Files
CosyVoice/cosyvoice/llm/llm_vllm.py
2025-04-16 17:57:02 +08:00

213 lines
8.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import queue
import asyncio
import threading
from typing import List, Generator, AsyncGenerator
import torch
from cosyvoice.utils.file_utils import logging
from cosyvoice.llm.llm import Qwen2LM
# 启用vllm V1版本
import os
os.environ["VLLM_USE_V1"] = '1'
from vllm import ModelRegistry
from vllm import LLMEngine, AsyncLLMEngine, CompletionOutput
from vllm.engine.arg_utils import EngineArgs, AsyncEngineArgs
from vllm.sampling_params import SamplingParams
from cosyvoice.llm.vllm_use_cosyvoice2_model import CosyVoice2Model as CosyVoice2LLM
ModelRegistry.register_model("CosyVoice2Model", CosyVoice2LLM)
# EngineArgs
ENGINE_ARGS = {
"block_size": 16,
"swap_space": 0,
# "enforce_eager": True,
"gpu_memory_utilization": 0.4,
"max_num_batched_tokens": 1024,
"max_model_len": 1024,
"max_num_seqs": 256,
"disable_log_requests": True,
"disable_log_stats": True,
"dtype": "float16"
}
from vllm.sampling_params import RequestOutputKind
# SamplingParams
SAMPLING_PARAMS = {
"temperature": 1, # 不能低于0.8, 否则会生成非常多的空音频或者无法正常生成语音Token
"top_p": 1, # 不能低于0.8, 否则会生成非常多的空音频或者无法正常生成语音Token
"top_k": 25,
# "min_tokens": 80, # 不支持设置最小的tokens数量设置开启后vllm直接崩溃无法启动
# "presence_penalty": 1.0, # 不支持设置
# "frequency_penalty": 0.0, # 不支持设置
"max_tokens": 1024,
"detokenize": False, # 目前 vllm 0.7.3 v1版本中设置无效待后续版本更新后减少计算
"ignore_eos": False,
"output_kind": RequestOutputKind.DELTA # 设置为DELTA如调整该参数请同时调整llm_inference的处理代码
}
def tensor_to_list(tensor: torch.tensor):
return tensor.view(-1).cpu().numpy().tolist()
class VllmQwen2LM(Qwen2LM):
def __init__(
self,
model_dir,
mix_ratio: List[int] = [5, 15],
):
self.fp16 = False
self.half = lambda: None
self.mix_ratio = mix_ratio
# ---------------------------------------------
# vllm engine 的参数配置
engine_args = AsyncEngineArgs(
model=model_dir,
**ENGINE_ARGS,
)
self.llm_engine: AsyncLLMEngine = AsyncLLMEngine.from_engine_args(engine_args)
self.speech_token_size = 6564 # 6561 + 3
self.llm_token_size = 151936 # llm vocab_size
self.sos_eos_token_id = self.speech_token_size + self.llm_token_size + 1
self.task_token_id = self.sos_eos_token_id + 1
self.zero_token_id = self.task_token_id + 1
# vllm 的推理任务需要在一个固定的事件循环中,因此启动一个后台线程运行转用于推理任务
self.loop = asyncio.new_event_loop()
self.loop_thread = threading.Thread(target=self._run_event_loop, daemon=True)
self.loop_thread.start()
def _run_event_loop(self):
asyncio.set_event_loop(self.loop)
self.loop.run_forever()
async def async_llm_inference(self, out_queue, prompt_token_ids, request_id, stop_token_ids, max_tokens):
sampling_params = SamplingParams(**SAMPLING_PARAMS)
sampling_params.stop_token_ids = stop_token_ids or [6561]
if max_tokens:
sampling_params.max_tokens = max_tokens
async for output in self.llm_engine.generate(
{
"prompt_token_ids": prompt_token_ids,
},
sampling_params=sampling_params,
request_id=request_id or f"{time.time()}",
):
out_queue.put((output.outputs[0], output.finished))
def llm_inference(self, prompt_token_ids: List[int], request_id: str=None, stop_token_ids=None, max_tokens=None):
out_queue = queue.Queue()
asyncio.run_coroutine_threadsafe(
self.async_llm_inference(out_queue, prompt_token_ids, request_id, stop_token_ids, max_tokens), self.loop
)
# 接收 out_queue 返回的结果
finished = False
while not finished:
(output, finished) = out_queue.get_nowait() if not out_queue.empty() else out_queue.get()
yield output
def inference(
self,
text: torch.Tensor,
text_len: torch.Tensor,
prompt_text: torch.Tensor,
prompt_text_len: torch.Tensor,
prompt_speech_token: torch.Tensor,
prompt_speech_token_len: torch.Tensor,
embedding: torch.Tensor,
sampling: int = 25,
max_token_text_ratio: float = 20,
min_token_text_ratio: float = 2,
) -> Generator[torch.Tensor|int, None, None]:
prompt_text = tensor_to_list(prompt_text + torch.tensor(6564))
prompt_speech_token = tensor_to_list(prompt_speech_token)
text = tensor_to_list(text + torch.tensor(6564))
prompt_token_ids = [self.sos_eos_token_id] + prompt_text + text + \
[self.task_token_id] + prompt_speech_token
max_tokens = len(text) * 20
for output in self.llm_inference(
prompt_token_ids,
stop_token_ids=[6561],
max_tokens=max_tokens,
):
if output.token_ids[-1] == 6561:
need_add_tokens = output.token_ids[:-1]
else:
need_add_tokens = output.token_ids
for token in need_add_tokens:
yield token
def inference_bistream(
self,
text: Generator,
prompt_text: torch.Tensor,
prompt_text_len: torch.Tensor,
prompt_speech_token: torch.Tensor,
prompt_speech_token_len: torch.Tensor,
embedding: torch.Tensor,
sampling: int = 25,
max_token_text_ratio: float = 20,
min_token_text_ratio: float = 2,
) -> Generator[torch.Tensor, None, None]:
prompt_text = tensor_to_list(prompt_text + torch.tensor(6564))
prompt_speech_token = tensor_to_list(prompt_speech_token)
last_tokens = []
prompt_token_ids = [self.sos_eos_token_id]
text_tokens_cache = prompt_text
for this_text in text:
this_text = tensor_to_list(this_text + torch.tensor(6564))
# text need tokens
assert isinstance(this_text, list), "text need token ids List[int]."
text_tokens_cache += this_text
while len(prompt_speech_token) != 0:
if len(text_tokens_cache) >= self.mix_ratio[0]:
text_input_token = text_tokens_cache[:self.mix_ratio[0]]
speech_input_token = prompt_speech_token[:self.mix_ratio[1]]
prompt_token_ids += text_input_token + speech_input_token
# reset the last cache
text_tokens_cache = text_tokens_cache[self.mix_ratio[0]:]
prompt_speech_token = prompt_speech_token[self.mix_ratio[1]:]
else:
break
if len(prompt_speech_token) == 0:
if (len(last_tokens) > 0 and last_tokens[-1] == 6563) or len(prompt_token_ids) == 1:
if len(text_tokens_cache) >= self.mix_ratio[0]:
text_tokens_temp = text_tokens_cache[:self.mix_ratio[0]]
prompt_token_ids += text_tokens_temp
text_tokens_cache = text_tokens_cache[self.mix_ratio[0]:]
else:
continue
for output in self.llm_inference(prompt_token_ids, stop_token_ids=[6563]):
last_tokens = output.token_ids
if last_tokens[-1] == 6563:
need_add_tokens = last_tokens[:-1]
else:
need_add_tokens = last_tokens
for token in need_add_tokens:
yield token
prompt_token_ids.extend(need_add_tokens)
prompt_token_ids += text_tokens_cache + [self.task_token_id]
for output in self.llm_inference(prompt_token_ids, stop_token_ids=[6561]):
if output.token_ids[-1] == 6561:
need_add_tokens = output.token_ids[:-1]
else:
need_add_tokens = output.token_ids
for token in need_add_tokens:
yield token