mirror of
https://github.com/FunAudioLLM/CosyVoice.git
synced 2026-02-05 18:09:24 +08:00
Merge branch 'FunAudioLLM:main' into fastapi
This commit is contained in:
@@ -114,7 +114,10 @@ class CosyVoiceFrontEnd:
|
|||||||
token_min_n=60, merge_len=20,
|
token_min_n=60, merge_len=20,
|
||||||
comma_split=False)]
|
comma_split=False)]
|
||||||
else:
|
else:
|
||||||
text = self.en_tn_model.normalize(text)
|
if self.use_ttsfrd:
|
||||||
|
text = self.frd.get_frd_extra_info(text, 'input')
|
||||||
|
else:
|
||||||
|
text = self.en_tn_model.normalize(text)
|
||||||
text = spell_out_number(text, self.inflect_parser)
|
text = spell_out_number(text, self.inflect_parser)
|
||||||
texts = [i for i in split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
|
texts = [i for i in split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
|
||||||
token_min_n=60, merge_len=20,
|
token_min_n=60, merge_len=20,
|
||||||
|
|||||||
@@ -56,4 +56,5 @@ class CosyVoiceModel:
|
|||||||
prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
prompt_feat_len=prompt_speech_feat_len.to(self.device),
|
||||||
embedding=flow_embedding.to(self.device))
|
embedding=flow_embedding.to(self.device))
|
||||||
tts_speech = self.hift.inference(mel=tts_mel).cpu()
|
tts_speech = self.hift.inference(mel=tts_mel).cpu()
|
||||||
|
torch.cuda.empty_cache()
|
||||||
return {'tts_speech': tts_speech}
|
return {'tts_speech': tts_speech}
|
||||||
|
|||||||
@@ -167,7 +167,7 @@ def parse_embedding(data, normalize, mode='train'):
|
|||||||
"""
|
"""
|
||||||
for sample in data:
|
for sample in data:
|
||||||
sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
|
sample['utt_embedding'] = torch.tensor(sample['utt_embedding'], dtype=torch.float32)
|
||||||
sample['spk_embedding'] = torch.stack([torch.tensor(i, dtype=torch.float32) for i in sample['spk_embedding']], dim=0).mean(dim=0)
|
sample['spk_embedding'] = torch.tensor(sample['spk_embedding'], dtype=torch.float32)
|
||||||
if normalize:
|
if normalize:
|
||||||
sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0)
|
sample['utt_embedding'] = F.normalize(sample['utt_embedding'], dim=0)
|
||||||
sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0)
|
sample['spk_embedding'] = F.normalize(sample['spk_embedding'], dim=0)
|
||||||
|
|||||||
@@ -60,7 +60,7 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
|||||||
token_len = batch['speech_token_len'].to(device)
|
token_len = batch['speech_token_len'].to(device)
|
||||||
feat = batch['speech_feat'].to(device)
|
feat = batch['speech_feat'].to(device)
|
||||||
feat_len = batch['speech_feat_len'].to(device)
|
feat_len = batch['speech_feat_len'].to(device)
|
||||||
embedding = batch['utt_embedding'].to(device)
|
embedding = batch['embedding'].to(device)
|
||||||
|
|
||||||
# xvec projection
|
# xvec projection
|
||||||
embedding = F.normalize(embedding, dim=1)
|
embedding = F.normalize(embedding, dim=1)
|
||||||
|
|||||||
@@ -97,7 +97,7 @@ class TransformerLM(torch.nn.Module):
|
|||||||
text_token_len = batch['text_token_len'].to(device)
|
text_token_len = batch['text_token_len'].to(device)
|
||||||
speech_token = batch['speech_token'].to(device)
|
speech_token = batch['speech_token'].to(device)
|
||||||
speech_token_len = batch['speech_token_len'].to(device)
|
speech_token_len = batch['speech_token_len'].to(device)
|
||||||
embedding = batch['utt_embedding'].to(device)
|
embedding = batch['embedding'].to(device)
|
||||||
|
|
||||||
# 1. prepare llm_target
|
# 1. prepare llm_target
|
||||||
lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() + [self.speech_token_size]) for i in range(text_token.size(0))]
|
lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() + [self.speech_token_size]) for i in range(text_token.size(0))]
|
||||||
|
|||||||
@@ -52,6 +52,10 @@ class Executor:
|
|||||||
info_dict["batch_idx"] = batch_idx
|
info_dict["batch_idx"] = batch_idx
|
||||||
if cosyvoice_join(group_join, info_dict):
|
if cosyvoice_join(group_join, info_dict):
|
||||||
break
|
break
|
||||||
|
if info_dict["use_spk_embedding"] is True:
|
||||||
|
batch_dict["embedding"] = batch_dict["spk_embedding"]
|
||||||
|
else:
|
||||||
|
batch_dict["embedding"] = batch_dict["utt_embedding"]
|
||||||
|
|
||||||
# Disable gradient synchronizations across DDP processes.
|
# Disable gradient synchronizations across DDP processes.
|
||||||
# Within this context, gradients will be accumulated on module
|
# Within this context, gradients will be accumulated on module
|
||||||
|
|||||||
@@ -715,3 +715,25 @@ class NoamHoldAnnealing(WarmupHoldPolicy):
|
|||||||
|
|
||||||
def set_step(self, step: int):
|
def set_step(self, step: int):
|
||||||
self.last_epoch = step
|
self.last_epoch = step
|
||||||
|
|
||||||
|
|
||||||
|
class ConstantLR(_LRScheduler):
|
||||||
|
"""The ConstantLR scheduler
|
||||||
|
|
||||||
|
This scheduler keeps a constant lr
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
optimizer: torch.optim.Optimizer,
|
||||||
|
):
|
||||||
|
# __init__() must be invoked before setting field
|
||||||
|
# because step() is also invoked in __init__()
|
||||||
|
super().__init__(optimizer)
|
||||||
|
|
||||||
|
def get_lr(self):
|
||||||
|
return self.base_lrs
|
||||||
|
|
||||||
|
def set_step(self, step: int):
|
||||||
|
self.last_epoch = step
|
||||||
|
|||||||
@@ -34,7 +34,7 @@ from torch.nn.utils import clip_grad_norm_
|
|||||||
from deepspeed.runtime.zero.stage_1_and_2 import estimate_zero2_model_states_mem_needs_all_live
|
from deepspeed.runtime.zero.stage_1_and_2 import estimate_zero2_model_states_mem_needs_all_live
|
||||||
|
|
||||||
from cosyvoice.dataset.dataset import Dataset
|
from cosyvoice.dataset.dataset import Dataset
|
||||||
from cosyvoice.utils.scheduler import WarmupLR, NoamHoldAnnealing
|
from cosyvoice.utils.scheduler import WarmupLR, NoamHoldAnnealing, ConstantLR
|
||||||
|
|
||||||
|
|
||||||
def init_distributed(args):
|
def init_distributed(args):
|
||||||
@@ -122,6 +122,9 @@ def init_optimizer_and_scheduler(args, configs, model):
|
|||||||
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
|
elif configs['train_conf']['scheduler'] == 'NoamHoldAnnealing':
|
||||||
scheduler_type = NoamHoldAnnealing
|
scheduler_type = NoamHoldAnnealing
|
||||||
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
|
scheduler = NoamHoldAnnealing(optimizer, **configs['train_conf']['scheduler_conf'])
|
||||||
|
elif configs['train_conf']['scheduler'] == 'constantlr':
|
||||||
|
scheduler_type = ConstantLR
|
||||||
|
scheduler = ConstantLR(optimizer)
|
||||||
else:
|
else:
|
||||||
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
raise ValueError("unknown scheduler: " + configs['train_conf'])
|
||||||
|
|
||||||
|
|||||||
@@ -190,6 +190,7 @@ train_conf:
|
|||||||
scheduler: warmuplr
|
scheduler: warmuplr
|
||||||
scheduler_conf:
|
scheduler_conf:
|
||||||
warmup_steps: 25000
|
warmup_steps: 25000
|
||||||
|
use_spk_embedding: False # change to True during sft
|
||||||
max_epoch: 200
|
max_epoch: 200
|
||||||
grad_clip: 5
|
grad_clip: 5
|
||||||
accum_grad: 2
|
accum_grad: 2
|
||||||
|
|||||||
@@ -186,10 +186,11 @@ data_pipeline: [
|
|||||||
train_conf:
|
train_conf:
|
||||||
optim: adam
|
optim: adam
|
||||||
optim_conf:
|
optim_conf:
|
||||||
lr: 0.001
|
lr: 0.001 # change to 1e-5 during sft
|
||||||
scheduler: warmuplr
|
scheduler: warmuplr # change to constantlr during sft
|
||||||
scheduler_conf:
|
scheduler_conf:
|
||||||
warmup_steps: 2500
|
warmup_steps: 2500
|
||||||
|
use_spk_embedding: False # change to True during sft
|
||||||
max_epoch: 200
|
max_epoch: 200
|
||||||
grad_clip: 5
|
grad_clip: 5
|
||||||
accum_grad: 2
|
accum_grad: 2
|
||||||
|
|||||||
@@ -53,6 +53,8 @@ def main(args):
|
|||||||
if spk not in spk2embedding:
|
if spk not in spk2embedding:
|
||||||
spk2embedding[spk] = []
|
spk2embedding[spk] = []
|
||||||
spk2embedding[spk].append(embedding)
|
spk2embedding[spk].append(embedding)
|
||||||
|
for k, v in spk2embedding.items():
|
||||||
|
spk2embedding[k] = torch.tensor(v).mean(dim=0).tolist()
|
||||||
|
|
||||||
torch.save(utt2embedding, '{}/utt2embedding.pt'.format(args.dir))
|
torch.save(utt2embedding, '{}/utt2embedding.pt'.format(args.dir))
|
||||||
torch.save(spk2embedding, '{}/spk2embedding.pt'.format(args.dir))
|
torch.save(spk2embedding, '{}/spk2embedding.pt'.format(args.dir))
|
||||||
|
|||||||
Reference in New Issue
Block a user