
out_tokens.append(top_ids)
|
||||||
|
if top_ids >= self.speech_token_size:
|
||||||
|
if top_ids == self.speech_token_size:
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
raise ValueError('should not get token {}'.format(top_ids))
|
||||||
|
# in stream mode, yield token one by one
|
||||||
|
yield top_ids
|
||||||
|
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
|
||||||
212
cosyvoice/llm/llm_vllm.py
Normal file
212
cosyvoice/llm/llm_vllm.py
Normal file
@@ -0,0 +1,212 @@
|
|||||||
|
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
import time
|
||||||
|
import queue
|
||||||
|
import asyncio
|
||||||
|
import threading
|
||||||
|
from typing import List, Generator, AsyncGenerator
|
||||||
|
import torch
|
||||||
|
from cosyvoice.utils.file_utils import logging
|
||||||
|
from cosyvoice.llm.llm import Qwen2LM
|
||||||
|
|
||||||
|
# 启用vllm V1版本
|
||||||
|
import os
|
||||||
|
os.environ["VLLM_USE_V1"] = '1'
|
||||||
|
from vllm import ModelRegistry
|
||||||
|
from vllm import LLMEngine, AsyncLLMEngine, CompletionOutput
|
||||||
|
from vllm.engine.arg_utils import EngineArgs, AsyncEngineArgs
|
||||||
|
from vllm.sampling_params import SamplingParams
|
||||||
|
|
||||||
|
from cosyvoice.llm.vllm_use_cosyvoice2_model import CosyVoice2Model as CosyVoice2LLM
|
||||||
|
ModelRegistry.register_model("CosyVoice2Model", CosyVoice2LLM)
|
||||||
|
|
||||||
|
# EngineArgs
|
||||||
|
ENGINE_ARGS = {
|
||||||
|
"block_size": 16,
|
||||||
|
"swap_space": 0,
|
||||||
|
# "enforce_eager": True,
|
||||||
|
"gpu_memory_utilization": 0.4,
|
||||||
|
"max_num_batched_tokens": 1024,
|
||||||
|
"max_model_len": 1024,
|
||||||
|
"max_num_seqs": 256,
|
||||||
|
"disable_log_requests": True,
|
||||||
|
"disable_log_stats": True,
|
||||||
|
"dtype": "float16"
|
||||||
|
}
|
||||||
|
|
||||||
|
from vllm.sampling_params import RequestOutputKind
|
||||||
|
# SamplingParams
|
||||||
|
SAMPLING_PARAMS = {
|
||||||
|
"temperature": 1, # 不能低于0.8, 否则会生成非常多的空音频,或者无法正常生成语音Token
|
||||||
|
"top_p": 1, # 不能低于0.8, 否则会生成非常多的空音频,或者无法正常生成语音Token
|
||||||
|
"top_k": 25,
|
||||||
|
# "min_tokens": 80, # 不支持设置最小的tokens数量设置,开启后vllm直接崩溃,无法启动
|
||||||
|
# "presence_penalty": 1.0, # 不支持设置
|
||||||
|
# "frequency_penalty": 0.0, # 不支持设置
|
||||||
|
"max_tokens": 1024,
|
||||||
|
"detokenize": False, # 目前 vllm 0.7.3 v1版本中设置无效,待后续版本更新后减少计算
|
||||||
|
"ignore_eos": False,
|
||||||
|
"output_kind": RequestOutputKind.DELTA # 设置为DELTA,如调整该参数,请同时调整llm_inference的处理代码
|
||||||
|
}
|
||||||
|
|
||||||
|
def tensor_to_list(tensor: torch.tensor):
|
||||||
|
return tensor.view(-1).cpu().numpy().tolist()
|
||||||
|
|
||||||
|
class VllmQwen2LM(Qwen2LM):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_dir,
|
||||||
|
mix_ratio: List[int] = [5, 15],
|
||||||
|
):
|
||||||
|
self.fp16 = False
|
||||||
|
self.half = lambda: None
|
||||||
|
self.mix_ratio = mix_ratio
|
||||||
|
# ---------------------------------------------
|
||||||
|
# vllm engine 的参数配置
|
||||||
|
engine_args = AsyncEngineArgs(
|
||||||
|
model=model_dir,
|
||||||
|
**ENGINE_ARGS,
|
||||||
|
)
|
||||||
|
self.llm_engine: AsyncLLMEngine = AsyncLLMEngine.from_engine_args(engine_args)
|
||||||
|
|
||||||
|
self.speech_token_size = 6564 # 6561 + 3
|
||||||
|
self.llm_token_size = 151936 # llm vocab_size
|
||||||
|
self.sos_eos_token_id = self.speech_token_size + self.llm_token_size + 1
|
||||||
|
self.task_token_id = self.sos_eos_token_id + 1
|
||||||
|
self.zero_token_id = self.task_token_id + 1
|
||||||
|
|
||||||
|
# vllm 的推理任务需要在一个固定的事件循环中,因此启动一个后台线程运行转用于推理任务
|
||||||
|
self.loop = asyncio.new_event_loop()
|
||||||
|
self.loop_thread = threading.Thread(target=self._run_event_loop, daemon=True)
|
||||||
|
self.loop_thread.start()
|
||||||
|
|
||||||
|
def _run_event_loop(self):
|
||||||
|
asyncio.set_event_loop(self.loop)
|
||||||
|
self.loop.run_forever()
|
||||||
|
|
||||||
|
async def async_llm_inference(self, out_queue, prompt_token_ids, request_id, stop_token_ids, max_tokens):
|
||||||
|
sampling_params = SamplingParams(**SAMPLING_PARAMS)
|
||||||
|
sampling_params.stop_token_ids = stop_token_ids or [6561]
|
||||||
|
if max_tokens:
|
||||||
|
sampling_params.max_tokens = max_tokens
|
||||||
|
async for output in self.llm_engine.generate(
|
||||||
|
{
|
||||||
|
"prompt_token_ids": prompt_token_ids,
|
||||||
|
},
|
||||||
|
sampling_params=sampling_params,
|
||||||
|
request_id=request_id or f"{time.time()}",
|
||||||
|
):
|
||||||
|
out_queue.put((output.outputs[0], output.finished))
|
||||||
|
|
||||||
|
def llm_inference(self, prompt_token_ids: List[int], request_id: str=None, stop_token_ids=None, max_tokens=None):
|
||||||
|
out_queue = queue.Queue()
|
||||||
|
asyncio.run_coroutine_threadsafe(
|
||||||
|
self.async_llm_inference(out_queue, prompt_token_ids, request_id, stop_token_ids, max_tokens), self.loop
|
||||||
|
)
|
||||||
|
# 接收 out_queue 返回的结果
|
||||||
|
finished = False
|
||||||
|
while not finished:
|
||||||
|
(output, finished) = out_queue.get_nowait() if not out_queue.empty() else out_queue.get()
|
||||||
|
yield output
|
||||||
|
|
||||||
|
def inference(
|
||||||
|
self,
|
||||||
|
text: torch.Tensor,
|
||||||
|
text_len: torch.Tensor,
|
||||||
|
prompt_text: torch.Tensor,
|
||||||
|
prompt_text_len: torch.Tensor,
|
||||||
|
prompt_speech_token: torch.Tensor,
|
||||||
|
prompt_speech_token_len: torch.Tensor,
|
||||||
|
embedding: torch.Tensor,
|
||||||
|
sampling: int = 25,
|
||||||
|
max_token_text_ratio: float = 20,
|
||||||
|
min_token_text_ratio: float = 2,
|
||||||
|
) -> Generator[torch.Tensor|int, None, None]:
|
||||||
|
prompt_text = tensor_to_list(prompt_text + torch.tensor(6564))
|
||||||
|
prompt_speech_token = tensor_to_list(prompt_speech_token)
|
||||||
|
|
||||||
|
text = tensor_to_list(text + torch.tensor(6564))
|
||||||
|
prompt_token_ids = [self.sos_eos_token_id] + prompt_text + text + \
|
||||||
|
[self.task_token_id] + prompt_speech_token
|
||||||
|
max_tokens = len(text) * 20
|
||||||
|
for output in self.llm_inference(
|
||||||
|
prompt_token_ids,
|
||||||
|
stop_token_ids=[6561],
|
||||||
|
max_tokens=max_tokens,
|
||||||
|
):
|
||||||
|
if output.token_ids[-1] == 6561:
|
||||||
|
need_add_tokens = output.token_ids[:-1]
|
||||||
|
else:
|
||||||
|
need_add_tokens = output.token_ids
|
||||||
|
for token in need_add_tokens:
|
||||||
|
yield token
|
||||||
|
|
||||||
|
def inference_bistream(
|
||||||
|
self,
|
||||||
|
text: Generator,
|
||||||
|
prompt_text: torch.Tensor,
|
||||||
|
prompt_text_len: torch.Tensor,
|
||||||
|
prompt_speech_token: torch.Tensor,
|
||||||
|
prompt_speech_token_len: torch.Tensor,
|
||||||
|
embedding: torch.Tensor,
|
||||||
|
sampling: int = 25,
|
||||||
|
max_token_text_ratio: float = 20,
|
||||||
|
min_token_text_ratio: float = 2,
|
||||||
|
) -> Generator[torch.Tensor, None, None]:
|
||||||
|
prompt_text = tensor_to_list(prompt_text + torch.tensor(6564))
|
||||||
|
prompt_speech_token = tensor_to_list(prompt_speech_token)
|
||||||
|
|
||||||
|
last_tokens = []
|
||||||
|
prompt_token_ids = [self.sos_eos_token_id]
|
||||||
|
text_tokens_cache = prompt_text
|
||||||
|
for this_text in text:
|
||||||
|
this_text = tensor_to_list(this_text + torch.tensor(6564))
|
||||||
|
# text need tokens
|
||||||
|
assert isinstance(this_text, list), "text need token ids List[int]."
|
||||||
|
text_tokens_cache += this_text
|
||||||
|
while len(prompt_speech_token) != 0:
|
||||||
|
if len(text_tokens_cache) >= self.mix_ratio[0]:
|
||||||
|
text_input_token = text_tokens_cache[:self.mix_ratio[0]]
|
||||||
|
speech_input_token = prompt_speech_token[:self.mix_ratio[1]]
|
||||||
|
prompt_token_ids += text_input_token + speech_input_token
|
||||||
|
# reset the last cache
|
||||||
|
text_tokens_cache = text_tokens_cache[self.mix_ratio[0]:]
|
||||||
|
prompt_speech_token = prompt_speech_token[self.mix_ratio[1]:]
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
if len(prompt_speech_token) == 0:
|
||||||
|
if (len(last_tokens) > 0 and last_tokens[-1] == 6563) or len(prompt_token_ids) == 1:
|
||||||
|
if len(text_tokens_cache) >= self.mix_ratio[0]:
|
||||||
|
text_tokens_temp = text_tokens_cache[:self.mix_ratio[0]]
|
||||||
|
prompt_token_ids += text_tokens_temp
|
||||||
|
text_tokens_cache = text_tokens_cache[self.mix_ratio[0]:]
|
||||||
|
else:
|
||||||
|
continue
|
||||||
|
for output in self.llm_inference(prompt_token_ids, stop_token_ids=[6563]):
|
||||||
|
last_tokens = output.token_ids
|
||||||
|
if last_tokens[-1] == 6563:
|
||||||
|
need_add_tokens = last_tokens[:-1]
|
||||||
|
else:
|
||||||
|
need_add_tokens = last_tokens
|
||||||
|
for token in need_add_tokens:
|
||||||
|
yield token
|
||||||
|
prompt_token_ids.extend(need_add_tokens)
|
||||||
|
prompt_token_ids += text_tokens_cache + [self.task_token_id]
|
||||||
|
for output in self.llm_inference(prompt_token_ids, stop_token_ids=[6561]):
|
||||||
|
if output.token_ids[-1] == 6561:
|
||||||
|
need_add_tokens = output.token_ids[:-1]
|
||||||
|
else:
|
||||||
|
need_add_tokens = output.token_ids
|
||||||
|
for token in need_add_tokens:
|
||||||
|
yield token
|
||||||
263
cosyvoice/llm/vllm_use_cosyvoice2_model.py
Normal file
263
cosyvoice/llm/vllm_use_cosyvoice2_model.py
Normal file
@@ -0,0 +1,263 @@
|
|||||||
|
# SPDX-License-Identifier: Apache-2.0
|
||||||
|
|
||||||
|
# Adapted from
|
||||||
|
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/qwen2/modeling_qwen2.py
|
||||||
|
# Copyright 2024 The Qwen team.
|
||||||
|
# Copyright 2023 The vLLM team.
|
||||||
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||||
|
# and OPT implementations in this library. It has been modified from its
|
||||||
|
# original forms to accommodate minor architectural differences compared
|
||||||
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""Inference-only Qwen2 model compatible with HuggingFace weights."""
|
||||||
|
from typing import Iterable, List, Optional, Set, Tuple, Union, Iterator, overload, TypedDict, Mapping, Any
|
||||||
|
from typing_extensions import TypeVar
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
|
||||||
|
from vllm.attention import AttentionMetadata
|
||||||
|
from vllm.config import VllmConfig
|
||||||
|
from vllm.logger import init_logger
|
||||||
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||||
|
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
||||||
|
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
|
||||||
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
||||||
|
from vllm.sequence import IntermediateTensors
|
||||||
|
|
||||||
|
from vllm.model_executor.models.interfaces import T
|
||||||
|
from vllm.model_executor.models.qwen2 import Qwen2Model
|
||||||
|
|
||||||
|
from vllm.model_executor.models.utils import AutoWeightsLoader, maybe_prefix, merge_multimodal_embeddings
|
||||||
|
|
||||||
|
logger = init_logger(__name__)
|
||||||
|
|
||||||
|
IGNORE_ID = -1
|
||||||
|
|
||||||
|
|
||||||
|
class CosyVoice2Model(nn.Module):
|
||||||
|
|
||||||
|
packed_modules_mapping = {
|
||||||
|
"qkv_proj": [
|
||||||
|
"q_proj",
|
||||||
|
"k_proj",
|
||||||
|
"v_proj",
|
||||||
|
],
|
||||||
|
"gate_up_proj": [
|
||||||
|
"gate_proj",
|
||||||
|
"up_proj",
|
||||||
|
],
|
||||||
|
}
|
||||||
|
|
||||||
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||||
|
super().__init__()
|
||||||
|
config = vllm_config.model_config.hf_config
|
||||||
|
quant_config = vllm_config.quant_config
|
||||||
|
lora_config = vllm_config.lora_config
|
||||||
|
|
||||||
|
self.config = config
|
||||||
|
self.lora_config = lora_config
|
||||||
|
self.quant_config = quant_config
|
||||||
|
|
||||||
|
self.llm_input_size = 896
|
||||||
|
self.llm_output_size = 896
|
||||||
|
|
||||||
|
self.speech_token_size = 6561+3
|
||||||
|
self.llm_token_size = config.vocab_size
|
||||||
|
|
||||||
|
# 2. build speech token language model related modules
|
||||||
|
self.sos_eos = 0
|
||||||
|
self.task_id = 1
|
||||||
|
self.fill_token = 2
|
||||||
|
|
||||||
|
|
||||||
|
self.allow_patterns_overrides = ["llm.*"]
|
||||||
|
self.llm_embedding = torch.nn.Embedding(2, self.llm_input_size)
|
||||||
|
self.model = Qwen2Model(vllm_config=vllm_config,
|
||||||
|
prefix=maybe_prefix(prefix, "model"))
|
||||||
|
|
||||||
|
# self.llm_decoder = nn.Linear(self.llm_output_size, self.speech_token_size)
|
||||||
|
self.llm_decoder = ParallelLMHead(self.speech_token_size,
|
||||||
|
self.llm_output_size,
|
||||||
|
bias=True,
|
||||||
|
quant_config=quant_config,
|
||||||
|
prefix=maybe_prefix(
|
||||||
|
prefix, "llm_decoder"))
|
||||||
|
self.logits_processor = LogitsProcessor(self.speech_token_size)
|
||||||
|
|
||||||
|
# length_normalized_loss: bool = True,
|
||||||
|
# lsm_weight: float = 0.0,
|
||||||
|
# self.criterion_ce = LabelSmoothingLoss(
|
||||||
|
# size=self.speech_token_size,
|
||||||
|
# padding_idx=IGNORE_ID,
|
||||||
|
# smoothing=lsm_weight,
|
||||||
|
# normalize_length=length_normalized_loss,
|
||||||
|
# )
|
||||||
|
|
||||||
|
# 3. [Optional] build speech token related modules
|
||||||
|
self.speech_embedding = torch.nn.Embedding(self.speech_token_size, self.llm_input_size)
|
||||||
|
|
||||||
|
# 4. sampling method
|
||||||
|
## use vllm sampling method
|
||||||
|
self.sampler = get_sampler()
|
||||||
|
self.make_empty_intermediate_tensors = (
|
||||||
|
self.model.make_empty_intermediate_tensors)
|
||||||
|
|
||||||
|
self.mix_ratio: List[int] = [5, 15]
|
||||||
|
|
||||||
|
# 定义特殊token常量
|
||||||
|
self.llm_token_id_delta = torch.tensor(self.speech_token_size, dtype=torch.int32)
|
||||||
|
self.sos_eos_token_id = torch.tensor((self.llm_token_id_delta + self.llm_token_size + 1), dtype=torch.int32) # 163840 + 6564 = 170404
|
||||||
|
self.task_token_id = self.sos_eos_token_id + torch.tensor(1, dtype=torch.int32) # 170405
|
||||||
|
self.zero_token_id = self.task_token_id + torch.tensor(1, dtype=torch.int32)
|
||||||
|
|
||||||
|
self.zero_embed_buffer = torch.zeros(
|
||||||
|
(vllm_config.scheduler_config.max_num_seqs, self.llm_input_size),
|
||||||
|
dtype=self.llm_embedding.weight.dtype,
|
||||||
|
device=self.llm_embedding.weight.device
|
||||||
|
)
|
||||||
|
self.inputs_embed_buffer = torch.zeros(
|
||||||
|
(vllm_config.scheduler_config.max_num_batched_tokens, self.llm_input_size),
|
||||||
|
dtype=self.llm_embedding.weight.dtype,
|
||||||
|
device=self.llm_embedding.weight.device,
|
||||||
|
)
|
||||||
|
|
||||||
|
def get_sos_eos_emb(self):
|
||||||
|
return self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
|
||||||
|
|
||||||
|
def get_task_id_emb(self):
|
||||||
|
return self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
|
||||||
|
|
||||||
|
def get_input_embeddings(
|
||||||
|
self,
|
||||||
|
input_ids: torch.Tensor,
|
||||||
|
multimodal_embeddings: Optional[T] = None,
|
||||||
|
attn_metadata: Optional["AttentionMetadata"] = None,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""
|
||||||
|
Returns the input embeddings merged from the text embeddings from
|
||||||
|
input_ids and the multimodal embeddings generated from multimodal
|
||||||
|
kwargs.
|
||||||
|
"""
|
||||||
|
# 创建掩码,标记哪些 token_id 属于音频 Token
|
||||||
|
mask = input_ids < self.speech_token_size
|
||||||
|
|
||||||
|
# 获取 input_ids 的原始形状
|
||||||
|
input_shape = input_ids.shape
|
||||||
|
# 展平 input_ids 和掩码以便统一处理
|
||||||
|
flat_input_ids = input_ids.view(-1)
|
||||||
|
flat_mask = mask.view(-1)
|
||||||
|
|
||||||
|
inputs_embeds = self.inputs_embed_buffer[:flat_input_ids.shape[0]]
|
||||||
|
inputs_embeds.zero_()
|
||||||
|
|
||||||
|
# Process speech tokens
|
||||||
|
if flat_mask.any():
|
||||||
|
speech_token_ids = flat_input_ids[flat_mask]
|
||||||
|
inputs_embeds[flat_mask] = self.speech_embedding(speech_token_ids)
|
||||||
|
|
||||||
|
# 处理大于 delta 的 token_id
|
||||||
|
if (~flat_mask).any():
|
||||||
|
llm_token_ids = flat_input_ids[~flat_mask]
|
||||||
|
llm_embeds = torch.zeros_like(inputs_embeds[~flat_mask])
|
||||||
|
|
||||||
|
sos_eos_mask = llm_token_ids == self.sos_eos_token_id
|
||||||
|
task_mask = llm_token_ids == self.task_token_id
|
||||||
|
zero_mask = llm_token_ids == self.zero_token_id
|
||||||
|
normal_mask = ~(sos_eos_mask | task_mask | zero_mask)
|
||||||
|
|
||||||
|
# 分层处理逻辑
|
||||||
|
# 第一优先级:SOS/EOS标记
|
||||||
|
if sos_eos_mask.any():
|
||||||
|
llm_embeds[sos_eos_mask] = self.llm_embedding.weight[self.sos_eos].unsqueeze(0)
|
||||||
|
|
||||||
|
# 第二优先级:任务标记
|
||||||
|
if task_mask.any():
|
||||||
|
llm_embeds[task_mask] = self.llm_embedding.weight[self.task_id].unsqueeze(0)
|
||||||
|
|
||||||
|
# 第二优先级:空音频标记
|
||||||
|
if zero_mask.any():
|
||||||
|
llm_embeds[zero_mask] = self.zero_embed_buffer[:len(llm_embeds[zero_mask])]
|
||||||
|
|
||||||
|
# 常规LLM token
|
||||||
|
if normal_mask.any():
|
||||||
|
original_ids = llm_token_ids[normal_mask] - self.llm_token_id_delta
|
||||||
|
# print('original_ids: ',original_ids)
|
||||||
|
llm_embeds[normal_mask] = self.model.get_input_embeddings(original_ids)
|
||||||
|
|
||||||
|
inputs_embeds[~flat_mask] = llm_embeds
|
||||||
|
|
||||||
|
inputs_embeds = inputs_embeds.view(*input_shape, self.llm_input_size)
|
||||||
|
|
||||||
|
# 合并多模态嵌入(如果有)
|
||||||
|
if multimodal_embeddings is not None:
|
||||||
|
inputs_embeds = merge_multimodal_embeddings(
|
||||||
|
input_ids, inputs_embeds, multimodal_embeddings,
|
||||||
|
self.config.audio_token_index
|
||||||
|
)
|
||||||
|
return inputs_embeds
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
input_ids: torch.Tensor,
|
||||||
|
positions: torch.Tensor,
|
||||||
|
kv_caches: List[torch.Tensor],
|
||||||
|
attn_metadata: AttentionMetadata,
|
||||||
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||||
|
inputs_embeds: Optional[torch.Tensor] = None,
|
||||||
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||||
|
if inputs_embeds is None:
|
||||||
|
inputs_embeds = self.get_input_embeddings(
|
||||||
|
input_ids,
|
||||||
|
attn_metadata=attn_metadata,
|
||||||
|
)
|
||||||
|
return self.model(input_ids, positions, kv_caches,
|
||||||
|
attn_metadata, intermediate_tensors,
|
||||||
|
inputs_embeds)
|
||||||
|
|
||||||
|
def compute_logits(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
sampling_metadata: SamplingMetadata,
|
||||||
|
) -> Optional[torch.Tensor]:
|
||||||
|
logits = self.logits_processor(self.llm_decoder, hidden_states,
|
||||||
|
sampling_metadata)
|
||||||
|
return logits
|
||||||
|
|
||||||
|
def sample(
|
||||||
|
self,
|
||||||
|
logits: torch.Tensor,
|
||||||
|
sampling_metadata: SamplingMetadata,
|
||||||
|
) -> Optional[SamplerOutput]:
|
||||||
|
next_tokens = self.sampler(logits, sampling_metadata)
|
||||||
|
return next_tokens
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def convert_weights(weights: Iterable[Tuple[str, torch.Tensor]]) -> Iterable[Tuple[str, torch.Tensor]]:
|
||||||
|
for name, param in weights:
|
||||||
|
# 处理Qwen2Model核心参数
|
||||||
|
if name.startswith("llm."):
|
||||||
|
if name.startswith("llm.model.model."):
|
||||||
|
name = name.replace("llm.model.model.", "model.")
|
||||||
|
else:
|
||||||
|
continue
|
||||||
|
# print('weights name: ', name)
|
||||||
|
yield name, param
|
||||||
|
|
||||||
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
||||||
|
weights = self.convert_weights(weights)
|
||||||
|
loader = AutoWeightsLoader(self)
|
||||||
|
loader.load_weights(weights)
|
||||||
@@ -56,16 +56,11 @@ class Upsample1D(nn.Module):
|
|||||||
# In this mode, first repeat interpolate, than conv with stride=1
|
# In this mode, first repeat interpolate, than conv with stride=1
|
||||||
self.conv = nn.Conv1d(self.channels, self.out_channels, stride * 2 + 1, stride=1, padding=0)
|
self.conv = nn.Conv1d(self.channels, self.out_channels, stride * 2 + 1, stride=1, padding=0)
|
||||||
|
|
||||||
def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor, conv_cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
def forward(self, inputs: torch.Tensor, input_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||||
outputs = F.interpolate(inputs, scale_factor=float(self.stride), mode="nearest")
|
outputs = F.interpolate(inputs, scale_factor=float(self.stride), mode="nearest")
|
||||||
if conv_cache.size(2) == 0:
|
outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0)
|
||||||
outputs = F.pad(outputs, (self.stride * 2, 0), value=0.0)
|
|
||||||
else:
|
|
||||||
assert conv_cache.size(2) == self.stride * 2
|
|
||||||
outputs = torch.concat([conv_cache, outputs], dim=2)
|
|
||||||
conv_cache_new = outputs[:, :, -self.stride * 2:]
|
|
||||||
outputs = self.conv(outputs)
|
outputs = self.conv(outputs)
|
||||||
return outputs, input_lengths * self.stride, conv_cache_new
|
return outputs, input_lengths * self.stride
|
||||||
|
|
||||||
|
|
||||||
class PreLookaheadLayer(nn.Module):
|
class PreLookaheadLayer(nn.Module):
|
||||||
@@ -83,7 +78,7 @@ class PreLookaheadLayer(nn.Module):
|
|||||||
kernel_size=3, stride=1, padding=0,
|
kernel_size=3, stride=1, padding=0,
|
||||||
)
|
)
|
||||||
|
|
||||||
def forward(self, inputs: torch.Tensor, context: torch.Tensor = torch.zeros(0, 0, 0), conv2_cache: torch.Tensor = torch.zeros(0, 0, 0)) -> Tuple[torch.Tensor, torch.Tensor]:
|
def forward(self, inputs: torch.Tensor, context: torch.Tensor = torch.zeros(0, 0, 0)) -> torch.Tensor:
|
||||||
"""
|
"""
|
||||||
inputs: (batch_size, seq_len, channels)
|
inputs: (batch_size, seq_len, channels)
|
||||||
"""
|
"""
|
||||||
@@ -93,22 +88,18 @@ class PreLookaheadLayer(nn.Module):
|
|||||||
if context.size(2) == 0:
|
if context.size(2) == 0:
|
||||||
outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0)
|
outputs = F.pad(outputs, (0, self.pre_lookahead_len), mode='constant', value=0.0)
|
||||||
else:
|
else:
|
||||||
|
assert self.training is False, 'you have passed context, make sure that you are running inference mode'
|
||||||
assert context.size(2) == self.pre_lookahead_len
|
assert context.size(2) == self.pre_lookahead_len
|
||||||
outputs = F.pad(torch.concat([outputs, context], dim=2), (0, self.pre_lookahead_len - context.size(2)), mode='constant', value=0.0)
|
outputs = F.pad(torch.concat([outputs, context], dim=2), (0, self.pre_lookahead_len - context.size(2)), mode='constant', value=0.0)
|
||||||
outputs = F.leaky_relu(self.conv1(outputs))
|
outputs = F.leaky_relu(self.conv1(outputs))
|
||||||
# outputs
|
# outputs
|
||||||
if conv2_cache.size(2) == 0:
|
outputs = F.pad(outputs, (self.conv2.kernel_size[0] - 1, 0), mode='constant', value=0.0)
|
||||||
outputs = F.pad(outputs, (self.conv2.kernel_size[0] - 1, 0), mode='constant', value=0.0)
|
|
||||||
else:
|
|
||||||
assert conv2_cache.size(2) == self.conv2.kernel_size[0] - 1
|
|
||||||
outputs = torch.concat([conv2_cache, outputs], dim=2)
|
|
||||||
conv2_cache_new = outputs[:, :, -(self.conv2.kernel_size[0] - 1):]
|
|
||||||
outputs = self.conv2(outputs)
|
outputs = self.conv2(outputs)
|
||||||
outputs = outputs.transpose(1, 2).contiguous()
|
outputs = outputs.transpose(1, 2).contiguous()
|
||||||
|
|
||||||
# residual connection
|
# residual connection
|
||||||
outputs = outputs + inputs
|
outputs = outputs + inputs
|
||||||
return outputs, conv2_cache_new
|
return outputs
|
||||||
|
|
||||||
|
|
||||||
class UpsampleConformerEncoder(torch.nn.Module):
|
class UpsampleConformerEncoder(torch.nn.Module):
|
||||||
@@ -253,6 +244,7 @@ class UpsampleConformerEncoder(torch.nn.Module):
|
|||||||
self,
|
self,
|
||||||
xs: torch.Tensor,
|
xs: torch.Tensor,
|
||||||
xs_lens: torch.Tensor,
|
xs_lens: torch.Tensor,
|
||||||
|
context: torch.Tensor = torch.zeros(0, 0, 0),
|
||||||
decoding_chunk_size: int = 0,
|
decoding_chunk_size: int = 0,
|
||||||
num_decoding_left_chunks: int = -1,
|
num_decoding_left_chunks: int = -1,
|
||||||
streaming: bool = False,
|
streaming: bool = False,
|
||||||
@@ -280,20 +272,27 @@ class UpsampleConformerEncoder(torch.nn.Module):
|
|||||||
checkpointing API because `__call__` attaches all the hooks of the module.
|
checkpointing API because `__call__` attaches all the hooks of the module.
|
||||||
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
||||||
"""
|
"""
|
||||||
|
if hasattr(self, 'streaming'):
|
||||||
|
assert self.training is False, 'you have self.streaming attr, make sure that you are running inference mode'
|
||||||
|
streaming = self.streaming
|
||||||
T = xs.size(1)
|
T = xs.size(1)
|
||||||
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
||||||
if self.global_cmvn is not None:
|
if self.global_cmvn is not None:
|
||||||
xs = self.global_cmvn(xs)
|
xs = self.global_cmvn(xs)
|
||||||
xs, pos_emb, masks = self.embed(xs, masks)
|
xs, pos_emb, masks = self.embed(xs, masks)
|
||||||
|
if context.size(1) != 0:
|
||||||
|
assert self.training is False, 'you have passed context, make sure that you are running inference mode'
|
||||||
|
context_masks = torch.ones(1, 1, context.size(1)).to(masks)
|
||||||
|
context, _, _ = self.embed(context, context_masks, offset=xs.size(1))
|
||||||
mask_pad = masks # (B, 1, T/subsample_rate)
|
mask_pad = masks # (B, 1, T/subsample_rate)
|
||||||
chunk_masks = add_optional_chunk_mask(xs, masks, False, False, 0, self.static_chunk_size if streaming is True else 0, -1)
|
chunk_masks = add_optional_chunk_mask(xs, masks, False, False, 0, self.static_chunk_size if streaming is True else 0, -1)
|
||||||
# lookahead + conformer encoder
|
# lookahead + conformer encoder
|
||||||
xs, _ = self.pre_lookahead_layer(xs)
|
xs = self.pre_lookahead_layer(xs, context=context)
|
||||||
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
|
xs = self.forward_layers(xs, chunk_masks, pos_emb, mask_pad)
|
||||||
|
|
||||||
# upsample + conformer encoder
|
# upsample + conformer encoder
|
||||||
xs = xs.transpose(1, 2).contiguous()
|
xs = xs.transpose(1, 2).contiguous()
|
||||||
xs, xs_lens, _ = self.up_layer(xs, xs_lens)
|
xs, xs_lens = self.up_layer(xs, xs_lens)
|
||||||
xs = xs.transpose(1, 2).contiguous()
|
xs = xs.transpose(1, 2).contiguous()
|
||||||
T = xs.size(1)
|
T = xs.size(1)
|
||||||
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
masks = ~make_pad_mask(xs_lens, T).unsqueeze(1) # (B, 1, T)
|
||||||
@@ -322,100 +321,3 @@ class UpsampleConformerEncoder(torch.nn.Module):
|
|||||||
for layer in self.up_encoders:
|
for layer in self.up_encoders:
|
||||||
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
||||||
return xs
|
return xs
|
||||||
|
|
||||||
@torch.jit.export
|
|
||||||
def forward_chunk(
|
|
||||||
self,
|
|
||||||
xs: torch.Tensor,
|
|
||||||
xs_lens: torch.Tensor,
|
|
||||||
offset: int = 0,
|
|
||||||
context: torch.Tensor = torch.zeros(0, 0, 0),
|
|
||||||
pre_lookahead_layer_conv2_cache: torch.Tensor = torch.zeros(0, 0, 0),
|
|
||||||
encoders_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0),
|
|
||||||
upsample_offset: int = 0,
|
|
||||||
upsample_conv_cache: torch.Tensor = torch.zeros(0, 0, 0),
|
|
||||||
upsample_kv_cache: torch.Tensor = torch.zeros(0, 0, 0, 0, 0)
|
|
||||||
) -> Tuple[torch.Tensor, torch.Tensor, Tuple[int, torch.Tensor, torch.Tensor, int, torch.Tensor, torch.Tensor]]:
|
|
||||||
"""Embed positions in tensor.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
xs: padded input tensor (B, T, D)
|
|
||||||
xs_lens: input length (B)
|
|
||||||
decoding_chunk_size: decoding chunk size for dynamic chunk
|
|
||||||
0: default for training, use random dynamic chunk.
|
|
||||||
<0: for decoding, use full chunk.
|
|
||||||
>0: for decoding, use fixed chunk size as set.
|
|
||||||
num_decoding_left_chunks: number of left chunks, this is for decoding,
|
|
||||||
the chunk size is decoding_chunk_size.
|
|
||||||
>=0: use num_decoding_left_chunks
|
|
||||||
<0: use all left chunks
|
|
||||||
Returns:
|
|
||||||
encoder output tensor xs, and subsampled masks
|
|
||||||
xs: padded output tensor (B, T' ~= T/subsample_rate, D)
|
|
||||||
masks: torch.Tensor batch padding mask after subsample
|
|
||||||
(B, 1, T' ~= T/subsample_rate)
|
|
||||||
NOTE(xcsong):
|
|
||||||
We pass the `__call__` method of the modules instead of `forward` to the
|
|
||||||
checkpointing API because `__call__` attaches all the hooks of the module.
|
|
||||||
https://discuss.pytorch.org/t/any-different-between-model-input-and-model-forward-input/3690/2
|
|
||||||
"""
|
|
||||||
assert xs.size(0) == 1
|
|
||||||
# tmp_masks is just for interface compatibility
|
|
||||||
tmp_masks = torch.ones(1,
|
|
||||||
xs.size(1),
|
|
||||||
device=xs.device,
|
|
||||||
dtype=torch.bool)
|
|
||||||
tmp_masks = tmp_masks.unsqueeze(1)
|
|
||||||
if self.global_cmvn is not None:
|
|
||||||
xs = self.global_cmvn(xs)
|
|
||||||
# NOTE(xcsong): Before embed, shape(xs) is (b=1, time, mel-dim)
|
|
||||||
xs, pos_emb, _ = self.embed(xs, tmp_masks, offset)
|
|
||||||
offset += xs.size(1)
|
|
||||||
tmp_masks = torch.ones(1,
|
|
||||||
context.size(1),
|
|
||||||
device=context.device,
|
|
||||||
dtype=torch.bool)
|
|
||||||
tmp_masks = tmp_masks.unsqueeze(1)
|
|
||||||
if context.size(1) != 0:
|
|
||||||
context, _, _ = self.embed(context, tmp_masks, offset)
|
|
||||||
|
|
||||||
# lookahead + conformer encoder
|
|
||||||
xs, pre_lookahead_layer_conv2_cache = self.pre_lookahead_layer(xs, context, pre_lookahead_layer_conv2_cache)
|
|
||||||
# NOTE in cache mode we do not need to call add_optional_chunk_mask
|
|
||||||
chunk_masks = torch.ones((1, xs.size(1), offset), dtype=torch.bool, device=xs.device)
|
|
||||||
mask_pad = torch.ones((0, 0, 0), dtype=torch.bool, device=xs.device)
|
|
||||||
encoders_kv_cache_list = []
|
|
||||||
for index, layer in enumerate(self.encoders):
|
|
||||||
xs, chunk_masks, encoders_kv_cache_new, _ = layer(xs, chunk_masks, pos_emb, mask_pad, encoders_kv_cache[index])
|
|
||||||
encoders_kv_cache_list.append(encoders_kv_cache_new)
|
|
||||||
encoders_kv_cache = torch.stack(encoders_kv_cache_list, dim=0)
|
|
||||||
|
|
||||||
# upsample
|
|
||||||
xs = xs.transpose(1, 2).contiguous()
|
|
||||||
xs, xs_lens, upsample_conv_cache = self.up_layer(xs, xs_lens, upsample_conv_cache)
|
|
||||||
xs = xs.transpose(1, 2).contiguous()
|
|
||||||
|
|
||||||
# tmp_masks is just for interface compatibility
|
|
||||||
tmp_masks = torch.ones(1,
|
|
||||||
xs.size(1),
|
|
||||||
device=xs.device,
|
|
||||||
dtype=torch.bool)
|
|
||||||
tmp_masks = tmp_masks.unsqueeze(1)
|
|
||||||
xs, pos_emb, masks = self.up_embed(xs, tmp_masks, upsample_offset)
|
|
||||||
upsample_offset += xs.size(1)
|
|
||||||
|
|
||||||
# conformer encoder
|
|
||||||
chunk_masks = torch.ones((1, xs.size(1), upsample_offset), dtype=torch.bool, device=xs.device)
|
|
||||||
mask_pad = torch.ones((0, 0, 0), dtype=torch.bool, device=xs.device)
|
|
||||||
upsample_kv_cache_list = []
|
|
||||||
for index, layer in enumerate(self.up_encoders):
|
|
||||||
xs, chunk_masks, upsample_kv_cache_new, _ = layer(xs, chunk_masks, pos_emb, mask_pad, upsample_kv_cache[index])
|
|
||||||
upsample_kv_cache_list.append(upsample_kv_cache_new)
|
|
||||||
upsample_kv_cache = torch.stack(upsample_kv_cache_list, dim=0)
|
|
||||||
|
|
||||||
if self.normalize_before:
|
|
||||||
xs = self.after_norm(xs)
|
|
||||||
# Here we assume the mask is not changed in encoder layers, so just
|
|
||||||
# return the masks before encoder layers, and the masks will be used
|
|
||||||
# for cross attention with decoder later
|
|
||||||
return xs, masks, (offset, pre_lookahead_layer_conv2_cache, encoders_kv_cache, upsample_offset, upsample_conv_cache, upsample_kv_cache)
|
|
||||||
|
|||||||
@@ -1,5 +1,6 @@
|
|||||||
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
||||||
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||||
|
# 2025 Alibaba Inc (authors: Xiang Lyu, Bofan Zhou)
|
||||||
#
|
#
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
# you may not use this file except in compliance with the License.
|
# you may not use this file except in compliance with the License.
|
||||||
@@ -15,6 +16,7 @@
|
|||||||
# Modified from ESPnet(https://github.com/espnet/espnet)
|
# Modified from ESPnet(https://github.com/espnet/espnet)
|
||||||
"""Unility functions for Transformer."""
|
"""Unility functions for Transformer."""
|
||||||
|
|
||||||
|
import queue
|
||||||
import random
|
import random
|
||||||
from typing import List
|
from typing import List
|
||||||
|
|
||||||
@@ -164,3 +166,20 @@ def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
|
|||||||
# chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min
|
# chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min
|
||||||
mask = (1.0 - mask) * -1.0e+10
|
mask = (1.0 - mask) * -1.0e+10
|
||||||
return mask
|
return mask
|
||||||
|
|
||||||
|
|
||||||
|
class TrtContextWrapper:
|
||||||
|
def __init__(self, trt_engine, trt_concurrent=1):
|
||||||
|
self.trt_context_pool = queue.Queue()
|
||||||
|
self.trt_engine = trt_engine
|
||||||
|
for _ in range(trt_concurrent):
|
||||||
|
trt_context = trt_engine.create_execution_context()
|
||||||
|
assert trt_context is not None, 'failed to create trt context, maybe not enough CUDA memory, try reduce current trt concurrent {}'.format(trt_concurrent)
|
||||||
|
self.trt_context_pool.put(trt_context)
|
||||||
|
assert self.trt_context_pool.empty() is False, 'no avaialbe estimator context'
|
||||||
|
|
||||||
|
def acquire_estimator(self):
|
||||||
|
return self.trt_context_pool.get(), self.trt_engine
|
||||||
|
|
||||||
|
def release_estimator(self, context):
|
||||||
|
self.trt_context_pool.put(context)
|
||||||
|
|||||||
184
cosyvoice/utils/executor_dpo.py
Normal file
184
cosyvoice/utils/executor_dpo.py
Normal file
@@ -0,0 +1,184 @@
|
|||||||
|
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
|
||||||
|
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from contextlib import nullcontext
|
||||||
|
import os
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
|
||||||
|
from cosyvoice.utils.train_utils_dpo import update_parameter_and_lr, log_per_step, log_per_save, batch_forward, batch_backward, save_model, cosyvoice_join
|
||||||
|
from cosyvoice.utils.losses_dpo import DPOLoss
|
||||||
|
|
||||||
|
|
||||||
|
class Executor:
|
||||||
|
|
||||||
|
def __init__(self, gan: bool = False, dpo: bool = False, beta: float = 0.01, label_smoothing: float = 0.0, ipo: bool = False):
|
||||||
|
self.gan = gan
|
||||||
|
self.step = 0
|
||||||
|
self.epoch = 0
|
||||||
|
self.rank = int(os.environ.get('RANK', 0))
|
||||||
|
self.device = torch.device('cuda:{}'.format(self.rank))
|
||||||
|
self.dpo = dpo
|
||||||
|
if self.dpo:
|
||||||
|
self.dpo_loss = DPOLoss(beta, label_smoothing, ipo)
|
||||||
|
else:
|
||||||
|
self.dpo_loss = None
|
||||||
|
|
||||||
|
def train_one_epoc(self, model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join, ref_model=None):
|
||||||
|
''' Train one epoch
|
||||||
|
'''
|
||||||
|
|
||||||
|
lr = optimizer.param_groups[0]['lr']
|
||||||
|
logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
|
||||||
|
logging.info('using accumulate grad, new batch size is {} times'
|
||||||
|
' larger than before'.format(info_dict['accum_grad']))
|
||||||
|
# A context manager to be used in conjunction with an instance of
|
||||||
|
# torch.nn.parallel.DistributedDataParallel to be able to train
|
||||||
|
# with uneven inputs across participating processes.
|
||||||
|
model.train()
|
||||||
|
if self.dpo:
|
||||||
|
assert ref_model is not None
|
||||||
|
ref_model.eval()
|
||||||
|
model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
|
||||||
|
with model_context():
|
||||||
|
for batch_idx, batch_dict in enumerate(train_data_loader):
|
||||||
|
info_dict["tag"] = "TRAIN"
|
||||||
|
info_dict["step"] = self.step
|
||||||
|
info_dict["epoch"] = self.epoch
|
||||||
|
info_dict["batch_idx"] = batch_idx
|
||||||
|
if cosyvoice_join(group_join, info_dict):
|
||||||
|
break
|
||||||
|
|
||||||
|
# Disable gradient synchronizations across DDP processes.
|
||||||
|
# Within this context, gradients will be accumulated on module
|
||||||
|
# variables, which will later be synchronized.
|
||||||
|
if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
|
||||||
|
context = model.no_sync
|
||||||
|
# Used for single gpu training and DDP gradient synchronization
|
||||||
|
# processes.
|
||||||
|
else:
|
||||||
|
context = nullcontext
|
||||||
|
|
||||||
|
with context():
|
||||||
|
info_dict = batch_forward(model, batch_dict, scaler, info_dict, ref_model, self.dpo_loss)
|
||||||
|
info_dict = batch_backward(model, scaler, info_dict)
|
||||||
|
|
||||||
|
info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
|
||||||
|
log_per_step(writer, info_dict)
|
||||||
|
# NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
|
||||||
|
if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
|
||||||
|
(batch_idx + 1) % info_dict["accum_grad"] == 0:
|
||||||
|
dist.barrier()
|
||||||
|
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False, ref_model=ref_model, dpo_loss=self.dpo_loss)
|
||||||
|
model.train()
|
||||||
|
if (batch_idx + 1) % info_dict["accum_grad"] == 0:
|
||||||
|
self.step += 1
|
||||||
|
dist.barrier()
|
||||||
|
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True, ref_model=ref_model, dpo_loss=self.dpo_loss)
|
||||||
|
|
||||||
|
def train_one_epoc_gan(self, model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
|
||||||
|
writer, info_dict, scaler, group_join):
|
||||||
|
''' Train one epoch
|
||||||
|
'''
|
||||||
|
|
||||||
|
lr = optimizer.param_groups[0]['lr']
|
||||||
|
logging.info('Epoch {} TRAIN info lr {} rank {}'.format(self.epoch, lr, self.rank))
|
||||||
|
logging.info('using accumulate grad, new batch size is {} times'
|
||||||
|
' larger than before'.format(info_dict['accum_grad']))
|
||||||
|
# A context manager to be used in conjunction with an instance of
|
||||||
|
# torch.nn.parallel.DistributedDataParallel to be able to train
|
||||||
|
# with uneven inputs across participating processes.
|
||||||
|
model.train()
|
||||||
|
model_context = model.join if info_dict['train_engine'] == 'torch_ddp' else nullcontext
|
||||||
|
with model_context():
|
||||||
|
for batch_idx, batch_dict in enumerate(train_data_loader):
|
||||||
|
info_dict["tag"] = "TRAIN"
|
||||||
|
info_dict["step"] = self.step
|
||||||
|
info_dict["epoch"] = self.epoch
|
||||||
|
info_dict["batch_idx"] = batch_idx
|
||||||
|
if cosyvoice_join(group_join, info_dict):
|
||||||
|
break
|
||||||
|
|
||||||
|
# Disable gradient synchronizations across DDP processes.
|
||||||
|
# Within this context, gradients will be accumulated on module
|
||||||
|
# variables, which will later be synchronized.
|
||||||
|
if info_dict['train_engine'] == 'torch_ddp' and (batch_idx + 1) % info_dict["accum_grad"] != 0:
|
||||||
|
context = model.no_sync
|
||||||
|
# Used for single gpu training and DDP gradient synchronization
|
||||||
|
# processes.
|
||||||
|
else:
|
||||||
|
context = nullcontext
|
||||||
|
|
||||||
|
with context():
|
||||||
|
batch_dict['turn'] = 'discriminator'
|
||||||
|
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
|
||||||
|
info_dict = batch_backward(model, scaler, info_dict)
|
||||||
|
info_dict = update_parameter_and_lr(model, optimizer_d, scheduler_d, scaler, info_dict)
|
||||||
|
optimizer.zero_grad()
|
||||||
|
log_per_step(writer, info_dict)
|
||||||
|
with context():
|
||||||
|
batch_dict['turn'] = 'generator'
|
||||||
|
info_dict = batch_forward(model, batch_dict, scaler, info_dict)
|
||||||
|
info_dict = batch_backward(model, scaler, info_dict)
|
||||||
|
info_dict = update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict)
|
||||||
|
optimizer_d.zero_grad()
|
||||||
|
log_per_step(writer, info_dict)
|
||||||
|
# NOTE specify save_per_step in cosyvoice.yaml if you want to enable step save
|
||||||
|
if info_dict['save_per_step'] > 0 and (self.step + 1) % info_dict['save_per_step'] == 0 and \
|
||||||
|
(batch_idx + 1) % info_dict["accum_grad"] == 0:
|
||||||
|
dist.barrier()
|
||||||
|
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=False)
|
||||||
|
model.train()
|
||||||
|
if (batch_idx + 1) % info_dict["accum_grad"] == 0:
|
||||||
|
self.step += 1
|
||||||
|
dist.barrier()
|
||||||
|
self.cv(model, cv_data_loader, writer, info_dict, on_batch_end=True)
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def cv(self, model, cv_data_loader, writer, info_dict, on_batch_end=True, ref_model=None, dpo_loss=None):
|
||||||
|
''' Cross validation on
|
||||||
|
'''
|
||||||
|
logging.info('Epoch {} Step {} on_batch_end {} CV rank {}'.format(self.epoch, self.step + 1, on_batch_end, self.rank))
|
||||||
|
model.eval()
|
||||||
|
if self.dpo:
|
||||||
|
assert ref_model is not None
|
||||||
|
ref_model.eval()
|
||||||
|
total_num_utts, total_loss_dict = 0, {} # avoid division by 0
|
||||||
|
for batch_idx, batch_dict in enumerate(cv_data_loader):
|
||||||
|
info_dict["tag"] = "CV"
|
||||||
|
info_dict["step"] = self.step
|
||||||
|
info_dict["epoch"] = self.epoch
|
||||||
|
info_dict["batch_idx"] = batch_idx
|
||||||
|
|
||||||
|
num_utts = len(batch_dict["utts"])
|
||||||
|
total_num_utts += num_utts
|
||||||
|
|
||||||
|
if self.gan is True:
|
||||||
|
batch_dict['turn'] = 'generator'
|
||||||
|
info_dict = batch_forward(model, batch_dict, None, info_dict, ref_model, dpo_loss)
|
||||||
|
|
||||||
|
for k, v in info_dict['loss_dict'].items():
|
||||||
|
if k not in total_loss_dict:
|
||||||
|
total_loss_dict[k] = []
|
||||||
|
total_loss_dict[k].append(v.item() * num_utts)
|
||||||
|
log_per_step(None, info_dict)
|
||||||
|
for k, v in total_loss_dict.items():
|
||||||
|
total_loss_dict[k] = sum(v) / total_num_utts
|
||||||
|
info_dict['loss_dict'] = total_loss_dict
|
||||||
|
log_per_save(writer, info_dict)
|
||||||
|
model_name = 'epoch_{}_whole'.format(self.epoch) if on_batch_end else 'epoch_{}_step_{}'.format(self.epoch, self.step + 1)
|
||||||
|
save_model(model, model_name, info_dict)
|
||||||
@@ -56,7 +56,7 @@ def convert_onnx_to_trt(trt_model, trt_kwargs, onnx_model, fp16):
|
|||||||
network = builder.create_network(network_flags)
|
network = builder.create_network(network_flags)
|
||||||
parser = trt.OnnxParser(network, logger)
|
parser = trt.OnnxParser(network, logger)
|
||||||
config = builder.create_builder_config()
|
config = builder.create_builder_config()
|
||||||
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 33) # 8GB
|
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 31) # 1GB
|
||||||
if fp16:
|
if fp16:
|
||||||
config.set_flag(trt.BuilderFlag.FP16)
|
config.set_flag(trt.BuilderFlag.FP16)
|
||||||
profile = builder.create_optimization_profile()
|
profile = builder.create_optimization_profile()
|
||||||
|
|||||||
57
cosyvoice/utils/losses_dpo.py
Normal file
57
cosyvoice/utils/losses_dpo.py
Normal file
@@ -0,0 +1,57 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
|
||||||
|
def tpr_loss(disc_real_outputs, disc_generated_outputs, tau):
|
||||||
|
loss = 0
|
||||||
|
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
||||||
|
m_DG = torch.median((dr - dg))
|
||||||
|
L_rel = torch.mean((((dr - dg) - m_DG) ** 2)[dr < dg + m_DG])
|
||||||
|
loss += tau - F.relu(tau - L_rel)
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
def mel_loss(real_speech, generated_speech, mel_transforms):
|
||||||
|
loss = 0
|
||||||
|
for transform in mel_transforms:
|
||||||
|
mel_r = transform(real_speech)
|
||||||
|
mel_g = transform(generated_speech)
|
||||||
|
loss += F.l1_loss(mel_g, mel_r)
|
||||||
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
class DPOLoss(torch.nn.Module):
|
||||||
|
"""
|
||||||
|
DPO Loss
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, beta: float, label_smoothing: float = 0.0, ipo: bool = False) -> None:
|
||||||
|
super().__init__()
|
||||||
|
self.beta = beta
|
||||||
|
self.label_smoothing = label_smoothing
|
||||||
|
self.ipo = ipo
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
policy_chosen_logps: torch.Tensor,
|
||||||
|
policy_rejected_logps: torch.Tensor,
|
||||||
|
reference_chosen_logps: torch.Tensor,
|
||||||
|
reference_rejected_logps: torch.Tensor,
|
||||||
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||||
|
pi_logratios = policy_chosen_logps - policy_rejected_logps
|
||||||
|
ref_logratios = reference_chosen_logps - reference_rejected_logps
|
||||||
|
logits = pi_logratios - ref_logratios
|
||||||
|
if self.ipo:
|
||||||
|
losses = (logits - 1 / (2 * self.beta)) ** 2 # Eq. 17 of https://arxiv.org/pdf/2310.12036v2.pdf
|
||||||
|
else:
|
||||||
|
# Eq. 3 https://ericmitchell.ai/cdpo.pdf; label_smoothing=0 gives original DPO (Eq. 7 of https://arxiv.org/pdf/2305.18290.pdf)
|
||||||
|
losses = (
|
||||||
|
-F.logsigmoid(self.beta * logits) * (1 - self.label_smoothing)
|
||||||
|
- F.logsigmoid(-self.beta * logits) * self.label_smoothing
|
||||||
|
)
|
||||||
|
loss = losses.mean()
|
||||||
|
chosen_rewards = self.beta * (policy_chosen_logps - reference_chosen_logps).detach()
|
||||||
|
rejected_rewards = self.beta * (policy_rejected_logps - reference_rejected_logps).detach()
|
||||||
|
|
||||||
|
return loss, chosen_rewards, rejected_rewards
|
||||||
@@ -86,7 +86,7 @@ def subsequent_mask(
|
|||||||
return mask
|
return mask
|
||||||
|
|
||||||
|
|
||||||
def subsequent_chunk_mask(
|
def subsequent_chunk_mask_deprecated(
|
||||||
size: int,
|
size: int,
|
||||||
chunk_size: int,
|
chunk_size: int,
|
||||||
num_left_chunks: int = -1,
|
num_left_chunks: int = -1,
|
||||||
@@ -124,6 +124,40 @@ def subsequent_chunk_mask(
|
|||||||
return ret
|
return ret
|
||||||
|
|
||||||
|
|
||||||
|
def subsequent_chunk_mask(
|
||||||
|
size: int,
|
||||||
|
chunk_size: int,
|
||||||
|
num_left_chunks: int = -1,
|
||||||
|
device: torch.device = torch.device("cpu"),
|
||||||
|
) -> torch.Tensor:
|
||||||
|
"""Create mask for subsequent steps (size, size) with chunk size,
|
||||||
|
this is for streaming encoder
|
||||||
|
|
||||||
|
Args:
|
||||||
|
size (int): size of mask
|
||||||
|
chunk_size (int): size of chunk
|
||||||
|
num_left_chunks (int): number of left chunks
|
||||||
|
<0: use full chunk
|
||||||
|
>=0: use num_left_chunks
|
||||||
|
device (torch.device): "cpu" or "cuda" or torch.Tensor.device
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: mask
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> subsequent_chunk_mask(4, 2)
|
||||||
|
[[1, 1, 0, 0],
|
||||||
|
[1, 1, 0, 0],
|
||||||
|
[1, 1, 1, 1],
|
||||||
|
[1, 1, 1, 1]]
|
||||||
|
"""
|
||||||
|
# NOTE this modified implementation meets onnx export requirements, but it doesn't support num_left_chunks
|
||||||
|
pos_idx = torch.arange(size, device=device)
|
||||||
|
block_value = (torch.div(pos_idx, chunk_size, rounding_mode='trunc') + 1) * chunk_size
|
||||||
|
ret = pos_idx.unsqueeze(0) < block_value.unsqueeze(1)
|
||||||
|
return ret
|
||||||
|
|
||||||
|
|
||||||
def add_optional_chunk_mask(xs: torch.Tensor,
|
def add_optional_chunk_mask(xs: torch.Tensor,
|
||||||
masks: torch.Tensor,
|
masks: torch.Tensor,
|
||||||
use_dynamic_chunk: bool,
|
use_dynamic_chunk: bool,
|
||||||
@@ -196,9 +230,6 @@ def add_optional_chunk_mask(xs: torch.Tensor,
|
|||||||
else:
|
else:
|
||||||
chunk_masks = masks
|
chunk_masks = masks
|
||||||
assert chunk_masks.dtype == torch.bool
|
assert chunk_masks.dtype == torch.bool
|
||||||
if (chunk_masks.sum(dim=-1) == 0).sum().item() != 0:
|
|
||||||
print('get chunk_masks all false at some timestep, force set to true, make sure they are masked in futuer computation!')
|
|
||||||
chunk_masks[chunk_masks.sum(dim=-1) == 0] = True
|
|
||||||
return chunk_masks
|
return chunk_masks
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
364
cosyvoice/utils/train_utils_dpo.py
Normal file
364
cosyvoice/utils/train_utils_dpo.py
Normal file
@@ -0,0 +1,364 @@
|
|||||||
|
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
|
||||||
|
# 2023 Horizon Inc. (authors: Xingchen Song)
|
||||||
|
# 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import torch
|
||||||
|
import json
|
||||||
|
import re
|
||||||
|
import datetime
|
||||||
|
import yaml
|
||||||
|
|
||||||
|
import deepspeed
|
||||||
|
import torch.optim as optim
|
||||||
|
import torch.distributed as dist
|
||||||
|
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from torch.nn.utils import clip_grad_norm_
|
||||||
|
|
||||||
|
from deepspeed.runtime.zero.stage_1_and_2 import estimate_zero2_model_states_mem_needs_all_live
|
||||||
|
|
||||||
|
from cosyvoice.dataset.dataset import Dataset
|
||||||
|
from cosyvoice.utils.scheduler import WarmupLR, NoamHoldAnnealing, ConstantLR
|
||||||
|
|
||||||
|
|
||||||
|
def init_distributed(args):
|
||||||
|
world_size = int(os.environ.get('WORLD_SIZE', 1))
|
||||||
|
local_rank = int(os.environ.get('LOCAL_RANK', 0))
|
||||||
|
rank = int(os.environ.get('RANK', 0))
|
||||||
|
logging.info('training on multiple gpus, this gpu {}'.format(local_rank) +
|
||||||
|
', rank {}, world_size {}'.format(rank, world_size))
|
||||||
|
if args.train_engine == 'torch_ddp':
|
||||||
|
torch.cuda.set_device(local_rank)
|
||||||
|
dist.init_process_group(args.dist_backend)
|
||||||
|
else:
|
||||||
|
deepspeed.init_distributed(dist_backend=args.dist_backend)
|
||||||
|
return world_size, local_rank, rank
|
||||||
|
|
||||||
|
|
||||||
|
def init_dataset_and_dataloader(args, configs, gan):
|
||||||
|
data_pipeline = configs['data_pipeline_gan'] if gan is True else configs['data_pipeline']
|
||||||
|
train_dataset = Dataset(args.train_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=True, partition=True)
|
||||||
|
cv_dataset = Dataset(args.cv_data, data_pipeline=data_pipeline, mode='train', gan=gan, shuffle=False, partition=False)
|
||||||
|
|
||||||
|
# do not use persistent_workers=True, as whisper tokenizer opens tiktoken file each time when the for loop starts
|
||||||
|
train_data_loader = DataLoader(train_dataset,
|
||||||
|
batch_size=None,
|
||||||
|
pin_memory=args.pin_memory,
|
||||||
|
num_workers=args.num_workers,
|
||||||
|
prefetch_factor=args.prefetch)
|
||||||
|
cv_data_loader = DataLoader(cv_dataset,
|
||||||
|
batch_size=None,
|
||||||
|
pin_memory=args.pin_memory,
|
||||||
|
num_workers=args.num_workers,
|
||||||
|
prefetch_factor=args.prefetch)
|
||||||
|
return train_dataset, cv_dataset, train_data_loader, cv_data_loader
|
||||||
|
|
||||||
|
|
||||||
|
def check_modify_and_save_config(args, configs):
|
||||||
|
if args.train_engine == "torch_ddp":
|
||||||
|
configs['train_conf']["dtype"] = 'fp32'
|
||||||
|
else:
|
||||||
|
with open(args.deepspeed_config, 'r') as fin:
|
||||||
|
ds_configs = json.load(fin)
|
||||||
|
if "fp16" in ds_configs and ds_configs["fp16"]["enabled"]:
|
||||||
|
configs['train_conf']["dtype"] = "fp16"
|
||||||
|
elif "bf16" in ds_configs and ds_configs["bf16"]["enabled"]:
|
||||||
|
configs['train_conf']["dtype"] = "bf16"
|
||||||
|
else:
|
||||||
|
configs['train_conf']["dtype"] = "fp32"
|
||||||
|
assert ds_configs["train_micro_batch_size_per_gpu"] == 1
|
||||||
|
# if use deepspeed, override ddp config
|
||||||
|
configs['train_conf']['save_per_step'] = int(configs['train_conf']['save_per_step'] *
|
||||||
|
configs['train_conf']['accum_grad'] / ds_configs["gradient_accumulation_steps"])
|
||||||
|
configs['train_conf']['accum_grad'] = ds_configs["gradient_accumulation_steps"]
|
||||||
|
configs['train_conf']['grad_clip'] = ds_configs["gradient_clipping"]
|
||||||
|
configs['train_conf']['log_interval'] = ds_configs["steps_per_print"]
|
||||||
|
return configs
|
||||||
|
|
||||||
|
|
||||||
|
def wrap_cuda_model(args, model):
|
||||||
|
local_world_size = int(os.environ.get('LOCAL_WORLD_SIZE', 1))
|
||||||
|
world_size = int(os.environ.get('WORLD_SIZE', 1))
|
||||||
|
if args.train_engine == "torch_ddp": # native pytorch ddp
|
||||||
|
assert (torch.cuda.is_available())
|
||||||
|
model.cuda()
|
||||||
|
model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
|
||||||
|
else:
|
||||||
|
if int(os.environ.get('RANK', 0)) == 0:
|
||||||
|
logging.info("Estimating model states memory needs (zero2)...")
|
||||||
|
estimate_zero2_model_states_mem_needs_all_live(
|
||||||
|
model,
|
||||||
|
num_gpus_per_node=local_world_size,
|
||||||
|
num_nodes=world_size // local_world_size)
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def init_optimizer_and_scheduler(args, configs, model, gan):
|
||||||
|
if gan is False:
|
||||||
|
if configs['train_conf']['optim'] == 'adam':
|
||||||
|
optimizer = optim.Adam(model.parameters(), **configs['train_conf']['optim_conf'])
|
||||||
|
elif configs['train_conf']['optim'] == 'adamw':
|
||||||
|
optimizer = optim.AdamW(model.parameters(), **configs['train_conf']['optim_conf'])
|
||||||
|
else:
|
||||||
|
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
||||||
|
|
||||||
|
if configs['train_conf']['scheduler'] == 'warmuplr':
|
||||||
|
scheduler_type = WarmupLR
|
||||||
|
scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
|
||||||
|
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
|
||||||
|
scheduler_type = NoamHoldAnnealing
|
||||||
|
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
|
||||||
|
elif configs['train_conf']['scheduler'] == 'constantlr':
|
||||||
|
scheduler_type = ConstantLR
|
||||||
|
scheduler = ConstantLR(optimizer)
|
||||||
|
else:
|
||||||
|
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
||||||
|
|
||||||
|
# use deepspeed optimizer for speedup
|
||||||
|
if args.train_engine == "deepspeed":
|
||||||
|
def scheduler(opt):
|
||||||
|
return scheduler_type(opt, **configs['train_conf']['scheduler_conf'])
|
||||||
|
model, optimizer, _, scheduler = deepspeed.initialize(
|
||||||
|
args=args,
|
||||||
|
model=model,
|
||||||
|
optimizer=None,
|
||||||
|
lr_scheduler=scheduler,
|
||||||
|
model_parameters=model.parameters())
|
||||||
|
|
||||||
|
optimizer_d, scheduler_d = None, None
|
||||||
|
|
||||||
|
else:
|
||||||
|
# currently we wrap generator and discriminator in one model, so we cannot use deepspeed
|
||||||
|
if configs['train_conf']['optim'] == 'adam':
|
||||||
|
optimizer = optim.Adam(model.module.generator.parameters(), **configs['train_conf']['optim_conf'])
|
||||||
|
elif configs['train_conf']['optim'] == 'adamw':
|
||||||
|
optimizer = optim.AdamW(model.module.generator.parameters(), **configs['train_conf']['optim_conf'])
|
||||||
|
else:
|
||||||
|
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
||||||
|
|
||||||
|
if configs['train_conf']['scheduler'] == 'warmuplr':
|
||||||
|
scheduler_type = WarmupLR
|
||||||
|
scheduler = WarmupLR(optimizer, **configs['train_conf']['scheduler_conf'])
|
||||||
|
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
|
||||||
|
scheduler_type = NoamHoldAnnealing
|
||||||
|
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
|
||||||
|
elif configs['train_conf']['scheduler'] == 'constantlr':
|
||||||
|
scheduler_type = ConstantLR
|
||||||
|
scheduler = ConstantLR(optimizer)
|
||||||
|
else:
|
||||||
|
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
||||||
|
|
||||||
|
if configs['train_conf']['optim_d'] == 'adam':
|
||||||
|
optimizer_d = optim.Adam(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
|
||||||
|
elif configs['train_conf']['optim_d'] == 'adamw':
|
||||||
|
optimizer_d = optim.AdamW(model.module.discriminator.parameters(), **configs['train_conf']['optim_conf'])
|
||||||
|
else:
|
||||||
|
raise ValueError("unknown optimizer: " + configs['train_conf'])
|
||||||
|
|
||||||
|
if configs['train_conf']['scheduler_d'] == 'warmuplr':
|
||||||
|
scheduler_type = WarmupLR
|
||||||
|
scheduler_d = WarmupLR(optimizer_d, **configs['train_conf']['scheduler_conf'])
|
||||||
|
elif configs['train_conf']['scheduler_d'] == 'NoamHoldAnnealing':
|
||||||
|
scheduler_type = NoamHoldAnnealing
|
||||||
|
scheduler_d = NoamHoldAnnealing(optimizer_d, **configs['train_conf']['scheduler_conf'])
|
||||||
|
elif configs['train_conf']['scheduler'] == 'constantlr':
|
||||||
|
scheduler_type = ConstantLR
|
||||||
|
scheduler_d = ConstantLR(optimizer_d)
|
||||||
|
else:
|
||||||
|
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
||||||
|
return model, optimizer, scheduler, optimizer_d, scheduler_d
|
||||||
|
|
||||||
|
|
||||||
|
def init_summarywriter(args):
|
||||||
|
writer = None
|
||||||
|
if int(os.environ.get('RANK', 0)) == 0:
|
||||||
|
os.makedirs(args.model_dir, exist_ok=True)
|
||||||
|
writer = SummaryWriter(args.tensorboard_dir)
|
||||||
|
return writer
|
||||||
|
|
||||||
|
|
||||||
|
def save_model(model, model_name, info_dict):
|
||||||
|
rank = int(os.environ.get('RANK', 0))
|
||||||
|
model_dir = info_dict["model_dir"]
|
||||||
|
save_model_path = os.path.join(model_dir, '{}.pt'.format(model_name))
|
||||||
|
|
||||||
|
if info_dict["train_engine"] == "torch_ddp":
|
||||||
|
if rank == 0:
|
||||||
|
torch.save({**model.module.state_dict(), 'epoch': info_dict['epoch'], 'step': info_dict['step']}, save_model_path)
|
||||||
|
else:
|
||||||
|
with torch.no_grad():
|
||||||
|
model.save_checkpoint(save_dir=model_dir,
|
||||||
|
tag=model_name,
|
||||||
|
client_state=info_dict)
|
||||||
|
if rank == 0:
|
||||||
|
info_path = re.sub('.pt$', '.yaml', save_model_path)
|
||||||
|
info_dict['save_time'] = datetime.datetime.now().strftime('%d/%m/%Y %H:%M:%S')
|
||||||
|
with open(info_path, 'w') as fout:
|
||||||
|
data = yaml.dump(info_dict)
|
||||||
|
fout.write(data)
|
||||||
|
logging.info('[Rank {}] Checkpoint: save to checkpoint {}'.format(rank, save_model_path))
|
||||||
|
|
||||||
|
|
||||||
|
def cosyvoice_join(group_join, info_dict):
|
||||||
|
world_size = int(os.environ.get('WORLD_SIZE', 1))
|
||||||
|
local_rank = int(os.environ.get('LOCAL_RANK', 0))
|
||||||
|
rank = int(os.environ.get('RANK', 0))
|
||||||
|
|
||||||
|
if info_dict["batch_idx"] != 0:
|
||||||
|
# we try to join all rank in both ddp and deepspeed mode, in case different rank has different lr
|
||||||
|
try:
|
||||||
|
dist.monitored_barrier(group=group_join,
|
||||||
|
timeout=group_join.options._timeout)
|
||||||
|
return False
|
||||||
|
except RuntimeError as e:
|
||||||
|
logging.info("Detected uneven workload distribution: {}\n".format(e) +
|
||||||
|
"Break current worker to manually join all workers, " +
|
||||||
|
"world_size {}, current rank {}, current local_rank {}\n".
|
||||||
|
format(world_size, rank, local_rank))
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def batch_forward(model, batch, scaler, info_dict, ref_model=None, dpo_loss=None):
|
||||||
|
device = int(os.environ.get('LOCAL_RANK', 0))
|
||||||
|
|
||||||
|
dtype = info_dict["dtype"]
|
||||||
|
if dtype == "fp16":
|
||||||
|
dtype = torch.float16
|
||||||
|
elif dtype == "bf16":
|
||||||
|
dtype = torch.bfloat16
|
||||||
|
else: # fp32
|
||||||
|
dtype = torch.float32
|
||||||
|
|
||||||
|
if info_dict['train_engine'] == 'torch_ddp':
|
||||||
|
autocast = torch.cuda.amp.autocast(enabled=scaler is not None)
|
||||||
|
else:
|
||||||
|
autocast = torch.cuda.amp.autocast(enabled=True, dtype=dtype, cache_enabled=False)
|
||||||
|
|
||||||
|
with autocast:
|
||||||
|
info_dict['loss_dict'] = model(batch, device)
|
||||||
|
if ref_model and dpo_loss:
|
||||||
|
chosen_logps = info_dict['loss_dict']["chosen_logps"]
|
||||||
|
rejected_logps = info_dict['loss_dict']["rejected_logps"]
|
||||||
|
sft_loss = info_dict['loss_dict']['loss']
|
||||||
|
with torch.no_grad():
|
||||||
|
ref_model = ref_model.to(device)
|
||||||
|
ref_loss_dict = ref_model(batch, device)
|
||||||
|
reference_chosen_logps = ref_loss_dict["chosen_logps"]
|
||||||
|
reference_rejected_logps = ref_loss_dict["rejected_logps"]
|
||||||
|
preference_loss, chosen_reward, reject_reward = dpo_loss(
|
||||||
|
chosen_logps, rejected_logps, reference_chosen_logps, reference_rejected_logps
|
||||||
|
)
|
||||||
|
dpo_acc = (chosen_reward > reject_reward).float().mean()
|
||||||
|
info_dict['loss_dict']["loss"] = preference_loss + sft_loss
|
||||||
|
info_dict['loss_dict']["sft_loss"] = sft_loss
|
||||||
|
info_dict['loss_dict']["dpo_loss"] = preference_loss
|
||||||
|
info_dict['loss_dict']["dpo_acc"] = dpo_acc
|
||||||
|
info_dict['loss_dict']["chosen_reward"] = chosen_reward.mean()
|
||||||
|
info_dict['loss_dict']["reject_reward"] = reject_reward.mean()
|
||||||
|
return info_dict
|
||||||
|
|
||||||
|
|
||||||
|
def batch_backward(model, scaler, info_dict):
|
||||||
|
if info_dict["train_engine"] == "deepspeed":
|
||||||
|
scaled_loss = model.backward(info_dict['loss_dict']['loss'])
|
||||||
|
else:
|
||||||
|
scaled_loss = info_dict['loss_dict']['loss'] / info_dict['accum_grad']
|
||||||
|
if scaler is not None:
|
||||||
|
scaler.scale(scaled_loss).backward()
|
||||||
|
else:
|
||||||
|
scaled_loss.backward()
|
||||||
|
|
||||||
|
info_dict['loss_dict']['loss'] = scaled_loss
|
||||||
|
return info_dict
|
||||||
|
|
||||||
|
|
||||||
|
def update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict):
|
||||||
|
grad_norm = 0.0
|
||||||
|
if info_dict['train_engine'] == "deepspeed":
|
||||||
|
info_dict["is_gradient_accumulation_boundary"] = model.is_gradient_accumulation_boundary()
|
||||||
|
model.step()
|
||||||
|
grad_norm = model.get_global_grad_norm()
|
||||||
|
elif (info_dict['batch_idx'] + 1) % info_dict["accum_grad"] == 0:
|
||||||
|
# Use mixed precision training
|
||||||
|
if scaler is not None:
|
||||||
|
scaler.unscale_(optimizer)
|
||||||
|
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
|
||||||
|
# We don't check grad here since that if the gradient
|
||||||
|
# has inf/nan values, scaler.step will skip
|
||||||
|
# optimizer.step().
|
||||||
|
if torch.isfinite(grad_norm):
|
||||||
|
scaler.step(optimizer)
|
||||||
|
scaler.update()
|
||||||
|
else:
|
||||||
|
grad_norm = clip_grad_norm_(model.parameters(), info_dict['grad_clip'])
|
||||||
|
if torch.isfinite(grad_norm):
|
||||||
|
optimizer.step()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
scheduler.step()
|
||||||
|
info_dict["lr"] = optimizer.param_groups[0]['lr']
|
||||||
|
info_dict["grad_norm"] = grad_norm
|
||||||
|
return info_dict
|
||||||
|
|
||||||
|
|
||||||
|
def log_per_step(writer, info_dict):
|
||||||
|
tag = info_dict["tag"]
|
||||||
|
epoch = info_dict.get('epoch', 0)
|
||||||
|
step = info_dict["step"]
|
||||||
|
batch_idx = info_dict["batch_idx"]
|
||||||
|
loss_dict = info_dict['loss_dict']
|
||||||
|
rank = int(os.environ.get('RANK', 0))
|
||||||
|
|
||||||
|
# only rank 0 write to tensorboard to avoid multi-process write
|
||||||
|
if writer is not None:
|
||||||
|
if (info_dict['train_engine'] == 'deepspeed' and info_dict['is_gradient_accumulation_boundary'] is True) or \
|
||||||
|
(info_dict['train_engine'] == 'torch_ddp' and (info_dict['batch_idx'] + 1) % info_dict['accum_grad'] == 0):
|
||||||
|
for k in ['epoch', 'lr', 'grad_norm']:
|
||||||
|
writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
|
||||||
|
for k, v in loss_dict.items():
|
||||||
|
writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)
|
||||||
|
|
||||||
|
# TRAIN & CV, Shell log (stdout)
|
||||||
|
if (info_dict['batch_idx'] + 1) % info_dict['log_interval'] == 0:
|
||||||
|
log_str = '{} Batch {}/{} '.format(tag, epoch, batch_idx + 1)
|
||||||
|
for name, value in loss_dict.items():
|
||||||
|
log_str += '{} {:.6f} '.format(name, value)
|
||||||
|
if tag == "TRAIN":
|
||||||
|
log_str += 'lr {:.8f} grad_norm {:.6f}'.format(
|
||||||
|
info_dict["lr"], info_dict['grad_norm'])
|
||||||
|
log_str += ' rank {}'.format(rank)
|
||||||
|
logging.debug(log_str)
|
||||||
|
|
||||||
|
|
||||||
|
def log_per_save(writer, info_dict):
|
||||||
|
tag = info_dict["tag"]
|
||||||
|
epoch = info_dict["epoch"]
|
||||||
|
step = info_dict["step"]
|
||||||
|
loss_dict = info_dict["loss_dict"]
|
||||||
|
lr = info_dict['lr']
|
||||||
|
rank = int(os.environ.get('RANK', 0))
|
||||||
|
logging.info(
|
||||||
|
'Epoch {} Step {} CV info lr {} {} rank {}'.format(
|
||||||
|
epoch, step + 1, lr, rank, ' '.join(['{}_{}'.format(k, v) for k, v in loss_dict.items()])))
|
||||||
|
|
||||||
|
if writer is not None:
|
||||||
|
for k in ['epoch', 'lr']:
|
||||||
|
writer.add_scalar('{}/{}'.format(tag, k), info_dict[k], step + 1)
|
||||||
|
for k, v in loss_dict.items():
|
||||||
|
writer.add_scalar('{}/{}'.format(tag, k), v, step + 1)
|
||||||
226
examples/libritts/cosyvoice/conf/cosyvoice_dpo.yaml
Normal file
226
examples/libritts/cosyvoice/conf/cosyvoice_dpo.yaml
Normal file
@@ -0,0 +1,226 @@
|
|||||||
|
# set random seed, so that you may reproduce your result.
|
||||||
|
__set_seed1: !apply:random.seed [1986]
|
||||||
|
__set_seed2: !apply:numpy.random.seed [1986]
|
||||||
|
__set_seed3: !apply:torch.manual_seed [1986]
|
||||||
|
__set_seed4: !apply:torch.cuda.manual_seed_all [1986]
|
||||||
|
|
||||||
|
# fixed params
|
||||||
|
sample_rate: 24000 # 16000 for llm, 24000 for cfm
|
||||||
|
llm_input_size: 896
|
||||||
|
llm_output_size: 896
|
||||||
|
spk_embed_dim: 192
|
||||||
|
qwen_pretrain_path: 'CosyVoice2-0.5B/CosyVoice-BlankEN'
|
||||||
|
|
||||||
|
# model params
|
||||||
|
# for all class/function included in this repo, we use !<name> or !<new> for intialization, so that user may find all corresponding class/function according to one single yaml.
|
||||||
|
# for system/third_party class/function, we do not require this.
|
||||||
|
llm: !new:cosyvoice.llm.llm_dpo.Qwen2LM
|
||||||
|
llm_input_size: !ref <llm_input_size>
|
||||||
|
llm_output_size: !ref <llm_output_size>
|
||||||
|
speech_token_size: 6561
|
||||||
|
length_normalized_loss: True
|
||||||
|
lsm_weight: 0
|
||||||
|
dpo: True
|
||||||
|
llm: !new:cosyvoice.llm.llm.Qwen2Encoder
|
||||||
|
pretrain_path: !ref <qwen_pretrain_path>
|
||||||
|
sampling: !name:cosyvoice.utils.common.ras_sampling
|
||||||
|
top_p: 0.8
|
||||||
|
top_k: 25
|
||||||
|
win_size: 10
|
||||||
|
tau_r: 0.1
|
||||||
|
flow: !new:cosyvoice.flow.flow.CausalMaskedDiffWithXvec
|
||||||
|
input_size: 512
|
||||||
|
output_size: 80
|
||||||
|
spk_embed_dim: !ref <spk_embed_dim>
|
||||||
|
output_type: 'mel'
|
||||||
|
vocab_size: 6561
|
||||||
|
input_frame_rate: 25
|
||||||
|
only_mask_loss: True
|
||||||
|
token_mel_ratio: 2
|
||||||
|
pre_lookahead_len: 3
|
||||||
|
encoder: !new:cosyvoice.transformer.upsample_encoder.UpsampleConformerEncoder
|
||||||
|
output_size: 512
|
||||||
|
attention_heads: 8
|
||||||
|
linear_units: 2048
|
||||||
|
num_blocks: 6
|
||||||
|
dropout_rate: 0.1
|
||||||
|
positional_dropout_rate: 0.1
|
||||||
|
attention_dropout_rate: 0.1
|
||||||
|
normalize_before: True
|
||||||
|
input_layer: 'linear'
|
||||||
|
pos_enc_layer_type: 'rel_pos_espnet'
|
||||||
|
selfattention_layer_type: 'rel_selfattn'
|
||||||
|
input_size: 512
|
||||||
|
use_cnn_module: False
|
||||||
|
macaron_style: False
|
||||||
|
decoder: !new:cosyvoice.flow.flow_matching.CausalConditionalCFM
|
||||||
|
in_channels: 240
|
||||||
|
n_spks: 1
|
||||||
|
spk_emb_dim: 80
|
||||||
|
cfm_params: !new:omegaconf.DictConfig
|
||||||
|
content:
|
||||||
|
sigma_min: 1e-06
|
||||||
|
solver: 'euler'
|
||||||
|
t_scheduler: 'cosine'
|
||||||
|
training_cfg_rate: 0.2
|
||||||
|
inference_cfg_rate: 0.7
|
||||||
|
reg_loss_type: 'l1'
|
||||||
|
estimator: !new:cosyvoice.flow.decoder.ConditionalDecoder
|
||||||
|
in_channels: 320
|
||||||
|
out_channels: 80
|
||||||
|
causal: True
|
||||||
|
channels: [256]
|
||||||
|
dropout: 0.0
|
||||||
|
attention_head_dim: 64
|
||||||
|
n_blocks: 4
|
||||||
|
num_mid_blocks: 12
|
||||||
|
num_heads: 8
|
||||||
|
act_fn: 'gelu'
|
||||||
|
|
||||||
|
hift: !new:cosyvoice.hifigan.generator.HiFTGenerator
|
||||||
|
in_channels: 80
|
||||||
|
base_channels: 512
|
||||||
|
nb_harmonics: 8
|
||||||
|
sampling_rate: !ref <sample_rate>
|
||||||
|
nsf_alpha: 0.1
|
||||||
|
nsf_sigma: 0.003
|
||||||
|
nsf_voiced_threshold: 10
|
||||||
|
upsample_rates: [8, 5, 3]
|
||||||
|
upsample_kernel_sizes: [16, 11, 7]
|
||||||
|
istft_params:
|
||||||
|
n_fft: 16
|
||||||
|
hop_len: 4
|
||||||
|
resblock_kernel_sizes: [3, 7, 11]
|
||||||
|
resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
||||||
|
source_resblock_kernel_sizes: [7, 7, 11]
|
||||||
|
source_resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]
|
||||||
|
lrelu_slope: 0.1
|
||||||
|
audio_limit: 0.99
|
||||||
|
f0_predictor: !new:cosyvoice.hifigan.f0_predictor.ConvRNNF0Predictor
|
||||||
|
num_class: 1
|
||||||
|
in_channels: 80
|
||||||
|
cond_channels: 512
|
||||||
|
|
||||||
|
# gan related module
|
||||||
|
mel_spec_transform1: !name:matcha.utils.audio.mel_spectrogram
|
||||||
|
n_fft: 1024
|
||||||
|
num_mels: 80
|
||||||
|
sampling_rate: !ref <sample_rate>
|
||||||
|
hop_size: 256
|
||||||
|
win_size: 1024
|
||||||
|
fmin: 0
|
||||||
|
fmax: null
|
||||||
|
center: False
|
||||||
|
hifigan: !new:cosyvoice.hifigan.hifigan.HiFiGan
|
||||||
|
generator: !ref <hift>
|
||||||
|
discriminator: !new:cosyvoice.hifigan.discriminator.MultipleDiscriminator
|
||||||
|
mpd: !new:matcha.hifigan.models.MultiPeriodDiscriminator
|
||||||
|
mrd: !new:cosyvoice.hifigan.discriminator.MultiResolutionDiscriminator
|
||||||
|
mel_spec_transform: [
|
||||||
|
!ref <mel_spec_transform1>
|
||||||
|
]
|
||||||
|
|
||||||
|
# processor functions
|
||||||
|
parquet_opener: !name:cosyvoice.dataset.processor.parquet_opener
|
||||||
|
get_tokenizer: !name:whisper.tokenizer.get_tokenizer # change to !name:cosyvoice.tokenizer.tokenizer.get_tokenizer if you want to train with CosyVoice-300M-25Hz recipe
|
||||||
|
multilingual: True
|
||||||
|
num_languages: 100
|
||||||
|
language: 'en'
|
||||||
|
task: 'transcribe'
|
||||||
|
allowed_special: 'all'
|
||||||
|
tokenize: !name:cosyvoice.dataset.processor.tokenize
|
||||||
|
get_tokenizer: !ref <get_tokenizer>
|
||||||
|
allowed_special: !ref <allowed_special>
|
||||||
|
filter: !name:cosyvoice.dataset.processor.filter
|
||||||
|
max_length: 40960
|
||||||
|
min_length: 0
|
||||||
|
token_max_length: 200
|
||||||
|
token_min_length: 1
|
||||||
|
resample: !name:cosyvoice.dataset.processor.resample
|
||||||
|
resample_rate: !ref <sample_rate>
|
||||||
|
truncate: !name:cosyvoice.dataset.processor.truncate
|
||||||
|
truncate_length: 24576 # must be a multiplier of hop_size
|
||||||
|
feat_extractor: !name:matcha.utils.audio.mel_spectrogram
|
||||||
|
n_fft: 1024
|
||||||
|
num_mels: 80
|
||||||
|
sampling_rate: !ref <sample_rate>
|
||||||
|
hop_size: 256
|
||||||
|
win_size: 1024
|
||||||
|
fmin: 0
|
||||||
|
fmax: 8000
|
||||||
|
center: False
|
||||||
|
compute_fbank: !name:cosyvoice.dataset.processor.compute_fbank
|
||||||
|
feat_extractor: !ref <feat_extractor>
|
||||||
|
compute_f0: !name:cosyvoice.dataset.processor.compute_f0
|
||||||
|
sample_rate: !ref <sample_rate>
|
||||||
|
hop_size: 256
|
||||||
|
parse_embedding: !name:cosyvoice.dataset.processor.parse_embedding
|
||||||
|
normalize: True
|
||||||
|
shuffle: !name:cosyvoice.dataset.processor.shuffle
|
||||||
|
shuffle_size: 1000
|
||||||
|
sort: !name:cosyvoice.dataset.processor.sort
|
||||||
|
sort_size: 500 # sort_size should be less than shuffle_size
|
||||||
|
batch: !name:cosyvoice.dataset.processor.batch
|
||||||
|
batch_type: 'dynamic'
|
||||||
|
max_frames_in_batch: 2000 # change to 1400 in gan train on v100 16g
|
||||||
|
padding: !name:cosyvoice.dataset.processor.padding
|
||||||
|
use_spk_embedding: True # change to True during sft
|
||||||
|
dpo: True
|
||||||
|
|
||||||
|
# dataset processor pipeline
|
||||||
|
data_pipeline: [
|
||||||
|
!ref <parquet_opener>,
|
||||||
|
!ref <tokenize>,
|
||||||
|
!ref <filter>,
|
||||||
|
!ref <resample>,
|
||||||
|
!ref <compute_fbank>,
|
||||||
|
!ref <parse_embedding>,
|
||||||
|
!ref <shuffle>,
|
||||||
|
!ref <sort>,
|
||||||
|
!ref <batch>,
|
||||||
|
!ref <padding>,
|
||||||
|
]
|
||||||
|
data_pipeline_gan: [
|
||||||
|
!ref <parquet_opener>,
|
||||||
|
!ref <tokenize>,
|
||||||
|
!ref <filter>,
|
||||||
|
!ref <resample>,
|
||||||
|
!ref <truncate>,
|
||||||
|
!ref <compute_fbank>,
|
||||||
|
!ref <compute_f0>,
|
||||||
|
!ref <parse_embedding>,
|
||||||
|
!ref <shuffle>,
|
||||||
|
!ref <sort>,
|
||||||
|
!ref <batch>,
|
||||||
|
!ref <padding>,
|
||||||
|
]
|
||||||
|
|
||||||
|
# llm flow train conf
|
||||||
|
train_conf:
|
||||||
|
optim: adam
|
||||||
|
optim_conf:
|
||||||
|
lr: 0.00001 # change to 1e-5 during sft
|
||||||
|
scheduler: warmuplr # change to constantlr during sft
|
||||||
|
scheduler_conf:
|
||||||
|
warmup_steps: 25000
|
||||||
|
max_epoch: 200
|
||||||
|
grad_clip: 5
|
||||||
|
accum_grad: 2
|
||||||
|
log_interval: 100
|
||||||
|
save_per_step: -1
|
||||||
|
|
||||||
|
# gan train conf
|
||||||
|
train_conf_gan:
|
||||||
|
optim: adam
|
||||||
|
optim_conf:
|
||||||
|
lr: 0.0002 # use small lr for gan training
|
||||||
|
scheduler: constantlr
|
||||||
|
optim_d: adam
|
||||||
|
optim_conf_d:
|
||||||
|
lr: 0.0002 # use small lr for gan training
|
||||||
|
scheduler_d: constantlr
|
||||||
|
max_epoch: 200
|
||||||
|
grad_clip: 5
|
||||||
|
accum_grad: 1 # in gan training, accum_grad must be 1
|
||||||
|
log_interval: 100
|
||||||
|
save_per_step: -1
|
||||||
40
requirements_vllm.txt
Normal file
40
requirements_vllm.txt
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
vllm==0.7.3
|
||||||
|
pydantic==2.10.6
|
||||||
|
torch==2.5.1
|
||||||
|
torchaudio==2.5.1
|
||||||
|
|
||||||
|
conformer==0.3.2
|
||||||
|
|
||||||
|
diffusers==0.32.2
|
||||||
|
gdown==5.1.0
|
||||||
|
grpcio==1.57.0
|
||||||
|
grpcio-tools==1.57.0
|
||||||
|
hydra-core==1.3.2
|
||||||
|
HyperPyYAML==1.2.2
|
||||||
|
inflect==7.3.1
|
||||||
|
librosa==0.10.2
|
||||||
|
|
||||||
|
lightning==2.5.0.post0
|
||||||
|
matplotlib==3.7.5
|
||||||
|
modelscope==1.15.0
|
||||||
|
|
||||||
|
networkx==3.4.2
|
||||||
|
omegaconf==2.3.0
|
||||||
|
onnx==1.17.0
|
||||||
|
|
||||||
|
onnxruntime-gpu==1.19.0; sys_platform == 'linux'
|
||||||
|
|
||||||
|
#openai-whisper==20231117
|
||||||
|
openai-whisper==20240930
|
||||||
|
protobuf==4.25
|
||||||
|
pyworld==0.3.4
|
||||||
|
rich==13.7.1
|
||||||
|
soundfile==0.12.1
|
||||||
|
tensorboard==2.14.0
|
||||||
|
wget==3.2
|
||||||
|
WeTextProcessing==1.0.3
|
||||||
|
|
||||||
|
# trt use
|
||||||
|
tensorrt-cu12==10.0.1
|
||||||
|
tensorrt-cu12-bindings==10.0.1
|
||||||
|
tensorrt-cu12-libs==10.0.1
|
||||||
125
tools/make_parquet_list_dpo.py
Executable file
125
tools/make_parquet_list_dpo.py
Executable file
@@ -0,0 +1,125 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import json
|
||||||
|
from tqdm import tqdm
|
||||||
|
import pandas as pd
|
||||||
|
import multiprocessing
|
||||||
|
import time
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
def job(utt_list, parquet_file, utt2parquet_file, spk2parquet_file):
|
||||||
|
start_time = time.time()
|
||||||
|
data_list = []
|
||||||
|
for utt in tqdm(utt_list):
|
||||||
|
data = open(utt2wav[utt], 'rb').read()
|
||||||
|
data_list.append(data)
|
||||||
|
wav_list = [utt2wav[utt] for utt in utt_list]
|
||||||
|
text_list = [utt2text[utt] for utt in utt_list]
|
||||||
|
spk_list = [utt2spk[utt] for utt in utt_list]
|
||||||
|
uttembedding_list = [utt2embedding[utt] for utt in utt_list]
|
||||||
|
spkembedding_list = [spk2embedding[utt2spk[utt]] for utt in utt_list]
|
||||||
|
speech_token_list = [utt2speech_token[utt] for utt in utt_list]
|
||||||
|
if utt2reject_speech_token:
|
||||||
|
reject_speech_token_list = [utt2reject_speech_token[utt] for utt in utt_list]
|
||||||
|
|
||||||
|
# 保存到parquet,utt2parquet_file,spk2parquet_file
|
||||||
|
df = pd.DataFrame()
|
||||||
|
df['utt'] = utt_list
|
||||||
|
df['wav'] = wav_list
|
||||||
|
df['audio_data'] = data_list
|
||||||
|
df['text'] = text_list
|
||||||
|
df['spk'] = spk_list
|
||||||
|
df['utt_embedding'] = uttembedding_list
|
||||||
|
df['spk_embedding'] = spkembedding_list
|
||||||
|
df['speech_token'] = speech_token_list
|
||||||
|
if utt2reject_speech_token:
|
||||||
|
df['reject_speech_token'] = reject_speech_token_list
|
||||||
|
df.to_parquet(parquet_file)
|
||||||
|
with open(utt2parquet_file, 'w') as f:
|
||||||
|
json.dump({k: parquet_file for k in utt_list}, f, ensure_ascii=False, indent=2)
|
||||||
|
with open(spk2parquet_file, 'w') as f:
|
||||||
|
json.dump({k: parquet_file for k in list(set(spk_list))}, f, ensure_ascii=False, indent=2)
|
||||||
|
logging.info('spend time {}'.format(time.time() - start_time))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--num_utts_per_parquet',
|
||||||
|
type=int,
|
||||||
|
default=1000,
|
||||||
|
help='num utts per parquet')
|
||||||
|
parser.add_argument('--num_processes',
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help='num processes for make parquets')
|
||||||
|
parser.add_argument('--src_dir',
|
||||||
|
type=str)
|
||||||
|
parser.add_argument('--des_dir',
|
||||||
|
type=str)
|
||||||
|
parser.add_argument('--dpo',
|
||||||
|
action='store_true',
|
||||||
|
default=False,
|
||||||
|
help='Use Direct Preference Optimization')
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
utt2wav, utt2text, utt2spk = {}, {}, {}
|
||||||
|
with open('{}/wav.scp'.format(args.src_dir)) as f:
|
||||||
|
for l in f:
|
||||||
|
l = l.replace('\n', '').split()
|
||||||
|
utt2wav[l[0]] = l[1]
|
||||||
|
with open('{}/text'.format(args.src_dir)) as f:
|
||||||
|
for l in f:
|
||||||
|
l = l.replace('\n', '').split()
|
||||||
|
utt2text[l[0]] = ' '.join(l[1:])
|
||||||
|
with open('{}/utt2spk'.format(args.src_dir)) as f:
|
||||||
|
for l in f:
|
||||||
|
l = l.replace('\n', '').split()
|
||||||
|
utt2spk[l[0]] = l[1]
|
||||||
|
utt2embedding = torch.load('{}/utt2embedding.pt'.format(args.src_dir))
|
||||||
|
spk2embedding = torch.load('{}/spk2embedding.pt'.format(args.src_dir))
|
||||||
|
utt2speech_token = torch.load('{}/utt2speech_token.pt'.format(args.src_dir))
|
||||||
|
if args.dpo:
|
||||||
|
utt2reject_speech_token = torch.load('{}/utt2reject_speech_token.pt'.format(args.src_dir))
|
||||||
|
else:
|
||||||
|
utt2reject_speech_token = None
|
||||||
|
utts = list(utt2wav.keys())
|
||||||
|
|
||||||
|
# Using process pool to speedup
|
||||||
|
pool = multiprocessing.Pool(processes=args.num_processes)
|
||||||
|
parquet_list, utt2parquet_list, spk2parquet_list = [], [], []
|
||||||
|
for i, j in enumerate(range(0, len(utts), args.num_utts_per_parquet)):
|
||||||
|
parquet_file = os.path.join(args.des_dir, 'parquet_{:09d}.tar'.format(i))
|
||||||
|
utt2parquet_file = os.path.join(args.des_dir, 'utt2parquet_{:09d}.json'.format(i))
|
||||||
|
spk2parquet_file = os.path.join(args.des_dir, 'spk2parquet_{:09d}.json'.format(i))
|
||||||
|
parquet_list.append(parquet_file)
|
||||||
|
utt2parquet_list.append(utt2parquet_file)
|
||||||
|
spk2parquet_list.append(spk2parquet_file)
|
||||||
|
pool.apply_async(job, (utts[j: j + args.num_utts_per_parquet], parquet_file, utt2parquet_file, spk2parquet_file))
|
||||||
|
pool.close()
|
||||||
|
pool.join()
|
||||||
|
|
||||||
|
with open('{}/data.list'.format(args.des_dir), 'w', encoding='utf8') as f1, \
|
||||||
|
open('{}/utt2data.list'.format(args.des_dir), 'w', encoding='utf8') as f2, \
|
||||||
|
open('{}/spk2data.list'.format(args.des_dir), 'w', encoding='utf8') as f3:
|
||||||
|
for name in parquet_list:
|
||||||
|
f1.write(name + '\n')
|
||||||
|
for name in utt2parquet_list:
|
||||||
|
f2.write(name + '\n')
|
||||||
|
for name in spk2parquet_list:
|
||||||
|
f3.write(name + '\n')
|
||||||
Reference in New Issue
Block a user